Phenomenology of the Weinberg 3HDM potential CP violation

Per Osland University of Bergen

Catch22+2-Dublin, May 2024
co-defendents: Odd Magne Ogreid, M. (Gui) N. Rebelo
also borrows from R. Plantey et al, EPJC, 2023

Weinberg 3HDM

S. Weinberg, 1976 (Notation of Ivanov and Nishi):

3 SU(2) doublets:
$Z_{2} X Z_{2}$ symmetry

$$
V=V_{2}+V_{4}, \quad \text { with } \quad V_{4}=V_{0}+V_{\mathrm{ph}},
$$

$$
\begin{aligned}
V_{2} & =-\left[m_{11}\left(\phi_{1}^{\dagger} \phi_{1}\right)+m_{22}\left(\phi_{2}^{\dagger} \phi_{2}\right)+m_{33}\left(\phi_{3}^{\dagger} \phi_{3}\right)\right], \\
V_{0} & =\lambda_{11}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\lambda_{22}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2}+\lambda_{33}\left(\phi_{3}^{\dagger} \phi_{3}\right)^{2} \\
& +\lambda_{12}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{13}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{3}\right)+\lambda_{23}\left(\phi_{2}^{\dagger} \phi_{2}\right)\left(\phi_{3}^{\dagger} \phi_{3}\right) \\
& +\lambda_{12}^{\prime}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right)+\lambda_{13}^{\prime}\left(\phi_{1}^{\dagger} \phi_{3}\right)\left(\phi_{3}^{\dagger} \phi_{1}\right)+\lambda_{23}^{\prime}\left(\phi_{2}^{\dagger} \phi_{3}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right), \\
V_{\mathrm{ph}} & =\lambda_{1}\left(\phi_{2}^{\dagger} \phi_{3}\right)^{2}+\lambda_{2}\left(\phi_{3}^{\dagger} \phi_{1}\right)^{2}+\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\text { h.c. }
\end{aligned}
$$

Weinberg 3HDM

Observation:

Disregarding the phase-dependent part: $Z_{2} X Z_{2}$ symmetry

$$
\begin{aligned}
& V=V_{2}+V_{4}, \quad \text { with } \quad V_{4}=V_{0}+\text { V, } \\
V_{2} & =-\left[m_{11}\left(\phi_{1}^{\dagger} \phi_{1}\right)+m_{22}\left(\phi_{2}^{\dagger} \phi_{2}\right)+m_{33}\left(\phi_{3}^{\dagger} \phi_{3}\right)\right] \\
V_{0}= & \lambda_{11}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\lambda_{22}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2}+\lambda_{33}\left(\phi_{3}^{\dagger} \phi_{3}\right)^{2} \\
+ & \lambda_{12}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{13}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{3}\right)+\lambda_{23}\left(\phi_{2}^{\dagger} \phi_{2}\right)\left(\phi_{3}^{\dagger} \phi_{3}\right) \\
+ & \lambda_{12}^{\prime}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right)+\lambda_{13}^{\prime}\left(\phi_{1}^{\dagger} \phi_{3}\right)\left(\phi_{3}^{\dagger} \phi_{1}\right)+\lambda_{23}^{\prime}\left(\phi_{2}^{\dagger} \phi_{3}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)
\end{aligned}
$$

the potential has two $\mathrm{U}(1)$ symmetries
(will return to this point)

Weinberg 3HDM

There are different ways of solving the minimization equations:

Solution 1 (CPC):

$$
v_{i}=0, \quad v_{j}=0, \quad m_{k k}=\lambda_{k k} v_{k}^{2}
$$

Solution $2(C P V)$:

$$
\begin{aligned}
v_{i}=0, & \lambda_{i}=0 \\
m_{j j}=\frac{1}{2} v_{k}^{2}\left(\lambda_{j k}^{\prime}+\lambda_{j k}\right)+\lambda_{j j} v_{j}^{2}, & m_{k k}=\frac{1}{2} v_{j}^{2}\left(\lambda_{j k}^{\prime}+\lambda_{j k}\right)+\lambda_{k k} v_{k}^{2}
\end{aligned}
$$

