

Outline

□ Introduction

Higgs Mass Predictions in the CP-Violating NMSSM

- fixed order
- EFT approach

 $\Box O(\alpha_{t}(\alpha_{s}+\alpha_{t}))$ corrections to the trilinear Higgs self-coupling in the CP-violating NMSSM

- impact on Higgs pair production

Conclusions

M. Mühlleitner (KIT), 4 May 2024

The Standard Model is Structurally Complete

The Standard Model is Structurally Complete - But

Status

M. Mühlleitner (KIT), 4 May 2024

+ Present Accuracy:

[ATLAS,CMS]

M_H = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV

- + Why precision?
- * Self-consistency test of SM at quantum level
 (e.g.: Higgs loop corrections to W boson mass)
- $* MH \leftrightarrow stability of the electroweak vacuum$

[Degrassi eal;Bednyakov eal]

- * Higgs mass uncertainty feeds back in uncertainty on Higgs observables
- * Test parameter relations in beyond-SM theories

+ Present Accuracy:

[ATLAS,CMS]

M_H = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV

- + Why precision?
- * Self-consistency test of SM at quantum level (e.g.: Higgs loop corrections to W boson mass)
- $* MH \leftrightarrow stability of the electroweak vacuum$

[Degrassi eal;Bednyakov eal]

* Higgs mass uncertainty feeds back in uncertainty on Higgs observables

Higgs boson mass:

- * SM: fundamental parameter, not predicted by the theory
- * Supersymmetry: calculable from input parameters; quantum corrections $(\Delta m_H)^2$ are important!

```
MSSM: m_{H^2} \approx M_Z^2 \cos^2 2\beta + (\Delta m_H)^2 \leftarrow (85 \text{ GeV})^2!
```

* Test parameter relations in beyond-SM theories

SUSY: THE NEW HOPE

QUANTUM MECHANICS AND QFT STILL HOLD
 THE ORBITAL COLLIDER STILL SEES NOTHING
 THREE CENTURIES OF TRIUMPH FOR SUSY AND STRINGS!

The seasonal trends Extremely-weeny constrained SUSY NSFWMSSM FF3C10ACBA9-MSSM MSSM retrograde Anthropic landscaping and trimming it down The problem of condensed matter: They still don't get it Strings - The Perpetual Revolution Number of free parameters: P or NP complete?

The perpetual conference

5 Jan - 5 Mar: Chamonix 15 Mar - 30 June: Hainan Island 1 July - 15 Sep: Wailea, Maul 15 Sep - 20 Nov: Jumeirah 1 21 Nov - 24 Dec: Hainan Island Invited seminar How to ensure your model remains predictability-free

Forum

Is choice moral? "Every time you choose a path of action, a multiverse is killed"

Special topic If the universe is not supersymmetric is it necessarily existing?

Sponsored by: The Milner-Zuckerberg Institution

SUSY: THE NEW HOPE

QUANTUM MECHANICS AND QFT STILL HOLD
 THE ORBITAL COLLIDER STILL SEES NOTHING
 THREE CENTURIES OF TRIUMPH FOR SUSY AND STRINGS!

The seasonal trends Extremely-weeny constrained SUSY NSFWMSSM

FF3C10ACBA9-MSSM

MSSM retrograde

Anthropic landscaping and trimming it down The problem of condensed matter: They still don't get it

Strings - The Perpetual Revolution Number of free parameters: P or NP complete?

The perpetual conference

5 Jan - 5 Mar: Chamonix 15 Mar - 30 June: Hainan Island 1 July - 15 Sep: Wailea, Maul 15 Sep - 20 Nov: Jumeirah 1 21 Nov - 24 Dec: Hainan Island Invited seminar How to ensure your model remains predictability-free

Forum

Is choice moral? "Every time you choose a path of action, a multiverse is killed"

Special topic If the universe is not supersymmetric is it necessarily existing?

