

Sub-GeV DM Searches with QUEST-DMC

Neda Darvishi

On behalf of the QUEST-DMC collaboration

1-5 May, 2024

Cosmology, Astrophysics, Theory and Collider Higgs 2024, Dublin

ROYAI

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

▶ WP1: Detection of sub-GeV dark matter

- ▶ Using superfluid 3He detector as a quantum calorimeter.
- ▶ Reading out energy depositions using quantum sensors.
- ▶ Very low threshold allows low mass dark matter searches.
- ▶ WP2: Phase transitions in extreme matter.
 - ▶ Simulating the early universe using 3He superfluid.
 - ▶ Studying phase transitions between distinct quantum vacua.
 - ► Searching for gravitational wave.

	Core Team	
ROYAL HOLLOWAY UNIVERSITY OF LONDON	EXPERIMENTAL	Robert Smith
	Dr. Samuli Autti	Dr. Michael Thompson
	Dr. Andrew Casey	Dr. Viktor Tsepelin DNC
Lancaster 🞇 University	Dr. Paolo Franchini	Dr. Dmitry Zmeev
	Prof. Richard Haley	Dr. Vladislav Zavyalov
	Dr. Petri Heikkinen	Tineke Salmon
110	Dr. Sergey Kafanov	Luke Whitehead
	Dr. Ashlea Kemp	THEORY
University of Sussex	Dr. Elizabeth Leason	Prof. Mark Hindmarsh (Leading WP2)
UNIVERSITY OF OXFORD	Dr. Lev Levitin	Prof. Stephan Huber
	Prof. Jocelyn Monroe (Leading WP1)	Prof. John March-Russell
	Dr. Jonathan Prance	Prof. Stephen West
	Dr. Xavier Rojas	Dr. Neda Darvishi
	Prof. John Saunders	Dr. Quang Zhang

Mass Range of Dark Matter

500

Leading Sensitivities in Direct Detection

🛯 ୬୯୯

NR EFT of DM Direct Detection

・ロト ・日 ・ モー・ モー・ クタマ

- A general formulation for possible DM-nucleus interactions and a better description of the nuclear response.
- The interaction Hamiltonian:

$$\hat{\mathcal{H}} = \sum_{\tau=0,1} \sum_{i=1}^{15} c_i^{\tau} \mathcal{O}_i t^{\tau},$$

the isospin operators $t^0 = \sigma^0$ and $t^1 = \sigma^3$

$$\sigma^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Based on three-vectors: $\vec{\mathbf{1}}_{\chi}, \ \vec{\mathbf{1}}_{N}, \ i \frac{\vec{q}}{m_{N}}, \ \vec{\mathbf{v}}^{\perp}, \ \vec{\mathbf{S}}_{\chi}, \ \vec{\mathbf{S}}_{N},$

Non-Relativistic Operators

• Hermitian operators are constructed as:

$$\begin{array}{ll} \mathcal{O}_{1} = 1_{\chi} 1_{N} & \mathcal{O}_{9} = i \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \frac{\vec{q}}{m_{N}}) \\ \mathcal{O}_{2} = (v^{\perp})^{2} & \mathcal{O}_{10} = i \vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \\ \mathcal{O}_{3} = i \vec{S}_{N} \cdot (\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}) & \mathcal{O}_{11} = i \vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \\ \mathcal{O}_{4} = \vec{S}_{\chi} \cdot \vec{S}_{N} & \mathcal{O}_{12} = \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{v}^{\perp}) \\ \mathcal{O}_{5} = i \vec{S}_{\chi} \cdot (\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}) & \mathcal{O}_{13} = i (\vec{S}_{\chi} \cdot \vec{v}^{\perp}) (\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}) \\ \mathcal{O}_{6} = (\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}) (\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}) & \mathcal{O}_{14} = i (\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}) (\vec{S}_{N} \cdot \vec{v}^{\perp}) \\ \mathcal{O}_{7} = \vec{S}_{N} \cdot \vec{v}^{\perp} & \mathcal{O}_{15} = -(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}) ((\vec{S}_{N} \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_{N}}) \end{array}$$

