AGC scalability stress tests

Enrico Guiraud
presenting contributions from various authors

September 14, 2023
AGC demonstration, Madison (WI)

A quick showcase of the different ways the AGC is being used for
benchmarking, testing, validating infrastructure and analysis tools.

A quick showcase of the different ways the AGC is being used for
benchmarking, testing, validating infrastructure and analysis tools.

Measurements are not exhaustive
and sometimes so fresh that issues are not completely understood.
Hopefully still interesting information.

A quick showcase of the different ways the AGC is being used for
benchmarking, testing, validating infrastructure and analysis tools.

Measurements are not exhaustive
and sometimes so fresh that issues are not completely understood.
Hopefully still interesting information.

Many thanks to the various authors that contributed measurements!

AGC v0.1
e custom flat TTree schema, ZLIB-compressed
e 3.6 TB across 2269 files
e 5% actually read (180 GB)

AGC vl
e CMS NanoAOD schema, ZLIB-compressed
e 178TB
e 4.1% actually read (73 GB)

Julia ot UChicago

AGC v1.0 (incl. pyhf), from Jerry Ling (Harvard)

https://aithub.com/Moelf/LHC_AGC.jl

https://github.com/Moelf/LHC_AGC.jl

Showcasing HEP analysis interfaces in Julia.

Demonstrating the Julia-HEP ecosystem can
run analyses of this complexity, with scale out.

e HTCondor cluster @ af.uchicago

e data read via network (cephfs)

e runtime includes all processing time up until statistical
inference via pyhf (but not time spent waiting for nodes)

Results

Scaling of LHC_AGC.jl

#workers runtime (s)

Y 10 2319

£

g 30 782

s 60 409
90 327

40 50 60 70 80 90
of Cores

Julia can run the full AGC v1 task on a typical computing
cluster in around five minutes.

Coffea, RDF on CERN's EOS, XCache

AGC vO0.1, from Andrea Sciaba (CERN IT)

Validation of CERN's infrastructure,
individuation of potential bottlenecks at the level of CERN
storage and network.

1

— aclient node with two AMD EPYC 7702 CPUs for a total of 128 cores, 1 TB of RAM and
40 TB of SSD storage;

— two XCache instances with two Intel Xeon Silver 4216 for a total of 32 cores and 192 GB
of RAM each, one instance with 1 PB in hard drives and the other with 32 TB in SSDs;

— the EOS storage system at CERN [3].

XCache XCache

25 Gb/s 25 Gbls
100 Gb/s 10 or 25 Gb/s
Client S8||88| 88| |[88|Eos
268 B 2 | i

Coffea (futures executor) 1/2

Time (sec)

Wallclock time

local access

EOS direct access
EOS via HDD XCache
EOS via SSD XCache

Rate (MiB/s)

Pseudo-CPU efficiency

Efficiency (%)

local access

EOS direct access
EOS via HDD XCache
EOS via SSD XCache

S 5 100 125 150
Workers

Total read rate

local access

EOS direct access
EOS via HDD XCache
EOS via SSD XCache

00 125 150 175 200
Workers

175

Coffea (futures executor) 2/2

when running on local files, the CPU efliciency remains very high, which suggests that the
workload is CPU-constrained and the I/O relatively lightweight. The scalability breaks for
high numbers of workers due to a considerable increase in the CPU time;

when reading directly from EOSCMS, the CPU efficiency stays fairly constant around a
value of 60%, which points at the network latency as the bottleneck. The scalability shows
a similar behavior as for the previous case. When reading from EOSUSER very similar
results are obtained and are not shown;

running via an XCache instance does not bring any performance improvements with respect
to direct access to EOS, although it would still be useful in case the dataset is originally
hosted at a remote site; moreover, SSDs do not perform noticeably better than HDDs (in
our very basic, single-user scenario).

The performance when reading via FUSE was also measured, but the total read rate saturates
around 100 MB/s; as expected, using FUSE is strongly discouraged to access input data.

Finally, the performance metrics were measured also for direct access to the Nebraska
storage via XrootD and via both a cold and a warm HDD-based XCache; not surprisingly,
access via a cold cache was slower than direct access (~ 610 s and ~ 440 s respectively),
while a warm cache performed exactly like EOS direct access.

Coffea (Dask executor)

e Using SWAN to run the latest version of the workload on LXBATCH
HTCondor cluster via Dask

o 4 cores per job, 3 GB per core available

Wallclock time for AGC Coffea

e LXBATCH via Dask

o=
)
7]
wi

L
]
E

=

Dask workers

15

RDaotaoFrome 1/2 (EOS above,

Time (sec)

Time (sec)

[
=]
©

Wallclock time

local access

EOS direct access

EOS direct access via Dask

EOS direct access with ROOT 6.29

10*
Workers

Wallclock time

HDD XCache
SSD XCache
HDD XCache optimized
SSD XCache optimized

10"
Workers

Efficiency (%)

Efficiency (%)