Sponsored by: The Milner-Zuckerberg Institution

- + Motivation:
 - * maximal possible symmetry compatible with Poincaré group (space-time symmetry)
 - * solves some of the open problems of the SM:
 - candidate for Dark Matter
 - inclusion of gravity
 - unification of fundamental forces

- + Motivation:
 - * maximal possible symmetry compatible with Poincaré group (space-time symmetry)
 - * solves some of the open problems of the SM:
 - candidate for Dark Matter
 - inclusion of gravity
 - unification of fundamental forces
- + Implications:
 - * enlarged particle spectrum: each SM particle has supersymmetric partner particle
 - * enlarged Higgs sector

- Supersymmetry: requires at least 2 complex Higgs doublets
- * Minimal Supersymmetric extension (MSSM): 2 complex Higgs doublets

5 Higgs bosons: *h, H, A, H*+, *H*– 4 neutralinos: $ilde{\chi}^0_i$ (i=1,...,4)

Next-to-MSSM (NMSSM): 2 complex Higgs doublets plus complex singlet field

+ Enlarged Higgs and neutralino sector:

7 Higgs bosons: $H_1, H_2, H_3, A_1, A_2, H^+, H^-$ 5 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 5)

- Supersymmetry: requires at least 2 complex Higgs doublets
- * Minimal Supersymmetric extension (MSSM): 2 complex Higgs doublets

5 Higgs bosons: h, H, A, H^+, H^- 4 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 4)

+ Next-to-MSSM (NMSSM): 2 complex Higgs doublets plus complex singlet field

+ Enlarged Higgs and neutralino sector:

7 Higgs bosons: $H_1, H_2, H_3, A_1, A_2, H^+, H^-$ 5 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 5)

- * less important loop corrections needed compared to the MSSM
- * solves little hierarchy problem

Supersymmetry: requires at least 2 complex Higgs doublets

 $\textbf{MSSM:} \quad m_H^2 \;\; \approx \;\; M_Z^2 \cos^2 2\beta \qquad \qquad + \Delta m_H^2 \;\; \leftarrow (85 \; \text{GeV})^2 \,!$

NMSSM: $m_H^2 \approx M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta m_H^2 \leftarrow (55 \text{ GeV})^2$

* Minimal Supersymmetric extension (MSSM): 2 complex Higgs doublets

5 Higgs bosons: h, H, A, H⁺, H⁻ 4 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 4)

* Next-to-MSSM (NMSSM): 2 complex Higgs doublets plus complex singlet field

+ Enlarged Higgs and neutralino sector:

7 Higgs bosons: $H_1, H_2, H_3, A_1, A_2, H^+, H^-$ 5 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 5)

M. Mühlleitner (KIT), 4 May 2024

*

Spectrum Calculations

Fixed-Order Calculations: exp. exclusion limits push SUSY masses to high scales ~> terms ~ y_x ln(M_{Sx}/M_x) with y_x Yukawa coupling, M_x (M_{Sx}) mass of (SUSY partner) particle most important contribution from top/stop sector ~> large hierarchy~> large logs ~> resummation! needed for reliable results

* EFT calculations: full theory matched to to effective low-energy theory at high-scale; RGE running from high scale to EW scale resums large logs

Spectrum Calculations

Status MSSM spectrum calculations:

FO: up to 2-loop in on-shell (OS) and DR scheme, partial 3-loop in DR scheme EFT: up to N²LL (included in calculators), N³LL Hybrid: FeynHiggs, FlexibleEFTHiggs, N³LO+N³LL QCD corrections [Harlander,Klappert,Voigt, 19]

Status NMSSM spectrum calculations: FO: up to 2-loop in mixed OS-DR scheme and in DR-scheme EFT: matching to quartic coupling in NMSSM w/ all BSM particles at TeV scale e.g. [Gabelmann,MM,Staub, '18,' 19][Bagnaschi eal,'22] Hybrid: FlexibleEFTHiggs, SARAH+SPheno

NMSSM Spectrum Calculators

- FlexibleSUSY [Athron,Bach,Harries,Kotlarski,Kwasnitza,Park,Stöckinger,Voigt,Ziebell]: DR, FO & hybrid,

through FlexibleEFTHiggs

- NMSSMCALC: [Baglio,Borschensky,Dao,Gabelmann,Gröber,Krause,Le,MM,Rzehak,Spira,Streicher,Walz]:
 - FO, real & complex NMSSM, DR and mixed OS-DR
- NMSSMTools [Ellwanger, Gunion, Hugonie]: FO, DR scheme
- SOFTSUSY [Allanach,Athron,Bednyakov,Tunstall,Voig,RuizdeAustri,Williams]: FO, DR scheme
- SPheno [Porod, Staub]: FO, DR scheme, quartic and pole mass matching

 $- \left(\begin{array}{c} s \end{array} \right)^{-1} - \left(\begin{array}{c} h_k \end{array} \right)^{-1} - \left(\left$