ROYAL HOLLOWAY

Scattering Rate

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

As was first pointed out by Migdal (1986):

$$P_{\text{tot}} = \frac{1}{2j_{\chi} + 1} \frac{1}{2j_{N} + 1} \sum_{\text{spins}} |\mathcal{M}|^{2}$$
$$= \frac{4\pi}{2j_{N} + 1} \sum_{k} \sum_{\tau=0,1} \sum_{\tau'=0,1} R_{k}^{\tau\tau'} \left(\vec{v}_{T}^{\perp 2}, \frac{\vec{q}^{2}}{m_{N}^{2}}, \left\{c_{i}^{\tau}c_{j}^{\tau'}\right\}\right) S_{k}^{\tau\tau'}(y)$$
$$k = \mathcal{M}, \Phi'', \Phi''\mathcal{M}, \tilde{\Phi}', \Sigma'', \Sigma', \Delta, \Delta\Sigma',$$

• Differential rate per recoil energy:

$$\frac{dR}{dE_{NR}} = \frac{m_N}{2\pi} \frac{\rho_{\chi}}{m_{\chi}} \langle \frac{1}{v} P_{\rm tot}(v^2, q^2) \rangle$$

$$\begin{split} R_{\Sigma''}^{\tau\tau'} \left(v_T^{\perp 2}, \frac{q^2}{m_N^2} \right) &= \frac{q^2}{4m_N^2} c_{10}^{\tau} c_{10}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{12} \left[c_4^{\tau} c_4^{\tau'} + \frac{q^2}{m_N^2} (c_4^{\tau} c_6^{\tau'} + c_6^{\tau} c_4^{\tau'}) \right. \\ &\quad + \frac{q^4}{m_N^4} c_6^{\tau} c_6^{\tau'} + v_T^{\perp 2} c_{12}^{\tau} c_{12}^{\tau'} + \frac{q^2}{m_N^2} v_T^{\perp 2} c_{13}^{\tau} c_{13}^{\tau'} \right] . \\ R_{\Sigma'}^{\tau\tau'} \left(v_T^{\perp 2}, \frac{q^2}{m_N^2} \right) &= \frac{1}{8} \left[\frac{q^2}{m_N^2} v_T^{\perp 2} c_3^{\tau} c_3^{\tau'} + v_T^{\perp 2} c_7^{\tau} c_7^{\tau'} \right] + \frac{j_{\chi}(j_{\chi}+1)}{12} \left[c_4^{\tau} c_4^{\tau'} + \frac{q^2}{m_N^2} c_9^{\tau} c_9^{\tau'} + \frac{v_T^{\perp 2}}{2} c_{12}^{\tau} c_{13}^{\tau'} - \frac{q^2}{m_N^2} c_{15}^{\tau'} \right] + \frac{q^2}{2m_N^2} v_T^{\perp 2} c_{14}^{\tau} c_{14}^{\tau'} \right] . \\ R_M^{\tau\tau'} \left(v_T^{\perp 2}, \frac{q^2}{m_N^2} \right) &= c_1^{\tau} c_1^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{3} \left[\frac{q^2}{m_N^2} v_T^{\perp 2} c_5^{\tau} c_5^{\tau'} + v_T^{\perp 2} c_8^{\tau} c_8^{\tau'} + \frac{q^2}{m_N^2} c_{11}^{\tau} c_{11}^{\tau'} \right] . \end{split}$$

▲□▶ ▲□▶ ★ □▶ ★ □▶ □ □ ○ ○ ○

Proton and Neutron Contributions:

$$|p\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \quad |n\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}, c_i^{\mathbf{p}} = \frac{c_i^0 + c_i^1}{2} \quad c_i^{\mathbf{n}} = \frac{c_i^0 - c_i^1}{2}$$

The SD structure function in terms of its isoscalar and isovector parts

$$S_N^{SD}(q^2) = (a_p^2 + a_n^2 + a_p a_n) S^{00} + 2(a_p^2 - a_n^2) S^{01} + (a_p^2 + a_n^2 - a_p a_n) S^{11}$$

