Phenomenology of the Weinberg 3HDM potential CP violation

Per Osland University of Bergen

Catch22+2-Dublin, May 2024

co-defendents: Odd Magne Ogreid, M. (Gui) N. Rebelo also borrows from R. Plantey et al, EPJC, 2023

S. Weinberg, 1976 (Notation of Ivanov and Nishi): 3 SU(2) doublets: $Z_2 \times Z_2$ symmetry

$$\begin{split} V &= V_2 + V_4, \quad \text{with} \quad V_4 = V_0 + V_{\text{ph}}, \\ V_2 &= -[m_{11}(\phi_1^{\dagger}\phi_1) + m_{22}(\phi_2^{\dagger}\phi_2) + m_{33}(\phi_3^{\dagger}\phi_3)], \\ V_0 &= \lambda_{11}(\phi_1^{\dagger}\phi_1)^2 + \lambda_{22}(\phi_2^{\dagger}\phi_2)^2 + \lambda_{33}(\phi_3^{\dagger}\phi_3)^2 \\ &+ \lambda_{12}(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_{13}(\phi_1^{\dagger}\phi_1)(\phi_3^{\dagger}\phi_3) + \lambda_{23}(\phi_2^{\dagger}\phi_2)(\phi_3^{\dagger}\phi_3) \\ &+ \lambda_{12}'(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_1) + \lambda_{13}'(\phi_1^{\dagger}\phi_3)(\phi_3^{\dagger}\phi_1) + \lambda_{23}'(\phi_2^{\dagger}\phi_3)(\phi_3^{\dagger}\phi_2), \end{split}$$
 $V_{\text{ph}} &= \lambda_1(\phi_2^{\dagger}\phi_3)^2 + \lambda_2(\phi_3^{\dagger}\phi_1)^2 + \lambda_3(\phi_1^{\dagger}\phi_2)^2 + \text{ h.c.}$

Observation:

Disregarding the phase-dependent part: $Z_2 \ X \ Z_2 \ \text{symmetry}$ $V = V_2 + V_4, \quad \text{with} \quad V_4 = V_0 + V_{\text{ph}},$ $V_2 = -[m_{11}(\phi_1^{\dagger}\phi_1) + m_{22}(\phi_2^{\dagger}\phi_2) + m_{33}(\phi_3^{\dagger}\phi_3)],$ $V_0 = \lambda_{11}(\phi_1^{\dagger}\phi_1)^2 + \lambda_{22}(\phi_2^{\dagger}\phi_2)^2 + \lambda_{33}(\phi_3^{\dagger}\phi_3)^2$ $+ \lambda_{12}(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_{13}(\phi_1^{\dagger}\phi_1)(\phi_3^{\dagger}\phi_3) + \lambda_{23}(\phi_2^{\dagger}\phi_2)(\phi_3^{\dagger}\phi_3)$ $+ \lambda'_{12}(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_1) + \lambda'_{13}(\phi_1^{\dagger}\phi_3)(\phi_3^{\dagger}\phi_1) + \lambda'_{23}(\phi_2^{\dagger}\phi_3)(\phi_3^{\dagger}\phi_2),$

the potential has two U(1) symmetries (will return to this point)

There are different ways of solving the minimization equations: *Solution 1 (CPC):*

$$v_i = 0, \quad v_j = 0, \quad m_{kk} = \lambda_{kk} v_k^2.$$

Solution 2 (CPV):

$$v_i = 0, \quad \lambda_i = 0,$$

$$m_{jj} = \frac{1}{2} v_k^2 \left(\lambda'_{jk} + \lambda_{jk} \right) + \lambda_{jj} v_j^2, \quad m_{kk} = \frac{1}{2} v_j^2 \left(\lambda'_{jk} + \lambda_{jk} \right) + \lambda_{kk} v_k^2.$$

This solution has a \mathbb{Z}_2 symmetry preserved by the vacuum. Violates CP

Solution 3 (CPC):