Pseudo-CPU efficiency

e local access
= EOS direct access
¢ EOS direct access with ROOT 6.29

Pseudo-CPU efficiency

HDD XCache
SSD XCache
HDD XCache optimized
SSD XCache optimized

XCache below

Rate (MiB/s)

Rate (MiB/s)

Total read rate

local access

EOS direct access

EOS direct access via Dask

EOS direct access with ROOT 6.29

Total read rate

+

HDD XCache
SSD XCache
HDD XCache optimized
SSD XCache optimized

80
Workers

RDataFrame 2/2

the scalability “out of the box™ using ROOT 6.26 is extremely poor, but this was understood
as caused by three factors:

1. by default, the XRootD client uses only one event loop thread to hand the asynchronous
I/O, which creates a considerable bottleneck when many concurrent file operations
are performed. Setting the environment variable XRD_PARALLELEVTLOOP to 10
removes this bottleneck [1];

. by default, XRootD will multiplex several network connections from the same client
process to a remote XRootD server (such as an EOS disk server or an XCache instance)
into one, which is in general a good idea, but will create a bottleneck when the client
process uses many threads connecting to a single server. This becomes apparent in the
case of XCache, as it is a single server, but it does not affect access to EOS, where
files are almost guaranteed to be spread over a large number of disk servers. The
multiplexing can be disabled by the user; contention in TFile+XRootD,

/ fixed in v6.29

. a significant lock contention affects RDF with large numbers of threads and files read
via XRootD. This problem was fixed for in the ROOT library.

Running speed is limited by CPU when reading data from
local SSDs.

When reading over the network, the bottleneck is likely
latency In accessing the data:
better async pre-fetching could help? maybe with RNTuple?

18

RDF on CERN HPC cluster

AGC V0.1, from Vincenzo Padulano (ROOT team)

https://aithub.com/root-project/analysis-grand-challenge

https://github.com/root-project/analysis-grand-challenge

Validation of the scaling of distributed RDataFrame,
demonstration of RDF's AP,
individuation of potential bottlenecks at the level of ROOT.

20

Test setup

HPC cluster at CERN (link). 8 computing nodes, each with:

» CPU: 2x AMD EPYC 7302 16-Core.
» Memory: 512GB DDR4 3200Mhz.
» Network: 10Gbit ethernet connection.

Slurm jobs via Dask, exclusive access to the nodes,
data is read from EOS via xrootd.

21

https://batchdocs.web.cern.ch/linuxhpc/index.html

Runtime [s]

—_
o
S

16

32

64

128

I
256
Cores

Speedup [w.r.t 1 core]

256

128

(o2}
S

32

16

- Real

""""""" Linear

16

32

64

128

256

Cores

22

Raw numbers

total_cores time (mean) speedup standard error of
mean

1 5679 1 146.56

2 3078 1.85 87.40

4 1486 3.82 100.45

8 758 7.49 52.90

16 399 14.24 21.68

32 225 25.25 14.41

64 135 42.04 6.84

128 71 79.68 3.94

256 49 114.71 2.60

23

Data processing throughput

» AGC vO0.1
e datasetsize=3.6TB

» Actual size read is 5%

» Maximum data processing throughput (end to end)
e Ww.r.t. actual data read: 3.6 GB/s or 14 MB/s/core

24

Coffea ot UNL coffea-casa - Flatiron

AGC V1.0, from Alexander Held, Oksana Shadura and others (IRIS-HEP)

https://aithub.com/iris-hep/analysis-grand-challenge

https://github.com/iris-hep/analysis-grand-challenge

UNL Coffea-Casa Hardware — Flatiron

12 Dell R750 Servers, 512 GB Ram, 10 3.2 TiB NVMe Drives
Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz (56 threads/CPU, 2

CPU per node)

2 x 100Gbps Networking, Calico + BGP

Alma Linux 8.8, Kubernetes (v1.26.2)

Ceph-Rook Filesystem @ 183 TiB

2 x P100, 1x V100 GPUs for Triton

Ceph @ 8.7 PiB Usable for_Tier2 CEPH storage

4.8TiB @ SAS HDDs for XCache

Cert-manager, Dex, external-dns, sealed-secrets, Traefik, CVMFS

NVIDIA

Data access from Flatiron to EOS Public

Data access- EOS Public (xrdcp)

125

100

We need to use XCache!

75

MB/s

50

25

CMS coffea-casa

Lxplus UNL Tier3

Horizontal scaling at UNL: AGC v1 and pre-v2

scaling with number of cores

Task Stream

AGC v1

total event rate [kHz]

main (pre-v2),
including inference

1/01 :05 10

total event rate [kHz]