= $a_p^2 \left(S^{00} + 2S^{01} + S^{11} \right) + a_n^2 \left(S^{00} + S^{11} - 2S^{01} \right) + a_p a_n \left(S^{00} - S^{11} \right)$
= $a_p^2 S_p(q) + a_n^2 S_n(q) + a_p a_n S_{np}(q).$

The SI structure function:

$$S_N^{SI}(q^2) = (Zf_p + (A - Z)f_n)^2 S(q^2).$$

SD Helium-3

$$S_N(0) \equiv a_n^2 (S^{00} + S^{11} - 2S^{01}) = 0.47746 \ a_n^2$$

The mean spin of the neutron and proton in Helium-3

$$\langle S_N \rangle^2 \equiv \frac{4\pi}{2j_N + 1} \frac{j_N}{4(j_N + 1)} \ S_n(0)$$

with $j_N = 1/2$ leading to

$$\langle S_N \rangle = \sqrt{\frac{\pi S_n(0)}{6}} = 0.5$$

Limits on c_i coefficients for Helium-3

$$\begin{aligned} \mathcal{O}_{1} \Rightarrow (c_{1})^{2} &= \pi \frac{\sigma_{Xn}^{SI}}{\mu_{Xn}^{2}} & \mathcal{O}_{9} \Rightarrow (c_{9})^{2} &= \frac{6}{j_{\chi}(j_{\chi}+1)} \frac{1}{S_{\Sigma'}(0)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}} \\ \mathcal{O}_{3} \Rightarrow (c_{3})^{2} &= \frac{4}{S_{\Sigma'}(0)} \frac{\sigma_{Xn}^{SI}}{\mu_{Xn}^{2}} & \mathcal{O}_{10} \Rightarrow (c_{10})^{2} &= \frac{2}{S_{\Sigma''}(0)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}} \\ \mathcal{O}_{4} \Rightarrow (c_{4})^{2} &= \frac{4\pi}{j_{\chi}(j_{\chi}+1)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}} & \mathcal{O}_{11} \Rightarrow (c_{11})^{2} &= \frac{3\pi}{j_{\chi}(j_{\chi}+1)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}} \\ \mathcal{O}_{5} \Rightarrow (c_{5})^{2} &= \frac{3\pi}{j_{\chi}(j_{\chi}+1)} \frac{\sigma_{Xn}^{SI}}{\mu_{Xn}^{2}} & \mathcal{O}_{12} \Rightarrow (c_{12})^{2} &= \frac{12}{j_{\chi}(j_{\chi}+1)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}} \left(\frac{\pi}{3 - \pi S_{\Sigma'}(0)} \right) \\ \mathcal{O}_{6} \Rightarrow (c_{6})^{2} &= \frac{6}{j_{\chi}(j_{\chi}+1)} \frac{1}{S_{\Sigma''}(0)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}} & \mathcal{O}_{13} \Rightarrow (c_{13})^{2} &= \frac{6}{j_{\chi}(j_{\chi}+1)} \frac{1}{S_{\Sigma''}(0)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}} \\ \mathcal{O}_{7} \Rightarrow (c_{7})^{2} &= \frac{4}{S_{\Sigma'}(0)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}} & \mathcal{O}_{14} \Rightarrow (c_{14})^{2} &= \frac{12}{j_{\chi}(j_{\chi}+1)} \frac{1}{S_{\Sigma'}(0)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}} \\ \mathcal{O}_{8} \Rightarrow (c_{8})^{2} &= \frac{3\pi}{j_{\chi}(j_{\chi}+1)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}} & \mathcal{O}_{15} \Rightarrow (c_{15})^{2} &= \frac{12}{j_{\chi}(j_{\chi}+1)} \frac{1}{S_{\Sigma'}(0)} \frac{\sigma_{Xn}^{SD}}{\mu_{Xn}^{2}}, \end{aligned}$$

All Operators

•
$$m_{\chi} = 1 \text{ GeV}, \ \sigma_{\chi n} = 10^{-36} \text{ cm}^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Credit: P. Franchini

▶ Cool-down system consists of three stages:

3He Bolometer

- Nanowire experiences a damping force due to interactions with quasiparticles.
- Observe a pulse that is induced in the voltage V(t).
- The wire response is measured as a function of frequency.

