
September 14, 2023
AGC demonstration, Madison (WI)

Enrico Guiraud
presenting contributions from various authors

AGC scalability stress tests

2

This presentation

A quick showcase of the different ways the AGC is being used for
benchmarking, testing, validating infrastructure and analysis tools.

3

This presentation

A quick showcase of the different ways the AGC is being used for
benchmarking, testing, validating infrastructure and analysis tools.

Measurements are not exhaustive
and sometimes so fresh that issues are not completely understood.

Hopefully still interesting information.

4

This presentation

A quick showcase of the different ways the AGC is being used for
benchmarking, testing, validating infrastructure and analysis tools.

Measurements are not exhaustive
and sometimes so fresh that issues are not completely understood.

Hopefully still interesting information.

Many thanks to the various authors that contributed measurements!

5

The datasets

AGC v0.1
● custom flat TTree schema, ZLIB-compressed
● 3.6 TB across 2269 files
● 5% actually read (180 GB)

AGC v1
● CMS NanoAOD schema, ZLIB-compressed
● 1.78 TB
● 4.1% actually read (73 GB)

Julia at UChicago
AGC v1.0 (incl. pyhf), from Jerry Ling (Harvard)

https://github.com/Moelf/LHC_AGC.jl

https://github.com/Moelf/LHC_AGC.jl

Showcasing HEP analysis interfaces in Julia.

Demonstrating the Julia-HEP ecosystem can
run analyses of this complexity, with scale out.

7

Original goal of these measurements

● HTCondor cluster @ af.uchicago
● data read via network (cephfs)
● runtime includes all processing time up until statistical

inference via pyhf (but not time spent waiting for nodes)

8

Setup

9

Results

#workers runtime (s)

10 2319

30 782

60 409

90 327

Julia can run the full AGC v1 task on a typical computing
cluster in around five minutes.

Coffea, RDF on CERN's EOS, XCache
AGC v0.1, from Andrea Sciabà (CERN IT)

Validation of CERN's infrastructure,
individuation of potential bottlenecks at the level of CERN

storage and network.

11

Original goal of these measurements

12

Setup

13

Coffea (futures executor) 1/2

14

Coffea (futures executor) 2/2

● Using SWAN to run the latest version of the workload on LXBATCH
HTCondor cluster via Dask

○ 4 cores per job, 3 GB per core available

15

Coffea (Dask executor)

16

RDataFrame 1/2 (EOS above, XCache below)

17

RDataFrame 2/2

contention in TFile+XRootD,
fixed in v6.29

Running speed is limited by CPU when reading data from
local SSDs.

When reading over the network, the bottleneck is likely
latency in accessing the data:

better async pre-fetching could help? maybe with RNTuple?

18

Limiting factors

RDF on CERN HPC cluster
AGC v0.1, from Vincenzo Padulano (ROOT team)

https://github.com/root-project/analysis-grand-challenge

https://github.com/root-project/analysis-grand-challenge

Validation of the scaling of distributed RDataFrame,
demonstration of RDF's API,

individuation of potential bottlenecks at the level of ROOT.

20

Original goal of these measurements

Test setup

HPC cluster at CERN (link). 8 computing nodes, each with:
▶ CPU: 2x AMD EPYC 7302 16-Core.
▶ Memory: 512GB DDR4 3200Mhz.
▶ Network: 10Gbit ethernet connection.

Slurm jobs via Dask, exclusive access to the nodes,
data is read from EOS via xrootd.

21

https://batchdocs.web.cern.ch/linuxhpc/index.html

Plots

22

Raw numbers

23

total_cores time (mean) speedup standard error of
mean

1 5679 1 146.56

2 3078 1.85 87.40

4 1486 3.82 100.45

8 758 7.49 52.90

16 399 14.24 21.68

32 225 25.25 14.41

64 135 42.04 6.84

128 71 79.68 3.94

256 49 114.71 2.60

Data processing throughput

▶ AGC v0.1
● dataset size = 3.6 TB

▶ Actual size read is 5%
▶ Maximum data processing throughput (end to end)

● w.r.t. actual data read: 3.6 GB/s or 14 MB/s/core

24

Coffea at UNL coffea-casa - Flatiron
AGC v1.0, from Alexander Held, Oksana Shadura and others (IRIS-HEP)

https://github.com/iris-hep/analysis-grand-challenge

https://github.com/iris-hep/analysis-grand-challenge

UNL Coffea-Casa Hardware – Flatiron

● 12 Dell R750 Servers, 512 GB Ram, 10 3.2 TiB NVMe Drives
 Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz (56 threads/CPU, 2
CPU per node)

● 2 x 100Gbps Networking, Calico + BGP
● Alma Linux 8.8, Kubernetes (v1.26.2)
● Ceph-Rook Filesystem @ 183 TiB
● 2 x P100, 1x V100 GPUs for Triton
● Ceph @ 8.7 PiB Usable for Tier2 CEPH storage
● 4.8TiB @ SAS HDDs for XCache
● Cert-manager, Dex, external-dns, sealed-secrets, Traefik, CVMFS

Data access from Flatiron to EOS Public

We need to use XCache!