5000

" & chunksize: 500 k

4000 -

3000 -

2000 -

1000 -

scaling with number of cores

P chunksize: 200 k

2000 -

1500 -

1000 -

500 -

0 50

100

100

150 200

150 200
number of cores

250

250

300

3(‘)0

Coffea at UChicago ATLAS
coffea-casa

AGC v1.0, from Ilija Vukotic (UChicago)

https://aithub.com/iris-hep/analysis-grand-challenge

https://github.com/iris-hep/analysis-grand-challenge

UChicago AF XCache Hardware

e Dell R740XD

e 2x Intel Xeon Silver 4214 CPU @ 2.20GHz
o 24 cores /48 hyperthreads

e 192GB RAM
e 24x 1.5TB NVMe
o 2x 25Gbps Network

UChicago AF Hardware

e 16 IRIS-HEP nodes, Dell R750

Intel(R) Xeon(R) Gold 6348 CPU at 2.60 GHz
m 56 cores/ 112 hyperthreads
384GB RAM
10x 3.2TB NVMe
m 2x dedicated to /scratch on each node (6.4TB/node)
2x 25Gbps Networking
CentOS 7

e Mix of V100, A100 and older GPUs available
e Kubernetes v1.25.12

e Cephv16.2.6 via Rook

o 3.6 PBraw /1.2 PB usable (3x replication)
o 366 OSDs, mix of NVMe and HDD (separate pools)
o Capacity pool capable of ~10GB/s reads with large files at high concurrency

O

UChicago SSL(dev) Hardware

e 11 nodes, LENOVO System x3550 M5

o Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
m 24 cores /48 hyperthreads

o 256 GB RAM

o 2x750G SSD

o 10Gbps Networking

e Kubernetes v1.25.11
e Rook

o ~1TB available

Effect of XCache at UChicago

AGC v1, all files, running at UChicago

LSS

x20 speedup via XCache

Compare to ACAT slides

page 9: similar event rates
as running over local files
on local-network CephFS.

‘N
=
V4
()
el
o
O
-
Q
o
)
]
©
-
]
)
>
()

u
o
1

LSS LSS LSS S S S LSSSSSSSSSo
O - 1 1
over https (files at UNL) from warm XCache at UChicago

https://indico.cern.ch/event/1106990/contributions/4998188/attachments/2534785/4362177/Analysis%20Grand%20Challenge%20-%20ACAT.pdf

Adding ML inference to the mix

Adding ML inference AGC, main, all files, running at UChicago
significantly increases CPU 160 - old setup: 2 cores & 2 threads per worker
. 140 - I new setup: 1 core & 1 thread per worker
cost (many extra operations e
to calculate input

120 - ’ ‘
variables).

100 -

80 -

60:= (il

Facility configuration is
very important! Significant
runtime decrease with new
optimized setup.

N
o
V4

| -

Q
D

| .

o

=

| -

(V)

o

Q
+—J

©

|
4+
=

]

>

Q

Can also vary AGC
configuration to simulate
different I/O needs (see
ACAT slides).

34

https://indico.cern.ch/event/1106990/contributions/4998188/attachments/2534785/4362177/Analysis%20Grand%20Challenge%20-%20ACAT.pdf

Results

Strong dependence 0
on user-defined Chunicize B Senviceiy vicaX

chunk size 88.46s 200

ServiceX —> runtimes for
Coffea reading pre-filtered

10k 2040z minutes data (1.5% of original
o S0 100 datfaset) from on-premise
Throughput 589Hz minutes S3 instance
er worker adfbes =9l
b ek 7.46kHz minutes ;)
No ServiceX —> runtimes
5403s 745.19s :
B e for Coffea reading full.
p dataset from on-premise
S
55.96s 64.20 XCache

7.25kHz

kHz

ServiceX pre-filtering + caching avg: 290s, min: 270s, max: 30bs

Dask scheduling

various AGC versions and facilities, from Alexander Held, Oksana
Shadura and others (IRIS-HEP)

https://aithub.com/iris-hep/analysis-grand-challenge

https://github.com/iris-hep/analysis-grand-challenge

Dask scheduling: the good, the bad, the ugly

Good scheduling efficiencies, walltime effects, scheduling inefficiencies

efficient use of resources!

latency (time until batch slots are available)
can have crucial impact on total walltime

few workers, waiting for more

pre-processing

||I' llu?"h

occasionally observed: workers idling, very
low task scheduling efficiencies!
-> jnvestigations ongoing, to be understood

L B b
3% " - . -F z -
P -
] = = 5 - -
- = § = _3: - :.- =
£ £y -1 -
= - = i ;
&= i - F -
e . 3
&= b ¢ 3 i

wr

T T T T
01 :02 :03 04

37

Conclusions

e version 0.1/1.0 (no ML inference) runs in O(1 minute) on several facilities
e several setups achieve O(1 GB/s) of total throughput at O(100) cores
e processing rates per core between kHz and MHz depending on setup

e notquite"100 TB in 20 minutes" yet, more like 5 TB when reading all data

o smart pre-filtering and caching speeds things up, ML inference slows them down

o resource sharing, dataset joins, more complex schemas (physlite) will also impact performance

39

The AGC is an incredibly useful integration test.

e itis being used to validate a number of different frameworks and setups

e italready helped uncover several performance issues and bottlenecks
(several other that are still under investigation)

e caching via XCache and ServiceX is a common way to speed up processing

e Dask worker configuration and scheduling efficiency is critical

40