³He Bolometer

Credit: D. Zmeev, R. Smith

Nanowire Readout Techniques

Vibrating nanowire can be read out via Superconducing QUantum Interference **D**evice (SQUID) and Lock-in amplifier:

SQUID is a magnetometer sensitive flux into voltage.

nout signal V. (t) lock-in wire's signal amplitude phase nating frequen Zurich Instrument

Credit: P. Franchini

Lock-in amplifier compares input signal $V_s(t)$ (amplitude, phase) to a to ~ 10^{-14} T and converts magnetic reference signal $V_r(t)$ and extract signal from noisy background.

ROYAL

Conventional readout $E_{th.conv} = 39 \text{ eV}$ SQUID readout $E_{th,SOUID} = 0.71 \text{ eV}$

Background Model

• Cosmic rays estimated using CRY and Geant4, assuming 90% veto efficiency and no shielding.

• Radiogenics estimated using material screening results and Geant4.

Credit: R. Smith, E. Leason

All SI & SD Operators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

SI and **SD** Operators

SI and SD sensitivity projection for: 6 months run; 5 \times 1 cm 3 ^{3}He cells (0.1 g/cm $^{3}).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

The Stopping Effect

ROYAL HOLLOWAY UNIVERSITY

Each DM particle is propagated through three regions:

- Atmosphere stopping by Oxygen and Nitrogen.
- Earth stopping by different Earth elements -In our case detector is in the surface.
- Shielding the particles propagate through any shielding which surrounds the detector.

$$v_f = v_i + \int_0^\ell \frac{\mathrm{d}v}{\mathrm{d}D}(v,r)\,\mathrm{d}D$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

The Stopping Effect: Velocity Distribution

The Stopping Effect: Rate

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\rho_{\chi}}{m_{\chi}} \int_{v_{\min}}^{\infty} v f(\mathbf{v}, \gamma) \frac{\mathrm{d}\sigma_{\chi N}}{\mathrm{d}E_R} \,\mathrm{d}^3 \mathbf{v}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Stopping Effect: SI and SD Limit

SI and SD sensitivity projection for: 6 months run; 5 \times 1 cm 3 $^{3}{\rm He}$ cells (0.1 g/cm $^{3}).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- ▶ QUEST-DMC is a superfluid ³He bolometer instrumented with vibrating nanowire detectors with eV scale energy threshold.
- ▶ We have set limit of SD and SI cross section and event rate. Our score on SD sensitivity 7×10^{-37} cm² at ~ 500 MeV/c2 with a 0.71 eV threshold (SQUID readout).
- ▶ The Earth shadowing effect has been discussed.
- "QUEST-DMC superfluid 3He detector for sub-GeV dark matter", Eur.Phys.J.C 84 (2024) 3, 248.
- "Long nanomechanical resonators with circular cross-section", arXiv: 2311.02452.
- "QUEST-DMC: Background Modelling and Resulting Heat Deposit for a Superfluid Helium-3 Bolometer", arXiv:2402.00181.

Models with sub-GeV Dark Matter

Check 1:

• Non-zero amplitude in the $p \to 0$:

$$i\mathcal{A} \propto \left[\operatorname{coupling}_{\operatorname{Med}-\operatorname{DM}} \left(\frac{i}{p^2 - M_{\operatorname{Med}}^2} \right) \operatorname{coupling}_{\operatorname{Med}-\operatorname{target}} \right] \stackrel{p \to 0}{\neq} 0$$

• For example the DM amplitude in 2HDM + Complex Singlet:

$$i\mathcal{A} = -i\frac{m_{f_k}}{2v}\bar{f}_k(p_2)\left(\kappa_1v_1, \kappa_2v_2, 0, \lambda_sv_s\right)\left(M^2\right)^{-1} \begin{pmatrix} c_{f_k}^{(1)} + i\gamma_5\tilde{c}_{f_k}^{(1)} \\ c_{f_k}^{(2)} + i\gamma_5\tilde{c}_{f_k}^{(2)} \\ c_{f_k}^{(3)} + i\gamma_5\tilde{c}_{f_k}^{(3)} \\ 0 \end{pmatrix} f_k(p_1)$$

