Tri-unification

A separate SU(5) for each fermion family

Avelino Vicente

IFIC – CSIC / U. Valencia

Based on work in collaboration with Mario Fernández Navarro and Stephen F. King

2311.05683 & 2404.12442

Dublin 2024

Avelino Vicente - Tri-unification

The flavor puzzle

Why are there 3 fermion families?

Why are fermion masses so hierarchical?

Why do quarks mix so little... and leptons so much?

Talk by Gabriela Lichtenstein

Deconstructing flavor

General idea:

SM embedded in a larger gauge symmetry with a separate factor for each family

$$G = G_{ ext{universal}} imes G_1 imes G_2 imes G_3$$

The SM Higgs is a 3rd family particle: singlet of G_1 and G_2 , but not of G_3

Only the 3rd family masses at renormalizable level Explain the SM flavor structure with $\mathcal{O}(1)$ Yukawa couplings

Examples:

- Tri-hypercharge: $SU(3)_c imes SU(2)_L imes U(1)_Y^3$ [Fernández Navarro, King, AV]
- $SU(3)_c imes SU(2)_L^3 imes U(1)_Y$ [Li, Ma, Muller, Nandi, Chiang, Deshpande, He, Jiang...]
- (Pati-Salam)³ [Bordone, Cornella, Fuentes-Martin, Isidori, Pagès, Stefanek...]
- Grand unified models [Rajpoot, Barbieri, Dvali, Strumia, Babu, Barr, Gogoladze...]
 + others

Tri-unification

 $SU(5)_1 imes SU(5)_2 imes SU(5)_3 imes \mathbb{Z}_3$

- Enforces a common gauge coupling (at unification scale)
- Invariance under cyclic permutations: (A,B,C) + (B,C,A) + (C,A,B)

$$\begin{array}{ll} \bigstar & \text{Symmetry breaking:} & SU(5)^3 \to \mathrm{SM}_1 \times \mathrm{SM}_2 \times \mathrm{SM}_3 \\ & \to G_{\mathrm{universal}} \times G_1 \times G_2 \times G_3 \\ & \to G_{\mathrm{universal}} \times G_{1+2} \times G_3 \\ & \to \mathrm{SM}_{1+2+3} \end{array}$$

In addition:

bi-representations, messenger fields, ...

Field	$SU(5)_1$	$SU(5)_2$	$SU(5)_3$
F_1	$\overline{5}$	1	1
F_2	1	$\overline{5}$	1
F_3	1	1	$\overline{5}$
T_1	10	1	1
T_2	1	10	1
T_3	1	1	10
Ω_1	24	1	1
Ω_2	1	24	1
Ω_3	1	1	24
H_1	5	1	1
H_2	1	5	1
H_3	1	1	5

Note: These are only 4 irreps of the full symmetry group

<u>In addition</u> : bi-representations, messenger fields,	Field	$SU(5)_1$	$SU(5)_2$	$SU(5)_3$
	$\overline{F_1}$	$\overline{5}$	1	1
	F_2	1	$\overline{5}$	1
SM formions	F_3	1	1	$\overline{5}$
	T_1	10	1	1
${f ar 5}=\!({f ar 3},{f 1})_{rac{1}{3}}\oplus ({f 1},{f 2})_{-rac{1}{2}}$	T_2	1	10	1
${f 10=}({f 3},{f 2})_{1\over 6}\oplus ({f ar 3},{f 1})_{-{2\over 3}}\oplus ({f 1},{f 1})_{1}$	T_3	1	1	10
	Ω_1	24	1	1
	Ω_2	1	24	1
	Ω_3	1	1	24
	H_1	5	1	1
	H_2	1	5	1
	H_3	1	1	5

