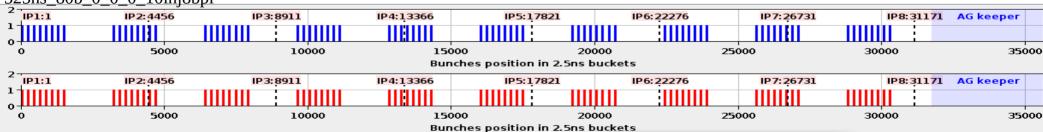
X. Buffat, A. Fornara, S. Kostoglou, G. Sterbini , D. Valuch


Steps to be taken during MD

- Test the ADT setup at injection (Just added to the procedure)
 - Inject one batch of 8b from the SPS in each beam ($2 \cdot 10^{11}$ p/b, 2 µm)
 - Deploy ADT mask with different gain for the different bunch.
 - Kick individual bunches to calibrate the gain
 - Restore ADT settings
 - Dump

٠

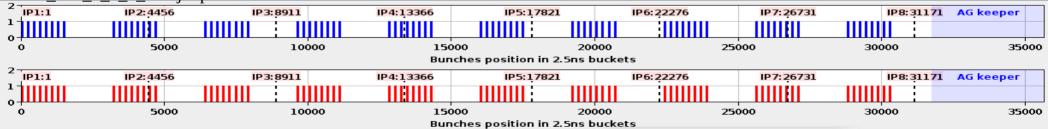
٠

- Perform the measurement at flat top
 - Inject 80 bunches per beam, 8 bunches per injection $(2 \cdot 10^{11} \text{ p/b}, 2 \text{ }\mu\text{m})$
 - Ramp, squeeze and collide with beta* levelling in nominal conditions. (The luminosity from the experiment is needed for lumi-scans)
 - Deploy ADT mask with different gain for the different bunch.
 - Monitor emittance (BSRT), luminosity evolution (experiments) and bunch-by-bunch transverse positions (ADTObsbox)
 - Dump
 - Repeat the measurement with a different set of ADT gains in collision

525ns_80b_0_0_10inj8bpi

2023-04-20

X. Buffat, A. Fornara, S. Kostoglou, G. Sterbini , D. Valuch


Steps to be taken during MD

- Test the ADT setup at injection (Just added to the procedure)
 - Inject one batch of 8b from the SPS in each beam $(2 \cdot 10^{11} \text{ p/b}, 2 \mu \text{m})$
 - Deploy ADT mask with different gain for the different bunch.
 - Kick individual bunches to calibrate the gain
 - Restore ADT settings
 - Dump

٠

- Perform the measurement at flat top
 - Inject 80 bunches per beam, 8 bunches per injection $(2 \cdot 10^{11} \text{ p/b}, 2 \text{ }\mu\text{m})$
 - Ramp, squeeze and collide with beta* levelling in nominal conditions. (The luminosity from the experiment is needed for lumi-scans)
 - Deploy ADT mask with different gain for the different bunch.
 - Monitor emittance (BSRT), luminosity evolution (experiments) and bunch-by-bunch transverse positions (ADTObsbox)
 - Dump
 - Repeat the measurement with a different set of ADT gains in collision

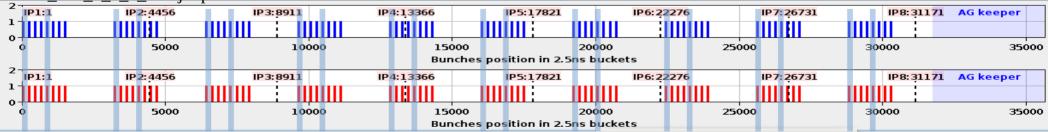
525ns_80b_0_0_10inj8bpi

Device/Prope	erty	
ADTHorM1.B1/NORM_GAIN_WITNESS		4
ADTHorM1.B2/NORM GAIN BLOWUP		
ADTHorM1.B2/NORM_GAIN_CLEANING		
ADTHorM1.B2/NORM GAIN MAIN		=
ADTHorM1.B2/NORM GAIN WITNESS		
ADTHorM2.B1/NORM GAIN BLOWUP		
ADTHorM2.B1/NORM GAIN CLEANING		
ADTHorM2.B1/NORM GAIN MAIN		
ADTHorM2.B1/NORM GAIN WITNESS		
ADTHorM2.B2/NORM GAIN BLOWUP		_
ADTHORM2 R2/NORM GAIN CLEANING		
Select All	Hierarchy	
O_Filter		(0/3)