Sec. III of [Grzadkowski, ND, JHEP 06 (2022) 092]

Models with CPV and Phase Transition

Check 2:

• Take the boundary conditions of your model and change all complex parameters into phases:

$$2|r_{\rm CP}|\sin(\xi + \varphi_{12}) - \sin(2\xi + \varphi_5) = 0$$

Define the ratio of scalar potentials:

$$R_{\xi} \equiv \frac{\mathcal{V}_{\xi}}{|\mathcal{V}_{\xi=0}|}$$

Sec. II of [Pilaftsis, Yu, ND, arXiv:2312.00882]

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

- ▶ In presence of B field, nuclear energy levels split into four via the Zeeman
 - B = 8T $B = 50 \mathrm{mT}$ $T = 2 \mathrm{mK}$ $T < 100 \mu K$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

▶ Gaining superfluid ³He

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●

- Dark matter ³He scattering energy generates heat and photons
- Photon detection using Silicon Photomultiplier (SiPM) technology. Photon detectors to be located above the ³He target.
- Heat (quasiparticles) detects using bolometer. Bolometer measures temperature changes. These temperature changes can hint at dark matter's presence.

3He Bolometer

- \bullet ³He bolometer instrumented with vibrating nanowire resonators.
- Nanowire in ³He box is subjected to B field and driven by AC current and oscillates at frequency, ω .
- Wire loop is moving with velocity v, and force and voltage on an element of wire

$$dF = I|dl \times B|$$
 $dV = v \cdot |dl \times B|$

• By integrating along the length of wire, the total force and voltage:

$$F = ILB$$
 $V = vLB$

Credit: P. Franchini

3He Bolometer

• The wire response is parametrised by resonance width Δf and an amplitude.

$$\Delta f(t) = \Delta f_{\text{base}} + \Delta (\Delta f) \left(\tau_{\text{b}} \tau_{\text{w}}^{-1} \right)^{\tau_{\text{w}} (\tau_{\text{b}} - \tau_{\text{w}})^{-1}} \tau_{\text{b}} (\tau_{\text{b}} - \tau_{\text{w}})^{-1} \left(e^{-t/\tau_{\text{b}}} - e^{-t/\tau_{\text{w}}} \right)$$
$$E_{dep} = KT\Delta(\Delta f)$$

Nanowire Readout Techniques

Vibrating nanowire can be read out via Lock-in amplifier and SQUID:

Credit: P. Franchini

Lock-in amplifier compares input signal $V_s(t)$ (amplitude, phase) to a reference signal $V_r(t)$ and extract signal from noisy background.

ROYAL

ROYAL HOLLOWAY

•Uncertainties on the energy measurement has a direct impact on the threshold scale.

• SQUID could reduce readout noise, reducing the energy threshold and enhancing the DM sensitivity.

Credit: E. Leason, R. Smith

Conventional readout $E_{th,conv} = 39 \text{ eV}$ SQUID readout $E_{th,SQUID} = 0.71 \text{ eV}$

The differential rate per recoil energy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\frac{dR^{\rm SD}}{dE_R} = \frac{\rho_{\chi} m_N}{2\pi m_{\chi}} \langle \frac{1}{v} P_{\rm tot}(v^2, q^2) \rangle \equiv \frac{\rho_{\chi} \sigma_{\chi n}^{\rm SD}}{2 m_{\chi} \mu_{\chi n}^2} \int_{v_{\rm min}}^{\infty} \frac{1}{v} f(\mathbf{v}) \ d^3 \mathbf{v}$$
$$f(\mathbf{v}) \propto \exp\left(-\frac{|\mathbf{v} - \langle \mathbf{v}_{\chi} \rangle|^2}{v_{\rm dis}^2}\right) \Theta(v_{\rm esc} - |\mathbf{v} - \langle \mathbf{v}_{\chi} \rangle|)$$