Note: These are only 4 irreps of the full symmetry group

In addition: bi-representations, messenger fields,	Field	$SU(5)_1$	$SU(5)_2$	$SU(5)_3$
	F_1	$\overline{5}$	1	1
	F_2	1	$\overline{5}$	1
SM fermions	F_3	1	1	$\overline{5}$
	T_1	10	1	1
${f ar 5}=\!({f ar 3},{f 1})_{rac{1}{3}}\oplus ({f 1},{f 2})_{-rac{1}{2}}$	T_2	1	10	1
${f 10=}({f 3,2})_{1\over 6}\oplus ({f ar 3,1})_{-{2\over 3}}\oplus ({f 1,1})_{1}$	T_3	1	1	10
	Ω_1	24	1	1
Scalars in the adjoint \longrightarrow	Ω_2	1	24	1
Breaking of $SU(5)^3$ and SM 3	Ω_3	1	1	24
	H_1	5	1	1
	H_2	1	5	1
	H_3	1	1	5

<u>Note</u>: These are only 4 irreps of the full symmetry group

In addition:				
bi-representations, messenger fields,	Field	$SU(5)_1$	$SU(5)_2$	$SU(5)_3$
	$\overline{F_1}$	$\overline{5}$	1	1
	F_2	1	$ar{5}$	1
SM fermions	F_3	1	1	$\overline{5}$
	T_1	10	1	1
$ar{f 5}=\!(ar{f 3},f 1)_{rac{1}{3}}\oplus(f 1,f 2)_{-rac{1}{2}}$	T_2	1	10	1
${f 10=}({f 3},{f 2})_{1\over 6}\oplus ({f ar 3},{f 1})_{-{2\over 3}}\oplus ({f 1},{f 1})_{1}$	T_3	1	1	10
	Ω_1	24	1	1
Scalars in the adjoint	Ω_2	1	24	1
Breaking of $SU(5)^3$ and SM $^{ m s}$	Ω_3^-	1	1	24
	H_1	5	1	1
Higgs doublets>	H_2	1	5	1
Only H_3 in most non-universal theories	H_3	1	1	5
\mathbb{Z}_3 breaking to get a light H_3				

Note: These are only 4 irreps of the full symmetry group

$$G_{
m universal} = SU(3)_c imes SU(2)_L$$

 $G_1 imes G_2 imes G_3=U(1)_{Y_1} imes U(1)_{Y_2} imes U(1)_{Y_3}$

Tri-hypercharge

 $SU(5)^{3} \xrightarrow{v_{\text{GUT}}} \text{SM}_{1} \times \text{SM}_{2} \times \text{SM}_{3}$ $\xrightarrow{v_{\text{SM}^{3}}} SU(3)_{1+2+3} \times SU(2)_{1+2+3} \times U(1)_{1} \times U(1)_{2} \times U(1)_{3}$ $\xrightarrow{v_{12}} SU(3)_{1+2+3} \times SU(2)_{1+2+3} \times U(1)_{1+2} \times U(1)_{3}$ $\xrightarrow{v_{23}} SU(3)_{1+2+3} \times SU(2)_{1+2+3} \times U(1)_{1+2+3}$

Higgs fields:		$SU(5)_1$	$SU(5)_2$	$SU(5)_3$
	H_1^u	5	1	1
Up Higgses	$\tilde{H_2^u}$	1	5	1
	H^u_3	1	1	5
	$H_1^{\overline{5}}$	$\overline{5}$	1	1
'Down' Higgses	$H_2^{\overline{5}}$	1	$\overline{5}$	1
	$H_3^{\overline{5}}$	1	1	$\overline{5}$
	H_{1}^{45}	45	1	1
d-quarks and charged leptons	H_{2}^{45}	1	45	1
splitting via Georgi-Jariskog factor	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	45		
Three pairs of doublets below $M_{\rm GUT}$ $H_1^{u,d} \ H_2^{u,d} \ H_3^{u,d}$		$M_{H^{u,d}_3} \ll an \mu$	$\lesssim M_{H_2^{u,d}} \ll$ $B = rac{v_3^u}{v_3^d} pprox 2$	$\ll M_{H_1^{u,d}}$