Horizontal scaling at UNL: AGC v1 and pre-v2

main (pre-v2),
including inference

AGC v1

Coffea at UChicago ATLAS
coffea-casa
AGC v1.0, from Ilija Vukotic (UChicago)

https://github.com/iris-hep/analysis-grand-challenge

https://github.com/iris-hep/analysis-grand-challenge

UChicago AF XCache Hardware

● Dell R740XD
● 2x Intel Xeon Silver 4214 CPU @ 2.20GHz

○ 24 cores / 48 hyperthreads
● 192GB RAM
● 24x 1.5TB NVMe
● 2x 25Gbps Network

UChicago AF Hardware

● 16 IRIS-HEP nodes, Dell R750
○ Intel(R) Xeon(R) Gold 6348 CPU at 2.60 GHz

■ 56 cores / 112 hyperthreads
○ 384GB RAM
○ 10x 3.2TB NVMe

■ 2x dedicated to /scratch on each node (6.4TB/node)
○ 2x 25Gbps Networking
○ CentOS 7

● Mix of V100, A100 and older GPUs available
● Kubernetes v1.25.12
● Ceph v16.2.6 via Rook

○ 3.6 PB raw / 1.2 PB usable (3x replication)
○ 366 OSDs, mix of NVMe and HDD (separate pools)
○ Capacity pool capable of ~10GB/s reads with large files at high concurrency

UChicago SSL(dev) Hardware

● 11 nodes, LENOVO System x3550 M5
○ Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz

■ 24 cores / 48 hyperthreads
○ 256 GB RAM
○ 2x 750G SSD
○ 10Gbps Networking

● Kubernetes v1.25.11
● Rook

○ ~1TB available

33

Effect of XCache at UChicago

x20 speedup via XCache

Compare to ACAT slides
page 9: similar event rates
as running over local files
on local-network CephFS.

https://indico.cern.ch/event/1106990/contributions/4998188/attachments/2534785/4362177/Analysis%20Grand%20Challenge%20-%20ACAT.pdf

34

Adding ML inference
significantly increases CPU
cost (many extra operations
to calculate input
variables).

Facility configuration is
very important! Significant
runtime decrease with new
optimized setup.

Can also vary AGC
configuration to simulate
different I/O needs (see
ACAT slides).

Adding ML inference to the mix

https://indico.cern.ch/event/1106990/contributions/4998188/attachments/2534785/4362177/Analysis%20Grand%20Challenge%20-%20ACAT.pdf

35

Results

ServiceX pre-filtering + caching avg: 290s, min: 270s, max: 305s

Strong dependence
on user-defined

chunk size
ServiceX –> runtimes for
Coffea reading pre-filtered
data (1.5% of original
dataset) from on-premise
S3 instance

No ServiceX –> runtimes
for Coffea reading full
dataset from on-premise
XCache

Throughput
per worker

Dask scheduling
various AGC versions and facilities, from Alexander Held, Oksana
Shadura and others (IRIS-HEP)

https://github.com/iris-hep/analysis-grand-challenge

https://github.com/iris-hep/analysis-grand-challenge

Dask scheduling: the good, the bad, the ugly

Good scheduling efficiencies, walltime effects, scheduling inefficiencies

37

latency (time until batch slots are available)
can have crucial impact on total walltime

few workers, waiting for more
pre-processing

efficient use of resources!
occasionally observed: workers idling, very
low task scheduling efficiencies!
-> investigations ongoing, to be understood

Conclusions

39

State of the art

● version 0.1/1.0 (no ML inference) runs in O(1 minute) on several facilities

● several setups achieve O(1 GB/s) of total throughput at O(100) cores

● processing rates per core between kHz and MHz depending on setup

● not quite "100 TB in 20 minutes" yet, more like 5 TB when reading all data
○ smart pre-filtering and caching speeds things up, ML inference slows them down

○ resource sharing, dataset joins, more complex schemas (physlite) will also impact performance

40

Summary

● it is being used to validate a number of different frameworks and setups

● it already helped uncover several performance issues and bottlenecks

(several other that are still under investigation)

● caching via XCache and ServiceX is a common way to speed up processing

● Dask worker configuration and scheduling efficiency is critical

The AGC is an incredibly useful integration test.