•
$$\mathbf{v} = (v_x, v_y, v_z)$$
 and $v = |\mathbf{v}|$

• The mean DM velocity
$$\langle \mathbf{v}_{\chi} \rangle = -\mathbf{v}_{\text{lab}}(t)$$

$$\blacktriangleright v > v_{\min} = \sqrt{m_N E_R / (2\mu_{\chi N}^2)}$$

Separating SD and SI Interactions

 \bullet SD/SI differential scattering rate per recoil energy:

 $\hat{\mathcal{O}}_4 = \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{S}}_N \to \text{SD}$, momentum and velocity independent

$$\frac{d\sigma^{\rm SD}}{dE_R} = \frac{m_N}{v^2} \frac{2}{2j_N + 1} \sum_{\tau=0,1} \sum_{\tau'=0,1} \frac{j_{\chi}(j_{\chi} + 1)}{12} \left[c_4^{\tau} c_4^{\tau'} \right] S_{\Sigma'',\Sigma'}^{\tau\tau'}(y)
= \frac{m_N}{2\pi v^2} \frac{32\pi G_F^2}{2j_N + 1} S_N^{\rm SD}(q^2)$$

 $\hat{\mathcal{O}}_1 = \hat{\mathbf{1}}_{\chi} \cdot \hat{\mathbf{1}}_N \to \mathbf{SI}$, momentum and velocity independent:

$$\frac{d\sigma^{\rm SI}}{dE_R} = \frac{m_N}{v^2} \sum_{\tau=0,1} \sum_{\tau'=0,1} \left[c_1^{\tau} c_1^{\tau'} \right] S_M^{\tau\tau'}(y) = \frac{m_N}{2\pi v^2} P_{\rm tot}^{\rm SI}$$
$$= \frac{8m_N}{v^2} G_F^2 S_N^{\rm SI}(q^2)$$

Proton and Neutron contributions:

$$|p\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \quad |n\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}, c_i^{\mathbf{p}} = \frac{c_i^0 + c_i^1}{2} \quad c_i^{\mathbf{n}} = \frac{c_i^0 - c_i^1}{2}$$

The SD structure function in terms of its isoscalar and isovector parts

$$S_N^{SD}(q^2) = (a_p^2 + a_n^2 + a_p a_n) S^{00} + 2(a_p^2 - a_n^2) S^{01} + (a_p^2 + a_n^2 - a_p a_n) S^{11}$$

= $a_p^2 \left(S^{00} + 2S^{01} + S^{11} \right) + a_n^2 \left(S^{00} + S^{11} - 2S^{01} \right) + a_p a_n \left(S^{00} - S^{11} \right)$
= $a_p^2 S_p(q) + a_n^2 S_n(q) + a_p a_n S_{np}(q).$

The SI structure function:

$$S_N^{SI}(q^2) = (Zf_p + (A - Z)f_n)^2 S(q^2).$$

Defining

$$c_4^n c_4^n = 8 \ G_F^2 a_n^2 \Big\{ \frac{12}{j_\chi(j_\chi + 1)} \Big\} \qquad c_4^p c_4^p = 8 \ G_F^2 a_p^2 \Big\{ \frac{12}{j_\chi(j_\chi + 1)} \Big\}$$

$$c_1^n c_1^n = c_1^p c_1^p = 8 \ G_F^2 \left((A - Z) f_n + Z f_p \right)^2 \qquad \text{ for all } x \in \mathbb{R}$$

SD Helium-3

$$S_N(0) \equiv a_n^2 (S^{00} + S^{11} - 2S^{01}) = 0.47746 \ a_n^2$$

The mean spin of the neutron and proton in Helium-3

$$\langle {f S}_{f N}
angle^2 \equiv rac{4\pi}{2 {f j}_{f N} + 1} rac{{f j}_{f N}}{4 ({f j}_{f N} + 1)} ~~ {f S}_{f n}(0)$$

with $j_N = 1/2$ leading to

$$\langle \mathbf{S}_{\mathbf{N}} \rangle = \sqrt{\frac{\pi S_n(0)}{6}} = \mathbf{0.5}$$

