Hierarchies and conformal UV Completions

Manfred Lindner

Cosmology, Astrophysics, Theory and Collider Higgs 2024 conference (CATCH22+2)

1-5 May 2024

Dublin Institute for Advanced Studies (DIAS)

The Standard Model and beyond

The SM is the endpoint of a very successful development: d=4 renormalizable gauge theory

$$\begin{array}{ccc} \mathbf{QED} \Rightarrow & \mathbf{QCD} \Rightarrow & \mathbf{SM} \\ \\ U(1)_{em} \Rightarrow & SU(3)_c \Rightarrow & SU(3)_c \times SU(2)_L \times U(1)_Y \end{array}$$

→ excellent agreement of theory and experiment

Theoretical problems:

SM does not exist without cutoff (triviality, vacuum stability)

Gauge hierarchy problem

Gauge unification & charge quantization

Strong CP problem

Unification with gravity

3 generations, reps., d=4, many parameters

Exper. facts, hints, problems:

- •Electro-weak scale ≪ Planck scale
- Gauge couplings almost unify
- Neutrino masses & large mixings
- Flavour: Patterns of masses & mixings
- Baryon asymmetry of the Universe
- Dark Matter
- Dark Energy

Hierarchy Problems

Emerge from scalars upon embedding / connecting to other vastly different scales

Solutions within d=4 QFT:

- **→** an additional symmetry
 - supersymmetry, other: conformal
- → a low lying scale where the scalar sector is composite
 - technicolor, other composite ideas

both:

Goldstone Bosons

Experiment:

Neither SUSY nor TeV-ish compositeness observed (so far)

- → little hierarchy problem (LHP) ←→ BSM scale is too far away...
- → amplifies the old hierarchy problem (HP)

Must solve LHP and HP → LHP first

- → symmetry: all scalars dof (including the Higgs particle) GBs or PGBs
 - problem: GB decay constant $\leftarrow \rightarrow \Lambda$
 - relaxed in little Higgs models ←→ natural explanation of LHP

BUT: These models have scalars and scales \rightarrow only shifting problems?

Another experimentally driven Observation

- → SM is a renormalizable QFT like QED w/o hierarchy problem
- \rightarrow Cutoff "\Lambda" has no meaning \rightarrow triviality, vacuum stability

Interesting observation:

- a remarkable relation between the weak scale, m_t , m_H , gauge couplings and Λ
- connected to <u>log divergences</u> not to quadartic divergences ← → HP

Is there a Message?

- $\lambda(M_X) \simeq 0$ remarkable log cancellations
- remember: μ is the only single scale of the SM \rightarrow special role
- if in addition $\mu^2 = 0 \Rightarrow V(M_X) \ge 0$
 - → Mexican hat becomes flat due to conspiring quantum effects

- alternatively: All scalar and Yukawa couplings dissolve
 i.e. composite scalars → potential dissolves (no metastability issues)
- In both cases tempting: conformal (or shift) symmetry ←→ HP?

Conformal Symmetry & UV-Completion

Successful theories should have a meaningful UV-completion

 \rightarrow vanishing β -functions (UV fixed points) $\leftarrow \rightarrow$ restored scale symmetry

Interacting UV-fixedpoints:

- scalar and Yukawa couplings tend to have Landau poles, instability...
- requires carefully selected particle content \rightarrow explanation?

Trivial fixedpoints:

- no fundamental scalars
- no Yukawa couplings
- asymptotically free non-abelian gauge theories w/o scalars → easy

Little Higgs + conformal UV Completion

conformal little Higgs: Ahmed, ML, Saake, 2309.07845, PRD 109.075041

- 1) All scalars (including Higgs) are GBs or PGBs
 - → scale $\Lambda \simeq$ multi TeV little Higgs model
 - → symmetry explanation of the LHP
 - \rightarrow all λ 's and Yukawa couplings dissolve at Λ
- 2) conformal non-abelian UV completion
 - \rightarrow Λ becomes scale of a dimensional transmutation
 - \rightarrow no new scalars or scales $\leftarrow \rightarrow$ HP

Remarks:

- realized for SM, but works for extended Higgs sectors
- can be combined with neutrino masses, DM, BAU, ...
- gravity comments if time allows

A "little Higgs" reminder

Λ = scale of compositeness dynamics

$$\mu^2 = c \frac{g^2}{16\pi^2} \Lambda^2 \sim c g^2 f^2, \quad \lambda = c' \frac{g^2}{f^2} \frac{1}{16\pi^2} \Lambda^2 \sim c' g^2$$