This solution has a \mathbb{Z}_{2} symmetry preserved by the vacuum. violates CP

Solution 3 (CPC):

$$
\begin{gathered}
v_{i}=0, \quad \sin \left(\theta_{k}-\theta_{j}\right)=0 \\
m_{j j}=\frac{1}{2} v_{k}^{2}\left(\lambda_{j k}^{\prime}+\lambda_{j k}+2 \lambda_{i}\right)+\lambda_{j j} v_{j}^{2}, \quad m_{k k}=\frac{1}{2} v_{j}^{2}\left(\lambda_{j k}^{\prime}+\lambda_{j k}+2 \lambda_{i}\right)+\lambda_{k k} v_{k}^{2}
\end{gathered}
$$

Weinberg 3HDM

Solution 12 (CPV):

$$
\begin{gathered}
m_{11}=\frac{1}{2}\left(v_{2}^{2}\left(\lambda_{12}^{\prime}+\lambda_{12}\right)+v_{3}^{2}\left(\lambda_{13}^{\prime}+\lambda_{13}\right)+\frac{2 \lambda_{1} v_{2}^{2} v_{0}^{2} \sin 22\left(\theta_{2}-\theta_{3}\right)}{v_{1}^{2} \sin 2\left(\theta_{1}-\theta_{2}\right) \sin 2\left(\theta_{1}-\theta_{3}\right)}+2 \lambda_{11} v_{1}^{2}\right) \\
m_{22}=\frac{1}{2}\left(v_{1}^{2}\left(\lambda_{12}^{\prime}+\lambda_{12}\right)+v_{3}^{2}\left(\lambda_{23}^{\prime}+\lambda_{23}\right)+2 \lambda_{22} v_{2}^{2}\right)+\lambda_{1} v_{3}^{2} \frac{\sin 2\left(\theta_{1}-\theta_{3}\right)}{\sin 2\left(\theta_{1}-\theta_{2}\right)}, \\
m_{33}=\frac{1}{2}\left(v_{1}^{2}\left(\lambda_{13}^{\prime}+\lambda_{13}\right)+v_{2}^{2}\left(\lambda_{23}^{\prime}+\lambda_{23}\right)+2 \lambda_{33} v_{3}^{2}\right)+\lambda_{1} v_{2}^{2 \sin 2\left(\theta_{1}-\theta_{2}\right)}, \\
\lambda_{3}=\frac{\lambda_{1} v_{3}^{2} \sin 2\left(\theta_{2}-\theta_{3}\right)}{v_{1}^{2} \sin 2\left(\theta_{1}-\theta_{2}\right)}, \quad \lambda_{2}=-\frac{\lambda_{1} v_{2} v_{2} \sin 2\left(\theta_{2}-\theta_{3}\right)}{v_{1}^{2} \sin 2\left(\theta_{1}-\theta_{3}\right)} . \text { violates CP }
\end{gathered}
$$

The latter is the solution identified by Branco and studied in our earlier work
R. Plantey et al, EPJC, 2023

Weinberg 3HDM

General case:

> | Minimization conditions: 3 moduli and 2 phases |
| :--- |
| May express $m_{i i}$ in terms of $\lambda \mathrm{s}(3$ conditions $)$ |
| May relate λ_{2} and λ_{3} to $\lambda_{1}(2$ conditions $)$ |

Consequence:
Mass-squared matrices are homogeneous in $\lambda \mathrm{s}$, i.e., masses are bounded
by the perturbativity constraint on $\lambda \mathrm{s}$

Weinberg 3HDM

Our work:

Real potential, all three vevs non-zero, complex, i.e., spontaneous CP violation.

