

Francesco D'Eramo

Università degli Studi di Padova

Cosmology, Astrophysics, Theory and Collider Higgs 2024 (CATCH22+2) Dublin Institute for Advanced Studies (DIAS), 2 May 2024

The QCD Axion

New global U(1)_{PQ} symmetry

- spontaneously broken at the scale f_a (with $f_a \gg$ weak scale)
- anomalous under strong interactions

Results in this talk mostly about the QCD axion Easy to extend to ALPs (especially when the mass is negligible)

Hot Axions

Axions produced with kinetic energy much larger than their mass (i.e. "hot")

Additional radiation at:

- BBN ($m_a \leq MeV$)
- CMB formation ($m_a \approx 0.3 \text{ eV}$)

$$\rho_{\rm rad} = \left[1 + \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}} \right)^4 N_{\rm eff} \right] \rho_{\gamma}$$
$$\Delta N_{\rm eff} = \frac{8}{7} \left(\frac{11}{4} \right)^{4/3} \frac{\rho_a}{\rho_{\gamma}}$$

Scatterings and/or decays involving primordial thermal bath particles (axion energy » m_a, i.e. "hot")

> Unavoidable Production Source!

Scatterings and/or decays involving primordial thermal bath particles (axion energy » m_a, i.e. "hot")

> Unavoidable Production Source!

<u>Computing ANeff - I</u> Instantaneous decoupling

- Assume they thermalize at early times
- Estimate the decoupling temperature, $\Gamma(T_D) = H(T_D)$, and the resulting ΔN_{eff}

$$\begin{array}{cccc}
& & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & &$$

$$\Delta N_{\rm eff} \simeq 0.027 \left(\frac{106.75}{g_{*s}(T_D)}\right)^{4/3}$$

Scatterings and/or decays involving primordial thermal bath particles (axion energy » m_a, i.e. "hot")

> Unavoidable Production Source!

<u>Computing ANeff - II</u> Boltzmann equation for n_a

- Track the number density of axions
- Convert the asymptotic result to ΔN_{eff} via the equilibrium distribution

$$\left(\frac{dn_a}{dt} + 3Hn_a = \sum_{\alpha} \gamma_{\alpha}\right)$$
$$\Delta N_{\text{eff}} \simeq 74.85 Y_a^{4/3}$$

Equilibrium thermodynamics for the conversion to energy Spectral distortions neglected Maxwell-Boltzmann statistics (i.e., no quantum effects) Static thermal bath (i.e., no energy exchanged)

<u>Computing ANeff - II</u> Boltzmann equation for n_a

- Track the number density of axions
- \bullet Convert the asymptotic result to ΔN_{eff} via the equilibrium distribution

$$\left(\frac{dn_a}{dt} + 3Hn_a = \sum_{\alpha} \gamma_{\alpha}\right)$$
$$\Delta N_{\text{eff}} \simeq 74.85 Y_a^{4/3}$$

KSVZ Axion

DFSZ Axion

FD, Hajkarim, Yun, **JHEP 10 (2021)**

Axion Mass Bound

FD, Di Valentino, Giarè, Hajkarim, Melchiorri, Mena, Renzi, Yun, JCAP 09 (2022)

Back to the Phase-Space

Model-independent analysis: generic production of a light X

$$\mathcal{B}_1 \ldots \mathcal{B}_n \to \mathcal{B}_{n+1} \ldots \mathcal{B}_m X$$

$$\frac{df_X(k,t)}{dt} = \left(1 - \frac{f_X(k,t)}{f_X^{eq}(k,t)}\right) \mathcal{C}_{n \to mX}(k,t)$$

- I. Keep track of phase-space and compute the energy density
- 2. Quantum statistical effects take into account
- 3. Energy exchanged with the thermal bath accounted for

Error in predicting ΔN_{eff}

 $\mathcal{L}_{\text{int}} = \frac{\partial_{\mu}a}{2f_a} \sum_{\psi} c_{\psi} \overline{\psi} \gamma^{\mu} \gamma_5 \psi$

Recent studies performed by tracking the axion number density

Baumann et al, Phys.Rev.Lett. 117 (2016) Ferreira, Notari, Phys.Rev.Lett. 120 (2018) FD et al, **JCAP 11 (2018)** Arias-Aragón et al., **JCAP 11 (2020)** Arias-Aragón et al., **JCAP 03 (2021)** Green at al., JCAP 02 (2022)

Will it change if we go back to the phase space?

Difference detectable by future CMB-S4 surveys!

- MUON: effect maximum in regions in tension with stellar bounds
- TAU: effect maximum in allowed regions

FD, Lenoci, in preparation

FD, Lenoci, in preparation

FD, Lenoci, in preparation

The Way Back to the Phase Space

FD, Di Valentino, Giarè, Hajkarim, Melchiorri, Mena, Renzi, Yun, **JCAP 09 (2022)**

Axion cosmological mass bound

The Way Back to the Phase Space