 $v_i = 0, \quad \sin(\theta_k - \theta_j) = 0,$ $m_{jj} = \frac{1}{2} v_k^2 \left(\lambda'_{jk} + \lambda_{jk} + 2\lambda_i \right) + \lambda_{jj} v_j^2, \quad m_{kk} = \frac{1}{2} v_j^2 \left(\lambda'_{jk} + \lambda_{jk} + 2\lambda_i \right) + \lambda_{kk} v_k^2$

• • •

Solution 12 (CPV):

. . .

$$\begin{split} m_{11} &= \frac{1}{2} \left(v_2^2 \left(\lambda_{12}' + \lambda_{12} \right) + v_3^2 \left(\lambda_{13}' + \lambda_{13} \right) + \frac{2\lambda_1 v_2^2 v_3^2 \sin^2 2(\theta_2 - \theta_3)}{v_1^2 \sin 2(\theta_1 - \theta_2) \sin 2(\theta_1 - \theta_3)} + 2\lambda_{11} v_1^2 \right) \\ m_{22} &= \frac{1}{2} \left(v_1^2 \left(\lambda_{12}' + \lambda_{12} \right) + v_3^2 \left(\lambda_{23}' + \lambda_{23} \right) + 2\lambda_{22} v_2^2 \right) + \lambda_1 v_3^2 \frac{\sin 2(\theta_1 - \theta_3)}{\sin 2(\theta_1 - \theta_2)}, \\ m_{33} &= \frac{1}{2} \left(v_1^2 \left(\lambda_{13}' + \lambda_{13} \right) + v_2^2 \left(\lambda_{23}' + \lambda_{23} \right) + 2\lambda_{33} v_3^2 \right) + \lambda_1 v_2^2 \frac{\sin 2(\theta_1 - \theta_2)}{\sin 2(\theta_1 - \theta_3)}, \\ \lambda_3 &= \frac{\lambda_1 v_3^2 \sin 2(\theta_2 - \theta_3)}{v_1^2 \sin 2(\theta_1 - \theta_2)}, \quad \lambda_2 &= -\frac{\lambda_1 v_2^2 \sin 2(\theta_2 - \theta_3)}{v_1^2 \sin 2(\theta_1 - \theta_3)}. \end{split}$$

The latter is the solution identified by Branco and studied in our earlier work R. Plantey et al, EPJC, 2023

General case:

Minimization conditions: 3 moduli and 2 phases May express m_{ii} in terms of λ s (3 conditions) May relate λ_2 and λ_3 to λ_1 (2 conditions)

Consequence:

Mass-squared matrices are homogeneous in λ s, i.e., masses are bounded by the perturbativity constraint on λ s

Our work:

Real potential, all three vevs non-zero, complex, i.e., spontaneous CP violation.

Note that in the limit when phase-dependent terms λ_1 , λ_2 , λ_3 vanish, the potential has two U(1) symmetries

These break when vevs are non-zero, $\Rightarrow 2$ Goldstone bosons

Turn on U(1)-violating terms, "would-be Goldstone bosons" acquire mass

However, in order to have an "almost SM-like" WWH_{SM} coupling, must be close to U(1)× U(1) symmetry, \Rightarrow two light states that have "large CP-odd content"

Remainder: 2 intertwined stories

The potential tends to yield one or two states below 125 GeV

that have a significant CP-odd admixture CP-violation in specific processes

3HDM Gauge couplings

Cubic gauge-gauge-scalar part:

$$\mathcal{L}_{VVh} = \left(gm_W W^+_{\mu} W^{\mu-} + \frac{gm_Z}{2\cos\theta_W} Z_{\mu} Z^{\mu}\right) \sum_{i=1}^{5} \frac{e_i}{v} h_i$$

$$m_W = \frac{1}{2}gv$$
(vector-vector-scalar)

For the cubic gauge-scalar-scalar terms, we find

3HDM Gauge couplings

Cubic gauge-gauge-scalar part:

$$\mathcal{L}_{VVh} = \left(gm_W W^+_\mu W^{\mu-} + \frac{gm_Z}{2\cos\theta_W} Z_\mu Z^\mu\right) \sum_{i=1}^5 \frac{e_i}{v} h_i m_W = \frac{1}{2}gv$$

