

Two ideas about dark matter model building

Raymond R. Volkas

ARC Centre of Excellence for Dark Matter Particle Physics (CDM)

School of Physics, The University of Melbourne

CATCH22+2, 1-5 May 2024, DIAS

One idea Two ideas about dark matter model building

Raymond R. Volkas

ARC Centre of Excellence for Dark Matter Particle Physics (CDM)

School of Physics, The University of Melbourne

CATCH22+2, 1-5 May 2024, DIAS

What problem are we trying to solve?

A cosmological coincidence: $ho_{\mathrm{dark}}\simeq 5~
ho_{\mathrm{baryon}}$

 $n_{\rm dark} \ m_{\rm dark} \simeq 5 \ n_{\rm baryon} \ m_{\rm proton}$

Asymmetric dark matter models address n_{dark} ~ n_{baryon}

But what about $m_{dark} \sim m_{proton}$? That's our concern here.

Relevant papers:

Y. Bai and P. Schwaller, *Scale of dark QCD;* PRD89, 063522 (2013); 1306.4676

J. L. Newstead and R. H. TerBeek, *Reach of threshold corrected dark QCD;* PRD90, 074008 (2014); 1405.7427

A. C. Ritter and RRV, *Exploring the cosmological dark matter coincidence using infrared fixed points*; PRD107, 015029, (2023); 2210.11011

A. C. Ritter and RRV, Explaining the cosmological dark matter coincidence in asymmetric dark QCD; 2404.05999

The framework

Proton mass set by Λ_{QCD} .

Motivates DM mass set by dark QCD with $\Lambda_{dQCD} \sim \Lambda_{QCD}$.

How to get $\Lambda_{dQCD} \sim \Lambda_{QCD}$? Two approaches: symmetry (e.g. mirror matter) IR fixed points (this talk)

The Bai-Schwaller idea

Nice idea, but there are issues.

$$\beta_{v}(\alpha_{s},\alpha_{d}) = b_{v}^{(0)}\frac{\alpha_{s}^{2}}{2\pi} + b_{v}^{(1)}\frac{\alpha_{s}^{3}}{8\pi^{2}} + b_{v}^{(1')}\frac{\alpha_{s}^{2}\alpha_{d}}{8\pi^{2}} \qquad \alpha_{s}^{\star} = 4\pi \frac{b_{v}^{(0)}b_{d}^{(1)} - b_{v}^{(1')}b_{d}^{(0)}}{b_{v}^{(1')}b_{d}^{(1)} - b_{v}^{(1)}b_{d}^{(1)}}, \quad \alpha_{d}^{\star} = 4\pi \frac{b_{d}^{(0)}b_{v}^{(1)} - b_{d}^{(1')}b_{v}^{(0)}}{b_{v}^{(1')}b_{d}^{(1)} - b_{v}^{(1)}b_{d}^{(1)}},$$

Only small fraction of models have perturbative FCFPs. Non-generic.

FCFP ★ approached, but not attained.
Some sensitivity to UV values.
Reduced "successful" parameter space.

Scale of new physics generically too low. Can be fixed with large multiplicities for fundamental reps. Looks contrived.

New idea: zero-coupling IR fixed point (ZCFP)

The possible FPs:

Advantages:Many models have a ZCFP; more generic.Higher-dim reps. \Rightarrow lower field multiplicities.Stronger running above M \Rightarrow higher M.

Disadvantages: High M \Rightarrow naturalness problem. Very high M \Rightarrow NP hard to find experimentally (but may produce detectable GWs from the dark QCD phase transition).

Non-SUSY:

- $M \lesssim 100$ TeV for colour-triplet, electroweak-singlet Dirac fermions.
- $M \lesssim 10$ TeV for colour-triplet, electroweak-singlet complex scalars.

Clarke, Cox 1607.07446 Bounds from naturalness.

Can be achieved, but is non-generic. Example:

"viability fraction" ϵ_v = fraction of successful parameter space ϵ_v^{10} = fraction with M < 10 TeV

SUSY:

Note: outcome depends strongly on number of light dark quarks

sweet spot at 6 in this case

N_d = 3:

Models with highest ε_v for each $n_{dq} = 1, ..., 8$

~40% of models have $\varepsilon_v > 0.25$

 $N_{d} = 4:$

~65% of models have $\varepsilon_v > 0.3$

N_d = 2:

<1% of models have $\varepsilon_v > 0.25$

Towards complete models

In our paper, we show this SU(4) SUSY model with high ε_v contains the superfield content that permits successful asymmetry generation in both sectors via leptogenesis and reprocessing.

The detailed model-building is still in its infancy.

To take home

- The Bai-Schwaller IR fixed point idea is a good one.
- The new zero-coupling IR fixed point idea permits generic models with improved features.
- SUSY is relevant to avoid a naturalness issue with a high new physics scale.
- SU(4) dark QCD is better than SU(3). SU(2) is not successful.
- There are interesting cases that allow for asymmetry generation in both sectors.
- Possible stochastic GW signal from a first-order dark QCD phase transition.
- Model building has only just begun.

Australian Government

Australian Research Council

National Partners

International Partners

HZDR