Field	$SU(5)_1$	$SU(5)_2$	$SU(5)_3$
Φ^F_{12}	5	$\overline{5}$	1
$\Phi_{13}^{\overline{F}}$	$\overline{5}$	1	5
Φ^F_{23}	1	5	$\overline{5}$
Φ_{12}^T	$\overline{10}$	10	1
Φ_{13}^T	10	1	$\overline{10}$
Φ_{23}^T	1	$\overline{10}$	10

"Hyperons"

$$\begin{split} \phi_{q12} \sim (\mathbf{1}, \mathbf{1})_{(-1/6, 1/6, 0)} & \phi_{q23} \sim (\mathbf{1}, \mathbf{1})_{(0, -1/6, 1/6)} & \phi_{\ell 23} \sim (\mathbf{1}, \mathbf{1})_{(0, 1/2, -1/2)} \\ \phi_{q13} \sim (\mathbf{1}, \mathbf{1})_{(-1/6, 0, 1/6)} & \phi_{\ell 13} \sim (\mathbf{1}, \mathbf{1})_{(1/2, 0, -1/2)} \end{split}$$

• Spontaneous breaking of individual hypercharges

Embedding

Generate the SM flavor structure

For instance:

$$\phi_{q12} \sim (\mathbf{1}, \mathbf{1})_{(-1/6, 1/6, 0)} \subset \Phi_{12}^T \sim (\overline{\mathbf{10}}, \mathbf{10}, \mathbf{1})$$

Field	$SU(5)_1$	$SU(5)_2$	$SU(5)_3$
χ_1	10	1	1
χ_2	1	10	1
χ_3	1	1	10

(Vector-like fermions)

- Provide UV-complete theory by mediating the effective operators behind the SM flavor structure
- The heavy Higgses also act as messengers

Embedding

For instance:

$$Q_1 \sim (\mathbf{3}, \mathbf{2})_{(1/6, 0, 0)} \subset \chi_1 \sim (\mathbf{10}, \mathbf{1}, \mathbf{1})$$

Dublin 2024

GUTs checklist

- Low-energy theory
- Gauge coupling unification
- Proton decay

Tri-hypercharge at low (intermediate) energies

[Fernández Navarro, King, 2023] [Fernández Navarro, King, AV, 2024]

$$SU(3)_c \times SU(2)_L \times U(1)_{Y_1} \times U(1)_{Y_2} \times U(1)_{Y_3}$$

Dublin 2024

Avelino Vicente - Tri-unification

Generation of SM flavor structure

(with $\mathcal{O}(1)$ Yukawa couplings)

 $\begin{aligned} \lambda &\approx 0.224 \\ \text{Wolfenstein} \\ \text{parameter} \end{aligned}$

$$\frac{\langle \phi_{q23} \rangle}{M_{Q_i}} \approx \lambda^2 \qquad \frac{\langle \phi_{q13} \rangle}{M_{Q_i}} \approx \lambda^3 \qquad \frac{\langle \phi_{\ell 23} \rangle}{M_{H_2^{u,d}}} \approx \lambda^3 \qquad \frac{\langle \phi_{q12} \rangle}{M_{Q_i}} \approx \lambda \qquad \frac{\langle \phi_{\ell 23} \rangle}{M_{H_1^{u,d}}} \approx \lambda^6$$

$$\mathcal{M}_{u} = \begin{pmatrix} \lambda^{6} & \lambda^{4} & \lambda^{3} \\ \lambda^{7} & \lambda^{3} & \lambda^{2} \\ \lambda^{9} & \lambda^{5} & 1 \end{pmatrix} v_{\mathrm{SM}} \quad \mathcal{M}_{d} = \begin{pmatrix} \lambda^{6} & \lambda^{4} & \lambda^{3} \\ \lambda^{7} & \lambda^{3} & \lambda^{2} \\ \lambda^{9} & \lambda^{5} & 1 \end{pmatrix} \lambda^{2} v_{\mathrm{SM}} \quad \mathcal{M}_{e} = \begin{pmatrix} \lambda^{6} & 0 & 0 \\ 0 & \lambda^{3} & 0 \\ 0 & 0 & 1 \end{pmatrix} \lambda^{2} v_{\mathrm{SM}}$$