VVS

For the cubic gauge-scalar-scalar terms, we find $\mathcal{L}_{Vhh} = -\frac{g}{2\cos\theta_W} \sum_{i=1}^{5} \sum_{j=1}^{5} \underbrace{\frac{\lambda_{ij}}{\nu} (h_i \overleftrightarrow{\partial}_{\mu} h_j) Z^{\mu}}_{v} + \frac{g}{2} \sum_{i=1}^{5} \sum_{k=1}^{2} \left[\frac{f_{ki}}{v} (h_k^+ \overleftrightarrow{\partial}_{\mu} h_i) W^{\mu-} + \text{h.c.} \right] \\
+ \left(ieA^{\mu} + \frac{ig\cos 2\theta_W}{2\cos\theta_W} Z^{\mu} \right) \sum_{k=1}^{2} (h_k^+ \overleftrightarrow{\partial}_{\mu} h_k^-) \qquad \text{In the 2HDM, all related}$

CP violation and alignment

In a 2HDM

 $I_{i} = I_{k}$ H_{k} H_{k contributions proportional to $e_i e_j e_k$ But these are constrained by unitarity: $e_i^2 + e_j^2 + e_k^2 = v^2$ Alignment requires $\max(v_1, v_2, v_3) = v$ Thus, $e_i e_j e_k \to 0$

Alignment prohibits such contribution to CPV in a 2HDM

CP violation and alignment

In a 3HDM

contributions proportional to $\lambda_{ij}\lambda_{jk}\lambda_{ki}$ This does not vanish in the alignment limit!

Technical digression Comments on the H_iH_jZ coupling

Coupling comes from kinetic part of Lagrangian, conserves CP Z is odd, \Rightarrow only non-zero coupling if H_iH_j has some CP-odd content H_i and H_j need not be eigenstates of CP, but must have different "mix" of even and odd

 $\lambda_{ij} = ZH_iH_j \quad \text{coupling}$

In units of $g/(2\cos\theta_W)$, in a <u>CP-conserving 2HDM</u>:

- $\lambda_{HA} = 1$, ZHA coupling (even and odd) ≤ 1
- $\lambda_{hA} = 0, \quad ZHh \text{ coupling (both even)} \leq 1$
- $\lambda_{hA} = 0, \quad ZhA \text{ coupling (even and odd)} \leq 1$

Scan

Scan philosophy

- Parameter ranges: $v_i \in \{0, v\}$, subject to $v_1^2 + v_2^2 + v_3^2 = v^2$, $|\lambda_{ij}|, |\lambda_i| \in \{0, 4\pi\}, \ \theta_{2,3} \in \{-\pi, \pi\}$
- Diagonalize mass-squared matrix, determine h_i
- Identify SM candidate by $h_i WW$ coupling (only one possible solution for h_i)
- Rescale all λ s such that h_{SM} at 125.25 GeV (mixing matrix unchanged)

 λ_{ij}/v λ_{ij} is a measure of Zh_ih_j interaction to be non-zero, $h_i h_j$ can not have the same CP Z affinity, $h_3 = SM$ 0.8 h_5 -0.7 -0.6 h_4 -0.5 h_3 -0.4 0.3 h_3 aligned h₂ 0.2 0.1 h₁ 0 \mathbf{h}_1 h_2 h₃ h_4 h_5 2209.06499

2209.06499

Weinberg

CP-violating invariants

$$V = Y_{ab}(\phi_a^{\dagger}\phi_b) + \frac{1}{2}Z_{abcd}(\phi_a^{\dagger}\phi_b)(\phi_c^{\dagger}\phi_d)$$
$$\hat{V}_{ab} = \frac{v_a e^{i\theta_a}}{v} \frac{v_b e^{-i\theta_b}}{v}$$