Note that in the limit when phase-dependent terms $\lambda_{1}, \lambda_{2}, \lambda_{3}$ vanish, the potential has two $U(1)$ symmetries

These break when vevs are non-zero,
$\Rightarrow 2$ Goldstone bosons
Turn on $\mathrm{U}(1)$-violating terms, "would-be Goldstone bosons" acquire mass

However, in order to have an "almost SM-like" $W W H_{\mathrm{SM}}$ coupling, must be close to $\mathrm{U}(1) \times \mathrm{U}(1)$ symmetry,
\Rightarrow two light states that have "large CP-odd content"

Weinberg 3HDM

Remainder: 2 intertwined stories

The potential tends to yield one or two states below 125 GeV
that have a significant CP-odd admixture

CP-violation in specific processes

3HDM Gauge couplings

Cubic gauge-gauge-scalar part:

$$
\mathcal{L}_{V V h}=\left(g m_{W} W_{\mu}^{+} W^{\mu-}+\frac{g m_{Z}}{2 \cos \theta_{W}} Z_{\mu} Z^{\mu}\right) \sum_{i=1}^{5} \frac{e_{i}}{v} h_{i} m_{W}=\frac{1}{2} g v
$$

For the cubic gauge-scalar-scalar terms, we find

$$
\begin{aligned}
\mathcal{L}_{V h h} & =-\frac{g}{2 \cos \theta_{W}} \sum_{i=1}^{5} \sum_{j=1}^{5} \frac{\lambda_{i j}^{\swarrow}}{v}\left(h_{i} \stackrel{\leftrightarrow}{\partial_{\mu}} h_{j}\right) Z^{\mu}+\frac{g}{2} \sum_{i=1}^{5} \sum_{k=1}^{2}\left[\frac{f_{k i}^{\downarrow}}{v}\left(h_{k}^{+} \stackrel{\leftrightarrow}{\text { VSS }_{\mu}} h_{i}\right) W^{\mu-}+\text { h.c. }\right] \\
& +\left(i e A^{\mu}+\frac{i g \cos 2 \theta_{W}}{2 \cos \theta_{W}} Z^{\mu}\right) \sum_{k=1}^{2}\left(h_{k}^{+} \overleftrightarrow{\partial_{\mu}} h_{k}^{-}\right)
\end{aligned}
$$

3HDM Gauge couplings

Cubic gauge-gauge-scalar part:

$$
\mathcal{L}_{V V h}=\left(g m_{W} W_{\mu}^{+} W^{\mu-}+\frac{g m_{Z}}{2 \cos \theta_{W}} Z_{\mu} Z^{\mu}\right) \sum_{i=1}^{5} \frac{e_{i}}{v} h_{i} m_{W}=\frac{1}{2} g v
$$

For the cubic gauge-scalar-scalar terms, we find

$$
\begin{aligned}
\mathcal{L}_{V h h} & =-\frac{g}{2 \cos \theta_{W}} \sum_{i=1}^{5} \sum_{j=1}^{5} \frac{\lambda_{i j}^{\downarrow}}{v}\left(h_{i} \stackrel{\leftrightarrow}{\partial_{\mu}} h_{j}\right) Z^{\mu} \\
& +\left(i e A^{\mu}+\frac{g}{2} \sum_{i=1}^{5} \sum_{k=1}^{2}\left[\frac{f_{k i}^{\downarrow}}{v}\left(h_{k}^{+} \stackrel{\leftrightarrow}{\text { VSS }_{\mu}} h_{i}\right) W^{\mu-}+\text { h.c. }\right]\right. \\
& \left.Z^{\mu}\right) \sum_{k=1}^{2}\left(h_{k}^{+} \overleftrightarrow{\partial_{\mu}} h_{k}^{-}\right)
\end{aligned}
$$

CP violation and alignment

In a 2 HDM

contributions proportional to $e_{i} e_{j} e_{k}$
But these are constrained by unitarity: $e_{i}^{2}+e_{j}^{2}+e_{k}^{2}=v^{2}$
Alignment requires $\max \left(v_{1}, v_{2}, v_{3}\right)=v$
Thus, $e_{i} e_{j} e_{k} \rightarrow 0$
Alignment prohibits such contribution to CPV in a 2HDM

CP violation and alignment

In a 3HDM

contributions proportional to $\lambda_{i j} \lambda_{j k} \lambda_{k i}$
This does not vanish in the alignment limit!

