Tau neutrinos. What do we know ? What can we learn from them ?

Katarzyna Grzelak

High Energy Physics Seminar University of Warsaw

2.06.2023

Tau neutrinos

- physics motivation
- detection techniques
- experiments that observed $u_{ au}'s$
- oscillations involving tau neutrinos
- new ideas and experiments

Why study tau neutrinos ?

- To improve knowledge of cross-sections and oscillations parameters, BSM physics can be hidden here !
- To test the three neutrino flavour picture is oscillation matrix unitary, are there sterile neutrinos ?
- To fully probe lepton flavour universality precision knowledge of all generations is needed
- Ultra High Energy Neutrinos: sources, flavour composition
- Anomalous ANITA events

NuTau White Paper: Tau neutrinos in the next decade: from GeV to EeV

R.Abraham et al.(K.Grzelak) 2022, J.Phys.G:Nucl.Part.Phys.49, 110501

< 回 ト < 三 ト < 三

Physics motivation

 ν_τ cross-sections, various physics topics,detection techniques, and relevant energy scale.

NuTau White Paper K.Grzelak (UW) イロト イポト イヨト イヨト

Tau lepton - reminder

Identification of $\nu_{\tau} \equiv$ identification of τ lepton

$$m{c} au \simeq$$
 87 \mum{m}

$E_{ au}$	$\gamma \mathbf{C} \tau$
20 GeV	\simeq 1 mm
$1 \text{ PeV} = 10^6 \text{ GeV}$	\simeq 50 m
$1 \text{ EeV} = 10^9 \text{ GeV}$	\simeq 50 km

Main $ au$ decay modes:	$ au^-$ decay modes	Fraction (Γ_i/Γ)
	$\mu^- \overline{ u}_\mu u_ au$	(17.41 ± 0.04) %
	$e^-\overline{\nu}_e \nu_{\tau}$	(17.83 ± 0.04) %
	$\pi^- u_{ au}$	(10.83 ± 0.06) %
	$\pi^-\pi^\circ u_ au$	(25.52 ± 0.09) %
	$\pi^- 2 \pi^\circ u_ au$	(9.52 ± 0.11) %
	$\pi^-\pi^+\pi^- u_ au$	(9.31 ± 0.06) %
	$\pi^{-}\pi^{+}\pi^{-}\pi^{\circ}\nu_{\tau}$	(4.62 ± 0.06) %

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The neutrino interaction length for energies greater than tens of TeV becomes comparable to the size of the Earth.

Unique for $\nu_{\tau}'s$: regenerated tau neutrino flux $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$

ν_{τ} detection techniques

Direct observation of \(\tau\) decay point (kink)

- Kinematic-based, statistical analysis
- Higher energies observation of two correlated cascades
- Ultra high energies Earth skimming events

Direct observation of τ decay point

K.Grzelak (UW)

Experiments that found ν_{τ} candidates

- DONuT Fermilab, beamdump experiment, ν_{τ} 's from leptonic decays of D_s mesons
- OPERA CERN-Gran Sasso, long-baseline experiment, first ν_{τ} 's from oscillations

Steel (DONuT) or lead (OPERA) layers interleaved with nuclear emulsion sheets.

Kinematic based, statistical analyses

Studies of atmospheric neutrinos

IceCube DeepCore

2019 Phys.Rev.D99 032007

2018 Phys.Rev.D98 052006

SuperK

Statistical separation from not- ν_{τ} atmospheric neutrino backgrounds.

K.Grzelak (UW)

Experiments that found ν_{τ} candidates

- SuperK Kamioka mine, atmospheric ν_{τ} 's, 15 years of data taking
- IceCube DeepCore South Pole, atmospheric ν_{τ} 's, 3 years of data taking

Cherenkov optical radiation in water (SuperK) or ice (IceCube DeepCore)

u_{τ} appearance, IceCube vs SuperK vs OPERA

Blue and green points: results from IceCube DeepCore analyses. Analysis A: atmospheric muon simulation used

- Analysis B: data-driven approach to
- estimate background
- Aartsen et al (IceCube) 2019
- Phys.Rev.D99 032007