If all J_i vanish, then CP is conserved

$$J_{1} = \operatorname{Im} \{ V_{ac} V_{be} Z_{cadf} Z_{edfg} Z_{gbhh} \}, \\ J_{2} = \operatorname{Im} \{ V_{ac} V_{be} Z_{cadf} Z_{edfg} Z_{ghhb} \}, \\ J_{3} = \operatorname{Im} \{ V_{ac} V_{be} Z_{cadf} Z_{egfd} Z_{gbhh} \}, \\ J_{4} = \operatorname{Im} \{ V_{ac} V_{bd} Z_{cedg} Z_{eafh} Z_{gbhf} \}, \\ J_{5} = \operatorname{Im} \{ V_{ac} V_{bd} Z_{cedg} Z_{ehfa} Z_{gfhb} \}, \\ J_{6} = \operatorname{Im} \{ V_{ac} V_{bd} Z_{cedf} Z_{eafg} Z_{gbhh} \}, \\ J_{7} = \operatorname{Im} \{ V_{ad} V_{be} V_{cf} Z_{daeh} Z_{fbgi} Z_{hcig} \}, \\ J_{8} = \operatorname{Im} \{ V_{ad} V_{be} V_{cf} Z_{daeh} Z_{figb} Z_{hgic} \}, \\ J_{9} = \operatorname{Im} \{ V_{ad} V_{be} V_{cf} Z_{daeg} Z_{fbgh} Z_{hcii} \}, \\ J_{10} = \operatorname{Im} \{ V_{ad} V_{be} V_{cf} Z_{daeg} Z_{fhgi} Z_{hbic} \}, \\ J_{11} = \operatorname{Im} \{ V_{ac} V_{be} Z_{cadg} Z_{edff} Z_{gihh} Z_{ibjj} \}, \\ J_{12} = \operatorname{Im} \{ V_{ac} V_{be} Z_{cadg} Z_{effd} Z_{ghhi} Z_{ijjb} \}, \\ J_{13} = \operatorname{Im} \{ V_{ac} V_{be} Z_{cadf} Z_{edfg} Z_{gihj} Z_{ibjh} \}, \\ J_{14} = \operatorname{Im} \{ V_{ac} V_{bd} Z_{cedf} Z_{eafg} Z_{gihj} Z_{ibjh} \}, \\ v^{6} J_{15} = \operatorname{Im} \{ V_{ac} V_{bd} Y_{cf} Y_{dg} Y_{ea} Z_{fbge} \}.$$

15

Measures of CP-violation:

$$A_{\text{sum}} = \log_{10} \sum_{i=1}^{15} J_i^2, \quad A_{\text{max}} = \log_{10} (\max_i J_i^2)$$

Weinberg 3HDM constraints

Basic:

- perturbativity, unitarity, bounded from below
- coupling $WWh_{\rm SM}$ within 3σ
- $h_{\rm SM} \tau \bar{\tau}$ CP constraint (LHC)
- **Further:** S, T, U (electroweak precision observables)
 - $h_{\rm SM} \rightarrow \gamma \gamma$ signal strength, modified by charged scalars in loop
 - $\bar{B} \to X_s \gamma$, two charged scalars, complex Wilson coefficients
 - electron EDM, violates CP
 - pruning low-mass states

15 CPV invariants:

scatter plot of points surviving constraints

different colours: different range of eEDM

conclusion? systematics?

maxima of 15 CPV invariants vs eEDM

grey: i = 1, 6, 11; blue: i = 2, 7, 12; green: i = 3, 8, 13; red: i = 4, 9, 14; purple: i = 5, 10, 15.

QUESTION: Why do all 15 invariants correlate with eEDM? maxima of 15 CPV invariants vs eEDM

grey: i = 1, 6, 11; blue: i = 2, 7, 12; green: i = 3, 8, 13; red: i = 4, 9, 14; purple: i = 5, 10, 15.

Summary

- Additional states are light
- If an extra light state below $h_{\rm SM} = 125$ GeV is discovered, and If this has a considerable coupling to $h_{\rm SM}Z$, then a model based on the Weinberg potential would be in a stronger position than the 2HDM
- light states (h_1, h_2) would predominantly decay to $b\bar{b}$, to $b\bar{b}\tau\bar{\tau}$ or $b\bar{b}$ + invisible (from $h_2 \to h_1 Z$)
- Weinberg potential can accommodate neutral scalar at 95 GeV (and charged one at 130 GeV)

Summary

• but does not contribute (significantly) to $(g-2)_{\mu}$

sorry