Technical digression

Comments on the $H_{i} H_{j} Z$ coupling
Coupling comes from kinetic part of Lagrangian, conserves CP Z is odd, \Rightarrow only non-zero coupling if $H_{i} H_{j}$ has some CP-odd content H_{i} and H_{j} need not be eigenstates of CP, but must have different "mix" of even and odd

$$
\lambda_{i j}=Z H_{i} H_{j} \quad \text { coupling }
$$

In units of $g /\left(2 \cos \theta_{W}\right)$, in a CP-conserving 2HDM:

$$
\begin{array}{rlrl}
\lambda_{H A} & =1, & Z H A \text { coupling }(\text { even and odd }) & \leq 1 \\
\lambda_{h A} & =0, & Z H h \text { coupling (both even) } & \\
\lambda_{h A}=0, & Z h A \text { coupling }(\text { even and odd }) & \leq 1
\end{array}
$$

Scan

Scan philosophy

- Parameter ranges: $v_{i} \in\{0, v\}$, subject to $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=v^{2}$, $\left|\lambda_{i j}\right|,\left|\lambda_{i}\right| \in\{0,4 \pi\}, \theta_{2,3} \in\{-\pi, \pi\}$
- Diagonalize mass-squared matrix, determine h_{i}
- Identify SM candidate by $h_{i} W W$ coupling (only one possible solution for h_{i})
- Rescale all λ_{s} such that h_{SM} at 125.25 GeV (mixing matrix unchanged)

Weinberg 3HDM

$\lambda_{i j}$ is a measure of $Z h_{i} h_{j}$ interaction
to be non-zero, $h_{i} h_{j}$ can not have the same CP
$\lambda_{i j} / v$
Z affinity, $h_{3}=S M$

Weinberg 3HDM

Weinberg

Weinberg 3HDM

CP-violating invariants

$$
\begin{aligned}
& J_{1}=\operatorname{Im}\left\{V_{a c} V_{b e} Z_{\text {cadf }} Z_{\text {edfg }} Z_{\text {gbhh }}\right\}, \\
& J_{2}=\operatorname{Im}\left\{V_{a c} V_{b e} Z_{\text {cadf }} Z_{\text {edfg }} Z_{g h b b}\right\}, \\
& V=Y_{a b}\left(\phi_{a}^{\dagger} \phi_{b}\right)+\frac{1}{2} Z_{a b c d}\left(\phi_{a}^{\dagger} \phi_{b}\right)\left(\phi_{c}^{\dagger} \phi_{d}\right) \quad J_{3}=\operatorname{Im}\left\{V_{a c} V_{b e} Z_{\text {cadf }} Z_{\text {egfd }} Z_{g b h h}\right\}, \\
& \hat{V}_{a b}=\frac{v_{a} e^{i \theta_{a}}}{v} \frac{v_{b} e^{-i \theta_{b}}}{v} \\
& \text { If all } J_{i} \text { vanish, then } \\
& \mathrm{CP} \text { is conserved } \\
& J_{4}=\operatorname{Im}\left\{V_{a c} V_{b d} Z_{c e d g} Z_{\text {eafh }} Z_{g b h f}\right\} \text {, } \\
& J_{5}=\operatorname{Im}\left\{V_{a c} V_{b d} Z_{c e d g} Z_{\text {ehfa }} Z_{g f h b}\right\} \text {, } \\
& J_{6}=\operatorname{Im}\left\{V_{a c} V_{b d} Z_{\text {cedf }} Z_{\text {eafg }} Z_{\text {gbh }}\right\}, \\
& J_{7}=\operatorname{Im}\left\{V_{a d} V_{\text {be }} V_{c f} Z_{\text {daeh }} Z_{f b g i} Z_{\text {hcig }}\right\} \text {, } \\
& J_{8}=\operatorname{Im}\left\{V_{a d} V_{b e} V_{c f} Z_{\text {daeh }} Z_{\text {figb }} Z_{\text {hgic }}\right\}, \\
& J_{9}=\operatorname{Im}\left\{V_{a d} V_{b e} V_{c f} Z_{\text {daeg }} Z_{\text {fbgh }} Z_{\text {hcii }}\right\}, \\
& J_{10}=\operatorname{Im}\left\{V_{a d} V_{b e} V_{c f} Z_{\text {daeg }} Z_{f h g i} Z_{\text {hbic }}\right\}, \\
& J_{11}=\operatorname{Im}\left\{V_{a c} V_{b e} Z_{c a d g} Z_{\text {edff }} Z_{\text {gihh }} Z_{i b j j}\right\} \text {, } \\
& J_{12}=\operatorname{Im}\left\{V_{a c} V_{b e} Z_{c a d g} Z_{\text {effd }} Z_{g h h i} Z_{i j j b}\right\}, \\
& J_{13}=\operatorname{Im}\left\{V_{a c} V_{b e} Z_{c a d f} Z_{e d f g} Z_{\text {gih }} Z_{i b j h}\right\}, \\
& J_{14}=\operatorname{Im}\left\{V_{a c} V_{b d} Z_{\text {cedf }} Z_{\text {eafg }} Z_{\text {gihj }} Z_{i b j h}\right\}, \\
& v^{6} J_{15}=\operatorname{Im}\left\{V_{a c} V_{b d} Y_{c f} Y_{d g} Y_{e a} Z_{f b g e}\right\} .
\end{aligned}
$$