- · Correct mass hierarchies
- Small quark mixing
- Lepton mixing from neutrinos (in backup)

Gauge coupling unification

Discontinuities due to matching conditions

For instance

$$\alpha_{Y_{12}}^{-1} + \alpha_{Y_3}^{-1} = \alpha_Y^{-1}$$

at $v_{23} = 5 \,\mathrm{TeV}$

Unification achieved with 'light' (~ 100 TeV) color octets

 $\Theta_i \sim (\mathbf{8}, \mathbf{1}, 0)_i$ (from cyclic **24**)

Approximate \mathbb{Z}_3 at low energies (exact at the unification scale)

$$g_{s,1}pprox g_{s,2}pprox g_{s,3}pprox \sqrt{3}g_s$$
 at $v_{
m SM^3}$

Unification fully compatible with flavor

Dublin 2024

Avelino Vicente - Tri-unification

Gauge coupling unification

How low can we deconstruct $SU(3)_c \times SU(2)_L$?

Very low unification scale: proton decay!

No intermediate SM³ scale Very high unification scale

Avelino Vicente - Tri-unification

Proton decay

Proton decay mediated by gauge $5 \cdot 10^{17}$ leptoquarks in $SU(5)^3$ #LQs = 3 x #LQs in standard SU(5) 10^{17} However, 2nd and 3rd family LQs M_{GUT} [GeV couple to 1st family fermions only via mixing $\tau_p \approx \tau_p^{\rm app} = \frac{m_X^4}{\alpha_{\rm GUT}^2 m_p^5}$ 10^{16} $M_{\rm GUT} \leq v_{\rm SM^3}$ Excludes SM³ intermediate scale below $\sim 3 \cdot 10^{15} \, \mathrm{GeV}$ 10^{15} 10^{15} 10^{16} 10^{17} $5 \cdot 10^{17}$ **Future** Excluded by Hyper-Kamiokande Super-Kamiokande $v_{\rm SM^3}$ [GeV] @ 90% CL @ 90% CL

Proton decay

Proton decay mediated by gauge leptoquarks in $SU(5)^3$

#LQs = 3 x #LQs in standard SU(5)

However, 2nd and 3rd family LQs couple to 1st family fermions only via mixing

$$\tau_p \approx \tau_p^{\rm app} = \frac{m_X^4}{\alpha_{\rm GUT}^2 m_p^5}$$

Excludes SM³ intermediate scale below

 $\sim 3 \cdot 10^{15} \, {\rm GeV}$

Proton decay

Proton decay mediated by gauge leptoquarks in $SU(5)^3$

#LQs = 3 x #LQs in standard SU(5)

However, 2nd and 3rd family LQs couple to 1st family fermions only via mixing

$$\tau_p \approx \tau_p^{\rm app} = \frac{m_X^4}{\alpha_{\rm GUT}^2 m_p^5}$$

Excludes SM³ intermediate scale below $\sim 3\cdot 10^{15}\,{\rm GeV}$

Model probed in proton decay searches

Although large regions of the parameter space beyond any foreseen experiment

Take-home messages

Flavor deconstruction is a successful way to generate the flavor structure of the SM

Tri-unification is a flavor deconstructed grand unified theory based on the symmetry

$$SU(5)_1 imes SU(5)_2 imes SU(5)_3 imes \mathbb{Z}_3$$

☆ Explains mass hierarchies and mixings
 ☆ Unifies the gauge couplings at high energies
 ☆ Can be probed by proton decay experiments

Thanks for your attention!