τ normalization N

 $N = 0 \rightarrow$ no ν_{τ} -appearance $N = 1 \rightarrow$ standard 3-flavour oscillations $N > 1 \rightarrow BSM$ physics

< ロ ト < 同 ト < 三 ト < 三 ト

Higher energies – observation of two correlated cascades

Blue circles \rightarrow photon sensors (in ice) IceCube, Phys.Rev.D 93,022001 (2016)

< 🗇 🕨 < 🖃 🕨

Higher energies – observation of two correlated cascades

Experiment that found ν_{τ} candidates

Ice Cube - South Pole, astrophysical ν_{τ} 's, 7.5 years of data taking, 2 ν_{τ} candidates

Cherenkov optical radiation in ice, spatially separated energy depositions (double pulse)

・ 同 ト ・ ヨ ト ・ ヨ ト

Higher energies – observation of two correlated cascades

Two IceCube astrophysical ν_{τ} candidates

< □ > < □ > < 豆 > < 豆 > < 豆 > . 豆 . りへぐ.

Earth skimming ν_{τ} events

イロト イロト イヨト イヨト

Sources of radio-frequency and microwave emission from high energy showers

EAS = Extensive Air Shower

Askaryan radiation, G.Askaryan (1962)

- EAS develop a charge asymmetry (~ 20 % electron excess) from Compton scattering and positron annihilation
- electron excess moves in a dielectric medium as a compact bunch
- ⇒ coherent radio/microwave Cherenkov radiation

Geomagnetic radiation

- geomagnetic separation of charges
- \Rightarrow synchrotron radiation

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Experiment that found (?) ν_{τ} candidates

ANITA - stratospheric baloon flying over Antarctic ice, astrophysical ν_{τ} 's, 4 flights, 4(?) anomalous events

Radio/microwave Cherenkov radiation in ice.

Sources of radio-frequency and microwave emission from high energy showers

Four flights of ANITA over Antarctic ice:

- ANITA-I and ANITA-II two anomalous upward-going events, suggesting cross-section for ν_{τ} interactions is smaller than in SM
- ANITA-IV 4 events observed at angles close to the horizon, consistent with ν_τ hypothesis, but in tension with Auger's ν_τ limits

A D b 4 A b

Experiment	Source	Nb of detected evts	
DONuT	Production	9(1.48)	
OPERA	Long-baseline	10(2.4)	
SuperK	Atmospheric	291	
IceCube	Atmospheric	2360/1379	
IceCube	Astrophysical	2	
ANITA	Astrophysical	4 ?	

OPERA – ν_{τ} appearance with 6.1 σ significance

SuperK – hypothesis of no-tau appearance excluded at 4.6σ

For DONuT and OPERA number of background events shown in brackets

日本・モート・モー

Three-flavour neutrino oscillation matrix:

$$\mathbf{U} = \left(\begin{array}{ccc} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{array} \right)$$

• $|U_{\alpha j}|^2$, describe the neutrino flavour- α fraction of ν_j

• Unitarity of the oscillation matrix, e.q.: $|U_{e3}|^2 + |U_{\mu3}|^2 + |U_{\tau3}|^2 = 1$

Neutrino oscillation matrix

- Most of current knowledge about neutrino mixing matrix is from ν_e and ν_μ
- In global fits unitarity of the matrix is assumed
- From experiments: $|U_{e3}|^2 + |U_{\mu3}|^2 \simeq 0.5$ Tau row allows for significant deviations from unitarity.

Sterile neutrino:

- neutral lepton that does not take part in the weak interactions
- theoretically well motivated (v mass generation mechanism)
- can take part in neutrino oscillations

Extended oscillation matrix:

$$\mathbf{U} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \dots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \dots \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \dots \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Model with one sterile neutrino

- Mixing matrix -4×4 unitary matrix with 9 parameters
- One new mass-squared difference Δm_{41}^2 (or Δm_{42}^2 or Δm_{43}^2)
- Possible effects: smaller observed flux, possibly energy-dependent or anomalous appearance of neutrinos

Example: 3+1 oscillation probabilities in the accelerator neutrino experiments

K.Grzelak (UW)

au appearance in the near detectors

- "Near detector"= detector located \sim 500m 1 km from the source of accelerator neutrinos
- Appearance of *τ* neutrinos in the near detectors
 = interesting signature of sterile neutrinos . . .