 \tilde{X}_{1} \tilde{X}_{n}

 \tilde{X}_{I} \tilde{X}_{n} \tilde{X}_{n} \tilde{X}_{l} \tilde{X}_{m}

 \tilde{X}_{1}^{0} χ^{0}_{m}

hi

hi

<u>Remarks:</u>

- comparison of codes in DR scheme: [Staub,Athron,Ellwanger,Gröber,MM,Slavich,Voigt,'15] FlexibleSUSY,NMSSMCALC,NMSSMTools, SOFTSUSY,SPheno
- comparison of codes in mixed OS-DR scheme: [Drechsel,Gröber,Heinemeyer,MM,Rzehak,Weiglein,'16] FeynHiggs, NMSSMCALC
- solution of Goldstone boson catastrophe [Braathen,Goodsell, 16], [Braathen,Goodsell,Staub, 17]
- advances in FeynHiggs: [Drechsel,Galeta,Heinemeyer,Hollik,Liebler,Moortgat-Pick,Paßehr,Weiglein]
 real&complex NMSSM, GNMSSM: 1-loop in, 2-loop&resummation of HO log-effects only in
 MSSM limit, no public code yet
- OS masses CP-violating NMSSM, consistent description production/decay [Domingo, Drechsel, Paßehr]

The Code NMSSMCALC

Implementation of mass corrections in our code NMSSMCALC [Baglio,Borschensky,Dao,Gabelmann,Gröber,Krause,MM,Le,Rzehak,Spira,Streicher,Walz]

One-loop masses [Ender, Graf, MM, Rzehak, '12], [Graf, Gröber, MM. Rzehak, Walz, '12] Two-Loop $\mathcal{O}(\alpha_{\dagger} + \alpha_{s})$ [MM, Nhung, Rzehak, Walz, '15] Two-Loop $\mathcal{O}(\alpha_{\dagger} + \alpha_{\dagger} + \alpha_{s})$ [Dao, Gröber, Krause, MM, Rzehak, '19] Two-Loop $\mathcal{O}((\alpha_{\dagger} + \alpha_{\lambda} + \alpha_{\kappa})^{2} + \alpha_{\dagger} \alpha_{s})$ [Dao, Gabelmann, MM, Rzehak, '21]

The Fortran Code NMSSMCALC:

- Calculator of one- and two-loop Higgs mass corrections and Higgs self-couplings as well as of Higgs decay widths in the CP-conserving and CP-violating NMSSM
- Computation of the muon magnetic and the electric dipole moment
- Computation of the rho parameter and the W mass prediction up to two-loop EW NMSSM

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Dao,Gabelmann,MM,Rzehak,'21]

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Dao,Gabelmann,MM,Rzehak,'21]

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Dao,Gabelmann,MM,Rzehak,'21]

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Dao,Gabelmann,MM,Rzehak,'21]

M. Mühlleitner (KIT), 4 May 2024

Spectrum Calculations - EFT Approach

***** EFT calculations, Matching:

- SUSY couplings matched to corresponding couplings in EFT theory such that physics at matching scale μ_R is the same
- In case we have only SM particles plus heavy SUSY particles: EFT is the SM => $\lambda_{SM}(\mu_R) = \lambda_{BSM}(\mu_R)$ [receives only BSM contributions]
- We have terms like $y_x \ln(M_{Sx}/M_x)$, respectively $y_x (\ln(M_{Sx}/\mu_R^2) + \ln(\mu_R^2/M_x^2))$, with $\mu_R = M_{Sx} = y_x \ln(\mu_R^2/M_x^2)$ ($\ln(\mu_R^2/M_x^2)$), with $\mu_R = M_{Sx} = y_x \ln(\mu_R^2/M_x^2)$).

Quartic Coupling Matching (unbroken EW symmetry; $v_u, v_d \rightarrow 0$, $tan\beta = v_u/v_d = const.$, $v_s \neq 0$):

$$\lambda_{H}^{\mathrm{SM},\,\overline{\mathrm{MS}}}(Q_{\mathrm{match}}) = \lambda_{H}^{\mathrm{NMSSM},\,\overline{\mathrm{MS}}}(Q_{\mathrm{match}})$$

[Bagnaschi eal, 22] for real NMSSM our work: complex NMSSM

effective quartic coupling after subtracting the SM contributions:

 $\lambda_{\rm NMSSM}^{\rm DR}(Q_{\rm match}) = \lambda_{\rm NMSSM}^{\rm tree} + \Delta \lambda_{\rm NMSSM}^{1l} + \Delta \lambda_{\rm MSSM}^{2l}$