2023-04-20

X. Buffat, A. Fornara, S. Kostoglou, G. Sterbini , D. Valuch

Steps to be taken during MD


- Test the ADT setup at injection (Just added to the procedure)
 - Inject one batch of 8b from the SPS in each beam ($2 \cdot 10^{11}$ p/b, 2 µm)
 - Deploy ADT mask with different gain for the different bunch.
 - Kick individual bunches to calibrate the gain
 - Restore ADT settings
 - Dump

٠

٠

- Perform the measurement at flat top
 - Inject 80 bunches per beam, 8 bunches per injection $(2 \cdot 10^{11} \text{ p/b}, 2 \text{ }\mu\text{m})$
 - Ramp, squeeze and collide with beta* levelling in nominal conditions. (The luminosity from the experiment is needed for lumi-scans)
 - Deploy ADT mask with different gain for the different bunch.
 - Monitor emittance (BSRT), luminosity evolution (experiments) and bunch-by-bunch transverse positions (ADTObsbox)
 - Dump
 - Repeat the measurement with a different set of ADT gains in collision

525ns_80b_0_0_10inj8bpi

Device/Property		-
ADTHorM1.B1/NORM_GAIN_WITNESS		-
ADTHorM1.B2/NORM_GAIN_BLOWUP		
ADTHorM1.B2/NORM_GAIN_CLEANING		
ADTHorM1.B2/NORM_GAIN_MAIN		=
ADTHorM1.B2/NORM GAIN WITNESS		
ADTHorM2.B1/NORM GAIN BLOWUP		
ADTHorM2.B1/NORM GAIN CLEANING		
ADTHorM2.B1/NORM GAIN MAIN		
ADTHorM2.B1/NORM GAIN WITNESS		
ADTHorM2.B2/NORM GAIN BLOWUP		
ADTHORM2 B2/NORM GAIN CLEANING		
Select All	Hierarchy	
Ø Filter		(0/32

2023-04-20

X. Buffat, A. Fornara, S. Kostoglou, G. Sterbini , D. Valuch

Steps to be taken during MD

- Test the ADT setup at injection (Just added to the procedure)
 - Inject one batch of 8b from the SPS in each beam ($2 \cdot 10^{11}$ p/b, 2 µm)
 - Deploy ADT mask with different gain for the different bunch.
 - Kick individual bunches to calibrate the gain
 - Restore ADT settings
 - Dump

٠

- Perform the measurement at flat top
 - Inject 80 bunches per beam, 8 bunches per injection ($2 \cdot 10^{11}$ p/b, 2 µm)
 - Ramp, squeeze and collide with beta* levelling in nominal conditions. (The luminosity from the experiment is needed for lumi-scans)
 - Deploy ADT mask with different gain for the different bunch.
 - Monitor emittance (BSRT), luminosity evolution (experiments) and bunch-by-bunch transverse positions (ADTObsbox)
 - Dump
 - Repeat the measurement with a different set of ADT gains in collision

525ns_80b_0_0_0_10inj8bpi

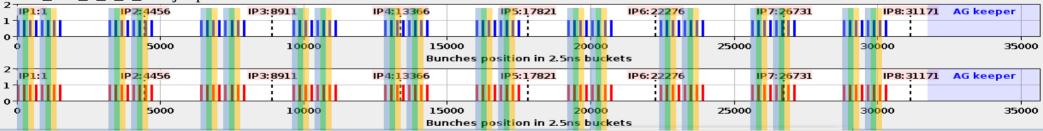
Device/Proper	ty	-
ADTHorM1.B1/NORM GAIN WITNESS		-
ADTHorM1.B2/NORM GAIN BLOWUP		
ADTHorM1.B2/NORM GAIN CLEANING		
ADTHorM1.B2/NORM GAIN MAIN		=
ADTHorM1.B2/NORM GAIN WITNESS		
ADTHorM2.B1/NORM GAIN BLOWUP		
ADTHorM2.B1/NORM GAIN CLEANING		
ADTHorM2.B1/NORM GAIN MAIN		
ADTHorM2.B1/NORM_GAIN_WITNESS		
ADTHorM2.B2/NORM GAIN BLOWUP		_
ADTHORM2 B2/NORM GAIN CLEANING		
Select All	Hierarchy	
O_Filter		(0/3)