SD Helium-3

$$P_{\text{tot}}^{\text{SD}} \equiv \frac{32(j_N+1)}{j_N} G_F^2 a_n^2 \langle \mathbf{S}_{\mathbf{N}} \rangle^2 \frac{S_n(q^2)}{S_n(0)} = 24 G_F^2 a_n^2 \frac{S_n(q^2)}{S_n(0)}$$
$$c_4^n c_4^n = 8 G_F^2 a_n^2 \Big\{ \frac{12}{j_{\chi}(j_{\chi}+1)} \Big\}$$
$$\sigma_{\chi n}^{\text{SD}} = \frac{\mu_{\chi n}^2}{\pi} P_{\text{tot}}^{\text{SD}} \longrightarrow (\mathbf{c}_4^n)^2 \equiv \frac{\mathbf{16}\pi}{3} \frac{\sigma_{\chi n}^{\text{SD}}}{\mu_{\chi n}^2}$$

A differential cross section and event rate for SD:

$$\frac{d\sigma^{\rm SD}}{dE_R} = \frac{2m_N \sigma_{\chi n}^{\rm SD}}{3\mu_{\chi n}^2 v^2} \frac{(J+1)}{J} \langle S_n \rangle^2 \frac{S_n(q^2)}{S_n(0)} = \frac{m_N \sigma_{\chi n}^{\rm SD}}{2\mu_{\chi n}^2 v^2} \frac{S_n(q^2)}{S_n(0)},$$
$$\frac{dR^{\rm SD}}{dE_R} = \frac{\rho_\chi \sigma_{\chi n}^{\rm SD}}{2m_\chi \mu_{\chi n}^2} \frac{S_n(q^2)}{S_n(0)} \int \frac{1}{v} f(\mathbf{v}) d^3 \mathbf{v}.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣��

SI Helium-3

SI Helium-3	$y = (bq/2)^2$
$S_M^{00}(y) = 0.358099e^{-2y}$	$S_M^{11}(y) = 0.0397887e^{-2y}$
$S_M^{01}(y) = 0.119366e^{-2y}$	$S_M^{10}(y) = 0.119366e^{-2y}$

$$P_{\text{tot}}^{\text{SI}} \equiv 8 G_F^2 (Z f_p + (A - Z) f_n)^2 S(q^2)$$

$$c_1^n c_1^n = 8 G_F^2 (Z f_p + (A - Z) f_n)^2$$

$$\sigma_{\chi n}^{\text{SI}} = \frac{\mu_{\chi n}^2}{\pi} P_{\text{tot}}^{\text{SI}} \longrightarrow (c_1)^2 \equiv \pi \frac{\sigma_{\chi n}^{\text{SI}}}{\mu_{\chi n}^2}$$

A differential cross section and event rate for SI Helium-3:

$$\begin{split} \frac{d\sigma^{\rm SI}}{dE_R} &= \frac{m_N \sigma_{\chi n}^{\rm SI}}{2\mu_{\chi n}^2 v^2} S(q^2), \\ \frac{dR^{\rm SI}}{dE_R} &= \frac{\rho_\chi \sigma_{\chi n}^{\rm SI}}{2\,m_\chi \mu_{\chi n}^2} S(q^2) \int \frac{1}{v} f(\mathbf{v}) \; d^3 \mathbf{v}. \end{split}$$

Models for Sub-GeV dark matter:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- ► Asymmetric DM.
- ▶ Freeze-in
- ► SIMP.
- ▶ Hidden sectors.
- ▶ WIMPless DM.
- Axions

. . .

▶ Sterile neutrino DM.

[Nussinov, 1985; Kaplani et al, 2009;Falkowski et al, 2011]

[Hall et al, 2009]

- [Y Hochberg, 2014]
- $[{\rm P \ Barnes,\ }2020]$
- [Feng Kumar, 2008;Feng, Shadmi, 2011]
- [Rajagropal et al, 1991;Covi et al 1999;Ellis et al, 1984]
- [Kusenko 2006 (review)]