Weinberg 3HDM

Measures of CP-violation:

$$
A_{\text {sum }}=\log _{10} \sum_{i=1}^{15} J_{i}^{2}, \quad \underset{\substack{\text { (grey) } \\ \text { (blue) }}}{ }=\log _{10}\left(\max _{i} J_{i}^{2}\right)
$$

Related to phases of vevs?

Yellow: masses $>45 \mathrm{GeV}$

Yellow: no mass below 45 GeV

Weinberg 3HDM constraints

Basic:

- perturbativity, unitarity, bounded from below
- coupling $W W h_{\mathrm{SM}}$ within 3σ
- $h_{\mathrm{SM}} \tau \bar{\tau} \mathrm{CP}$ constraint (LHC)

Further: - S, T, U (electroweak precision observables)

- $h_{\mathrm{SM}} \rightarrow \gamma \gamma$ signal strength, modified by charged scalars in loop
- $\bar{B} \rightarrow X_{s} \gamma$, two charged scalars, complex Wilson coefficients
- electron EDM, violates CP
- pruning low-mass states

Weinberg 3HDM

15 CPV invariants:
scatter plot of points surviving constraints
different colours: different range of eEDM
Type Z

conclusion?
systematics?

Weinberg 3HDM

maxima of 15 CPV invariants vs eEDM

Weinberg 3HDM

QUESTION: Why do all 15 invariants correlate with eEDM?

maxima of 15 CPV invariants vs eEDM

Weinberg 3HDM

MASSES:

Summary

- Additional states are light
- If an extra light state below $h_{\mathrm{SM}}=125 \mathrm{GeV}$ is discovered, and If this has a considerable coupling to $h_{\mathrm{SM}} Z$, then a model based on the Weinberg potential would be in a stronger position than the 2HDM
- light states $\left(h_{1}, h_{2}\right)$ would predominantly decay to $b \bar{b}$, to $b \bar{b} \tau \bar{\tau}$ or $b \bar{b}+$ invisible (from $h_{2} \rightarrow h_{1} Z$)
- Weinberg potential can accommodate neutral scalar at 95 GeV (and charged one at 130 GeV)

Summary

- but does not contribute (significantly) to $(g-2)_{\mu}$

