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𝛎MSM as a minimal model of new physics
The simplest theory of new physics which can explain all experimental 
drawbacks of the Standard Model (neutrino masses and oscillations, dark 
matter, baryon asymmetry of the Universe, incorporating cosmological 
Higgs inflation leading to the observable universe) is at extension of the 
SM by 3 right-handed neutrinos (or heavy neutral leptons - HNLs) :  the 
minimal type I see-saw model or .νMSM
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HNL roles in the MSMν

N1- Dark Matter particle (Dodelson, Widrow; Shi, 
Fuller; Dolgov, Hansen;….) 


N2,3 - responsible for neutrino masses and 
baryogenesis  (See-saw team - Minkowski and 
others; Fukugita, Yanagida, …; Akhmedov, 
Rubakov, Smirnov; Asaka, MS,…)
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Constraints on DM sterile 
neutrino N1 

• Stability. N1 must have a 
lifetime larger than that of the 
Universe. Main decay mode 

 is not observable. 


• X-rays. N1 decays radiatively, 
, producing a 

narrow line  which 
can be detected by X-ray 
telescopes (such as Chandra 
or XMM-Newton).

N1 → 3ν

N1 → γν
Eγ = M1/2
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X-ray and structure formation constraints
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Possible detection (?), still controversial, to be resolved in 2023-2024

Bulbul et al; Boyarsky et al
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DM sterile neutrino production 

at low temperatures

Dodelson, Widrow; Shi, Fuller; Dolgov, Hansen; Abazajian, Fuller, Patel; … Asaka, Laine, MS;…

The temperature of production of DM sterile neutrinos: the QCD epoch



Non-resonant production
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Resonant production
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Leptogenesis at few GeV
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can ensure 100% of DM,

but very strong degeneracy 

between N2,3 is required 

MS; Canetti, Drewes, Frossard, MS; Eijima, Timiryasov, MS; Laine, Ghiglieri
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baryogenesis and DM



QCD phase transition?

• Lattice evidence - 
smooth crossover


• “Evidence” is not a 
proof yet - let’s 
assume that the 
transition did happen 
in the early Universe
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All the studies of sterile neutrino DM production were done 
assuming that the Universe was homogeneous at . 
Possible source of inhomogeneities - the QCD phase transition.

T ∼ ΛQCD



Cosmic separation of phases
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Matter-antimatter separation
The Universe may contain lepton asymmetry , 
coming from HNLs or from other sources. It creates asymmetries in quark flavours ~ 

, to make the plasma electrically neutral. This  leads to C, CP and CPT breaking. 
This may result in difference of reflection coefficients of quarks and antiquarks from 
the domain walls separating QGP and hadronic phases.

ΔL = L /s ≫ B/s = ΔB ≃ 9 × 10−11

ΔL
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QGP, large B > 0

H, large B<0 H, small B
Matter-antimatter domains 
with ~ nuclear density and 
sizes a factor of  few 
(depending on lepton 
asymmetry) smaller than 
the distance  between 
bubbles

nd
B ∝ ( 1

Vd )
κ

baryon 

density droplet


volume
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Omnes phase transition
Very exotic possibility: Omnes, 1969 - temporary spontaneous breaking 
of CP symmetry, leading to ~ nuclear density matter-antimatter domains
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Sterile neutrino Dark Matter at 
QCD phase transition

Resonant transitions in matter-antimatter domains with high 
density similar to Mikheev-Smirnov-Wolfenstein effect


Two cases to be considered:


• Droplet sizes are larger than the active neutrino mean free 
path, : resonant transitions  inside 
the droplets


• Droplet sizes are smaller than the active neutrino mean 
free path, : scattering of neutrino on droplets, 

λν ≃ 0.4 cm ν → N1

λν ≃ 0.4 cm
ν + droplet → N1 + droplet
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Large droplets
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Number of resonantly produced sterile neutrinos:


,


where the resonant energy is given by


nN =
θ2M2T2

4π ∫ dt x2
res nF(xres)

VQGP(t)
VQGP(t0)

xres(t) =
M2

2GFnd
B(t)T



Small droplets
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Number of produced sterile neutrinos:


,


where  is the probability of the process
,


nN = πnν ∫ dt⟨PN⟩r2
d(t)

1
(2rd(t0))3

⟨PN⟩
ν + droplet → N1 + droplet

⟨PN⟩ ≈
2π

3ζ(3)
θ2M2r̄d

T ( ωres

T )
2

nF(ωres)



Sterile neutrino Dark Matter at 
QCD phase transition

Precise computation is hardly possible because of many uncertainties. 
Reasonable assumptions about the dynamics of PT allow to make rough 
estimates:


• Omnes PT - efficient production of DM even for DM sterile neutrino with 
mixing angles  below  (indicated by X-rays).


• Spectrum of produced sterile neutrinos may be considerably cooler than 
that in DW or SF mechanisms, making N1 essentially cold DM candidate 
with momentum .


• Lepton asymmetry driven matter-antimatter separation: efficient 
production of DM even for lepton asymmetries factor ~ 100 below the 
value needed in the homogeneous case  (for 7 keV 
sterile neutrino and ).

θ2 5 × 10−11

≃ 0.1pT

ΔL ≃ 6.6 × 10−5

θ2 ≃ 5 × 10−11
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Connection with heavier HNLs
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Eijima, MS, Timiryasov

Normal ordering of neutrino masses Inverted ordering of neutrino masses

Lepton asymmetries so large can only be generated 
in the 𝛎MSM if the NHL masses are small enough. 
This is the first indication of their mass scale.  




Conclusions
• If the first order QCD phase transition took place, the 

sterile neutrino DM production can be enhanced due to 
temporal matter-antimatter separation. 


• Depending on the nature of the transition, the required 
lepton asymmetries can be smaller than in the 
homogeneous situation.


• These asymmetries can be produced at the  freeze in of 
heavier HNLs, without fine-tunings, if their mass is 
below few GeV.


• New future experiments and observations which can 
find HNLs: XRISM in space, launched in September 
2023  (DM) and SHiP at CERN, accepted in March 2024 
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Spectral resolution is more than 10 times better than in XMM-Newton!



Projection of bounds on HNLs

Neutrino masses and asymmetry


 are explained at once

Sensitivity in number of events is

10’000 times better than in previous 

experiments!

Experiment selected at CERN

in March this year