SU(5)

imgflip.com

SU(5

Backup slides

					Field	$SU(5)_1$	$SU(5)_2$	$SU(5)_3$
Field	$SU(5)_1$	$SU(5)_2$	$SU(5)_3$		H_1^u	5	1	1
F_1	$\overline{5}$	1	1	•	H_2^u	1	5	1
F_2	1	$\overline{5}$	1		$H^u_{\underline{3}}$	1	1	5
F_3	1	1	$\overline{5}$		H_1^{5}	$\overline{5}$	1	1
T_1	10	1	1		$H_2^{\overline{5}}$	1	$\overline{5}$	1
T_2	1	10	1		$H_{2}^{\frac{2}{5}}$	1	1	$\overline{5}$
T_3	1	1	10		$H_{1}^{\dot{45}}$	45	1	1
χ_1	10	1	1		$H_2^{\mathbf{\hat{45}}}$	1	45	1
χ_2	1	10	1		H_{3}^{45}	1	1	45
χ_3	1	1	10	-	Φ_{12}^F	5	5	1
Ξ_0	1	1	1		Φ_{13}^{12}	$\overline{5}$	1	5
Ξ_{12}	5	$\overline{5}$	1		Φ_{23}^{F}	1	5	$\overline{5}$
Ξ_{13}	$\overline{5}$	1	5		$\Phi_{12}^{ ilde{T}}$	$\overline{10}$	10	1
Ξ_{23}	1	5	$\overline{5}$		$\Phi_{13}^{ ilde{T}}$	10	1	$\overline{10}$
$\Sigma_{\rm atm}$	1	10	10		$\Phi_{23}^{\overline{T}}$	1	$\overline{10}$	10
$\Sigma_{ m sol}$	10	1	$\overline{10}$	-	Φ_{12}^{45}	1	$\overline{45}$	45
$\Sigma_{ m cyclic}$	10	$\overline{10}$	1		Φ_{13}^{12}	$\overline{f 45}$	1	45
Ω_1	24	1	1		$\Phi_{12}^{\mathbf{\dot{45}}}$	$\overline{45}$	45	1
Ω_2^-	1	24	1		$\Phi^{Tar{F}T}$	10	5	10
Ω_3	1	1	24		Φ^{FTT}	5	10	10
					Φ^{TTF}	10	10	5

Neutrino masses

	Field	$SU(5)_1$	$SU(5)_2$	$SU(5)_3$
	Ξ_0	1	1	1
New messenger fields	Ξ_{12}	5	$ar{5}$	1
	Ξ_{13}	$\overline{5}$	1	5
	Ξ_{23}	1	5	$\overline{5}$
	Σ_{atm}	1	10	$\overline{10}$
Right-handed neutrinos	$\Sigma_{ m sol}$	10	1	$\overline{10}$
	$\Sigma_{ m cyclic}$	10	$\overline{10}$	1
	$\Phi_{12}^{f 45}$	1	$\overline{45}$	45
	$\Phi_{13}^{oldsymbol{45}}$	$\overline{f 45}$	1	45
New bi-representations	$\Phi_{12}^{oldsymbol{45}}$	$\overline{45}$	45	1
(new hyperons)	Φ^{TFT}	10	5	10
	Φ^{FTT}	5	10	10
More economical implementation in	Φ^{TTF}	10	10	5
$[1 \text{ cmanucz marano, may }, \infty, 2024]$			·	

Dublin 2024

Neutrino masses

Type-I seesaw mechanism

Correct lepton mixing + a massless neutrino

Dublin 2024

Phenomenology

[Fernández Navarro, King, AV, 2024]

All new particles are too heavy to be probed directly

FCNCs from heavy Z' bosons

VL fermions may induce large (but acceptable) contributions to meson mixing via boxes

General (model-independent) bounds:

- Dilepton tails at the LHC
- Modification of EW precision observables