2023-04-20

CEI meeting

X. Buffat, A. Fornara, S. Kostoglou, G. Sterbini , D. Valuch

Steps to be taken during MD


- Test the ADT setup at injection (Just added to the procedure)
 - Inject one batch of 8b from the SPS in each beam $(2 \cdot 10^{11} \text{ p/b}, 2 \mu \text{m})$
 - Deploy ADT mask with different gain for the different bunch.
 - Kick individual bunches to calibrate the gain
 - Restore ADT settings
 - Dump

٠

٠

- Perform the measurement at flat top
 - Inject 80 bunches per beam, 8 bunches per injection ($2 \cdot 10^{11}$ p/b, 2 µm)
 - Ramp, squeeze and collide with beta* levelling in nominal conditions. (The luminosity from the experiment is needed for lumi-scans)
 - Deploy ADT mask with different gain for the different bunch.
 - Monitor emittance (BSRT), luminosity evolution (experiments) and bunch-by-bunch transverse positions (ADTObsbox)
 - Dump
 - Repeat the measurement with a different set of ADT gains in collision

525ns_80b_0_0_0_10inj8bpi

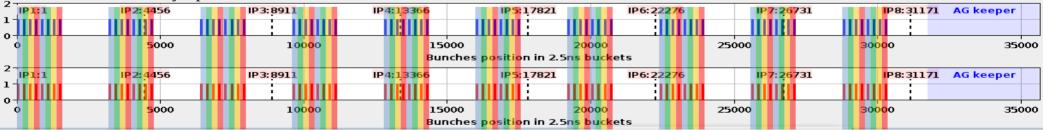
Device/Prope	ty	
ADTHorM1.B1/NORM GAIN WITNESS		
ADTHorM1.B2/NORM GAIN BLOWUP		
ADTHorM1.B2/NORM_GAIN_CLEANING		
ADTHorM1.B2/NORM_GAIN_MAIN		Ξ
ADTHorM1.B2/NORM_GAIN_WITNESS		-
ADTHorM2.B1/NORM_GAIN_BLOWUP		
ADTHorM2.B1/NORM_GAIN_CLEANING		
ADTHorM2.B1/NORM_GAIN_MAIN		
ADTHorM2.B1/NORM_GAIN_WITNESS		
ADTHorM2.B2/NORM_GAIN_BLOWUP		
ADTHorM2 B2/NORM GAIN CLEANING		
Select All	Hierarchy	
P Filter		(0/3

2023-04-20

CEI meeting

X. Buffat, A. Fornara, S. Kostoglou, G. Sterbini , D. Valuch

Steps to be taken during MD


- Test the ADT setup at injection (Just added to the procedure)
 - Inject one batch of 8b from the SPS in each beam ($2 \cdot 10^{11}$ p/b, 2 µm)
 - Deploy ADT mask with different gain for the different bunch.
 - Kick individual bunches to calibrate the gain
 - Restore ADT settings
 - Dump

٠

٠

- Perform the measurement at flat top
 - Inject 80 bunches per beam, 8 bunches per injection ($2 \cdot 10^{11}$ p/b, 2 µm)
 - Ramp, squeeze and collide with beta* levelling in nominal conditions. (The luminosity from the experiment is needed for lumi-scans)
 - Deploy ADT mask with different gain for the different bunch.
 - Monitor emittance (BSRT), luminosity evolution (experiments) and bunch-by-bunch transverse positions (ADTObsbox)
 - Dump
 - Repeat the measurement with a different set of ADT gains in collision

525ns_80b_0_0_0_10inj8bpi

Device/Prope	ty	-
ADTHorM1.B1/NORM GAIN WITNESS		-
ADTHorM1.B2/NORM_GAIN_BLOWUP		
ADTHorM1.B2/NORM_GAIN_CLEANING		
ADTHorM1.B2/NORM_GAIN_MAIN		=
ADTHorM1.B2/NORM_GAIN_WITNESS		
ADTHorM2.B1/NORM_GAIN_BLOWUP		
ADTHorM2.B1/NORM_GAIN_CLEANING		
ADTHorM2.B1/NORM_GAIN_MAIN		
ADTHorM2.B1/NORM_GAIN_WITNESS		
ADTHorM2.B2/NORM_GAIN_BLOWUP		_
ADTHorM2 B2/NORM GAIN CLEANING		
Select All	Hierarchy	
P Filter		(0/3)

2023-04-20

CEI meetina