- $f = 200-300 \text{ GeV} \leftarrow \rightarrow \text{ correct EW scale } (M_W)$
 - $\rightarrow \Lambda$ at most 2-3 TeV: exp. excluded operators
 - → spectrum may contain lower lying states? c.f. techni-p in technicolor → S parameter...
- **little Higgs:** f can be $O(TeV) \rightarrow \Lambda = 5-10 \text{ TeV}$

$$v_{\rm EW} = \frac{\pi_{\psi}}{h}$$

$$\nu_{\rm EW} = \frac{\mu^2}{16\pi^2} f^2 \log \frac{\Lambda^2}{f^2} \sim \frac{g^2}{8\pi^2} f^2 \log(4\pi)$$
- important: *all* scalar dof are GBs or PGBs
- lower lying bound states more remote

Conformal UV Completion

Suitable conformal theory:

- non-abelian gauge group → asymptotically free
 - → trivial UV fixepoint
 - $\rightarrow \beta=0 \leftarrow \rightarrow$ no conformal anomaly
 - \rightarrow IR dimensional transmutation like χ -ral QCD
- condensation → little Higgs model
- dynamical transmutation no y's or λ 's beyond Λ
 - \rightarrow no Λ^2 corrections

Conformal Little Higgs Models

Ahmed, ML, Saake, arXiv: 2309.07845, PRD 109.075041

Exemplification for "bested little Higgs" model:

- → UV completion without introducing any elementary/fundamental scalars
- confining non-abelian gauge symmetry $SU(N_c)$ we take $N_c = 2$
- new fermions:→ ``technifermions''four light flavors

	$SU(N_c)$	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$ ilde{\psi} \equiv \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$		1		0
$\psi' \equiv \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix}$		1	1 1	$-rac{1}{2} + rac{1}{2}$
$\chi \times N_m$		1	1	0

- $SU(2)_L \subset SU(4)_L$ and the custodial group $SU(2)_L' \subset SU(4)_L$, respectively
- conjugate fields transform under the subgroups of $SU(4)_R$
- global symmetry breaking coset $SU(4)_L \times SU(4)_R / SU(4)_V$
- condensation → flavor symmetry breaking

The Higgs Sector

- condensation → 15 Goldstone bosons
- transform under the custodial symmetry $SO(4) \simeq SU(2)_L \times SU(2)_R \subset SU(4)V$ as $15_{SU(4)V} = (2,2) + (2,2) + (3,1) + (1,3) + (1,1)$
- Goldstone matrix: $U=\exp\left[i\Pi/\sqrt{2}f
 ight]$
- where $\Pi = \begin{pmatrix} \sigma^a \Delta_1^a + \eta/\sqrt{2} & -i\Phi_H \\ i\Phi_H^\dagger & \sigma^a \Delta_2^a \eta/\sqrt{2} \end{pmatrix}$
- with bi-doublet $\Phi_H \equiv \left(\widetilde{H}_1 + i\widetilde{H}_2, \quad H_1 + iH_2
 ight); \;\; \widetilde{H}_i \; \equiv \; i\sigma_2 H_i^*$ where H; are Higgs doublets under SU(2)L
- and the triplets $\sigma^a \Delta^a = \begin{pmatrix} \Delta^0 & \sqrt{2}\Delta^+ \\ \sqrt{2}\Delta^- & -\Delta^0 \end{pmatrix}$

Phenomenology

- conformal symmetry is broken at $\Lambda \sim O(5)$ TeV by fermion condensate
 - → spontaneous breaking of a global symmetries
 - \rightarrow no quadartic divergences in analogy to χ -ral QCD
- Higgs and partners emerge as pseudo-Goldstone Bosons
- low-energy phenomenology closely resembles `bestest Little Higgs' model

 → little hierarchy between SM and Λ explained by Little Higgs dynamics
- H₁ corresponds to the SM Higgs doublet
- H_2 , scalar triplet Δ_1 and singlet $\eta \rightarrow$ substantial masses O(1) TeV
- heavy gauge boson partners W' and $Z' \rightarrow O(1)$ TeV
- fermionic top-partners have masses at the scale f
 - → promising for future LHC runs
- The lightest stable neutral composite scalar can be a DM candidate.

•

Conclusions

The Standard Model

- → works perfectly no problems besides triviality, metastability
- → list of unanswered questions / problems ← → BSM
- → lots of progress: DM, v's, GR waves, ... + many new ideas
- → hierarchy problem worsened due to the little hierarchy problem
- → remarkable coincidence of parameters: flat Higgs potential @HE

Conformal little Higgs

- → a natural explanation of LHP: all scalar dof are GBs or PGBs
- → conformal UV completion: avoid to reintroduce problems (fund. scalars)
- → non-abelian gauge theory with fermions, gauge bosons and no scale
 - → dimensional transmutation at multi Tev-ish Λ
 - → GBs and PGBs explain scalar physics at EW scale
- → generic mechanism exemplified for ``bested little Higgs''

Not covered:

phenomenological implications, neutrino physics, dark matter, ... combination with gravity (conformal gravity+breaking; inflation, ghosts?)