• . . . for
$$\Delta m^2_{41} \gtrsim 1 \; {
m eV^2}$$

In the near detectors:

$$P_{\nu_{\mu} \to \nu_{\tau}}(L, E) \simeq 4|U_{\mu4}|^2|U_{\tau4}|^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

= $\cos^4 \theta_{14} \sin^2 2\theta_{24} \sin^2 \theta_{34} \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$.

 \rightarrow access to θ_{34} depends on θ_{24}

Sensitivity to ν_{τ} appearance in the near detectors

$$P_{\nu_{\mu} \to \nu_{\tau}}(L, E) = \sin^2 2\theta_{\mu\tau} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

where
$$\sin^2 2\theta_{\mu\tau} \equiv \cos^4 \theta_{14} \sin^2 2\theta_{24} \sin^2 \theta_{34}$$

イロト イヨト イヨト イヨト

Sensitivity to ν_{τ} appearance in the near detectors

Compilation of limits and sensitivities on the parameters of tau-sterile mixing.

イロト イポト イヨト イヨト

Neutrino sources

- Neutrinos from the LHC collider
- Ultra-high energy neutrinos (→ L. Piotrowski seminar)
- Atmospheric neutrinos (\rightarrow M.Posiadała-Zezula seminar)
- Accelerator neutrinos
- Neutrinos from *D_s* decays

FASER ν et al. Detection of neutrinos from the LHC

- Flux of TeV-energy neutrinos from the collision of the LHC proton beams
- Location near the ATLAS interaction point
- Far forward direction, neutrinos of all flavours, ν_τ from decays of charm D mesons
- FASER ν emulsion films interleaved with tungsten plates

< ロト < 同ト < ヨト < ヨト

		Detector		Number of CC interactions		
Name	Mass	Coverage	Luminosity	$\nu_e + \bar{\nu}_e$	$\nu_{\mu} + \bar{\nu}_{\mu}$	$\nu_{\tau} + \bar{\nu}_{\tau}$
$FASER\nu$	1 ton	$\eta \gtrsim 8.5$	150 fb^{-1}	901/3.4k	4.7k/7.1k	15/97
SND@LHC	800kg	$7 < \eta < 8.5$	$150 {\rm ~fb^{-1}}$	137/395	790/1.0k	7.6/18.6
$FASER\nu 2$	20 tons	$\eta \gtrsim 8$	3 ab ⁻¹	178k/668k	943k/1.4M	2.3k/20k
FLArE	10 tons	$\eta \gtrsim 7.5$	3 ab^{-1}	36k/113k	203k/268k	1.5k/4k
AdvSND	2 tons	$7.2 \lesssim \eta \lesssim 9.2$	3 ab^{-1}	6.5k/20k	41k/53k	190/754

NuTau White Paper

イロト イポト イヨト イヨト

$u_{\tau} \text{ cross sections}$

Flux-averaged charged-current ν_{τ} cross-sections.

33/37

Long-Baseline Experiment

J.Nowak HEP Seminar in Warsaw

K.Grzelak (UW)

イロト イロト イヨト イヨト

DUNE flux

- LAr technology: excellent event topology reconstruction capabilities
- High intensity beam (1.2 MW \rightarrow 2.4MW)
- Part of the flux above τ production threshold
- Possible option of *τ*-optimized beam

< ロ ト < 同 ト < 三 ト < 三 ト

Sensitivity to ν_{τ} appearance in the near detectors

NuTau White Paper Initial approach to sensitivities on tau-sterile mixing in DUNE.

< ロ ト < 同 ト < 三 ト < 三 ト

Experiments designed to/interested in study ν_{τ} -related neutrino physics (present and future):

Neutrino sources

- Ultra-high energy neutrinos (ANITA,ARA,GRAND,ARIANNA
 ...)
- Atmospheric neutrinos (SuperK,IceCube/DeepCore,HyperK,KM3NeT/ORCA...)
- Accelerator neutrinos (DUNE)
- Neutrinos from D_s decays(NA65/DsTau)

< ロト < 同ト < ヨト < ヨト