- - - - light scalars = = = = = heavy scalars

CATCH22+2

Pole Mass Matching

Pole Mass Matching/"Hybrid" (broken EW symmetry, v«Msusy):

$$M_{h,\mathrm{SM}}^2 \stackrel{!}{=} M_{h,\mathrm{NMSSM}}^2$$

 $M_{h,X}^2 = m_{h,X}^2 - \hat{\Sigma}_{h,X}(M_{h,X}^2)$ with X = SM, NMSSM $m_{h,SM}$ and $m_{h,NMSSM}$ denote the running \overline{MS} and \overline{DR} masses of the SM(-like) Higgs states

Tree Level:
$$m_{h,\text{SM}}^2 = 2\lambda_{\text{SM}}^{\text{eff.}} v_{\text{SM}}^2 \stackrel{!}{=} m_{h,\text{NMSSM}}^2 \rightarrow \lambda_{\text{SM}}^{\text{eff.}} = \frac{m_{h,\text{NMSSM}}^2}{2v_{\text{NMSSM}}^2}$$

One-Loop Level:
$$\lambda_{\text{SM}}^{\text{eff.}} = \frac{1}{2v_{\text{SM}}^2} \left[m_{h,\text{NMSSM}}^2 - \hat{\Sigma}_{h,\text{NMSSM}}(m_{h,\text{NMSSM}}^2) + \hat{\Sigma}_{h,\text{SM}}(m_{h,\text{SM}}^2) \right]$$

Leading terms in expansion in v/M_{SUSY}

$$\lambda_{\rm SM}^{\rm eff.} = \frac{1}{2v_{\rm NMSSM}^2} \begin{bmatrix} m_{h,\rm NMSSM}^2 - \Delta \hat{\Sigma}_h - 2m_{h,\rm NMSSM}^2 \Delta \hat{\Sigma}'_h \end{bmatrix} \quad \text{with} \quad \Delta \hat{\Sigma}_h^{(\prime)} \equiv \Sigma_{h,\rm NMSSM}^{(\prime)}(0) - \hat{\Sigma}_{h,\rm SM}^{(\prime)}(0) \\ \hat{\Sigma}_h \text{ renormalized self-energy} \end{bmatrix}$$

M. Mühlleitner (KIT), 4 May 2024

CATCH22+2

e.g. [Athron eal, '16]

Results

M. Mühlleitner (KIT), 4 May 2024

CATCH22+2

Results

M. Mühlleitner (KIT), 4 May 2024

CATCH22+2

Trilinear Higgs Self-Couplings

+ SM Higgs potential in physical gauge:

Higgs mass : $M_{H} = \sqrt{2\lambda} v$ trilinear Higg self-coupling : $\lambda = 3M_{H}^{2}/M_{2}^{2}$ quadrilinear Higgs self-coupling : $\lambda = 3M_{H}^{2}/M_{2}^{4}$ (units $\lambda = 33.8 \text{ GeV}/\lambda_{2}^{2}$)

$$V(H) = \frac{1}{2} M_{H}^{2} H^{2} + \frac{M_{H}^{2}}{2v} H^{3} + \frac{M_{H}^{2}}{8v^{2}} H^{4}$$

- Masses M_{ij}=(δ²V_H/φ_iφ_j)|_{φ=0} and Higgs self-couplings λ_{ijk}=(δ³V_H/φ_iφ_jφ_k)|_{φ=0} related through Higgs potential V_H => catch up in precision w/ masses
- + Importance of the trilinear Higgs self-coupling:
 - determines shape of the Higgs potential
 - Sensitive to beyond-Standard-Model physics
 - Important input for Higgs pair production
 - Important input for Higgs-to-Higgs decays
 - Important input for electroweak phase transitions
- Previous work: full 1-loop [Dao,MM,Streicher,Walz,'13]
 2-loop at O(αtαs) [Dao,MM,Ziesche,'15]

Present work: 2-loop $\mathcal{O}(\alpha_{t}(\alpha_{s}+\alpha_{t}))$ [Borschensky, Dao, Gabelmann, MM, Rzehak, '22]

Trilinear Higgs Self-Couplings at 2L $O(\alpha_{\dagger}(\alpha_{s}+\alpha_{\dagger}))$

+ New corrections at $O(\alpha_{t}^{2})$: all 2-loop diagrams with top/stops and at most one Higgs/Higgsino field, e.g.

proportional to top mass m⁺ and soft SUSY-breaking trilinear stop mass parameter A⁺

- + Approximations:
 - gaugeless limit $g_{1,g_2} \rightarrow 0$ (keeping $\tan \theta_W = g_2/g_1$ fixed)
 - vanishing external momenta \rightarrow effective coupling

Loop Corrected Trilinear Higgs Self-Couplings at $O(\alpha_{t}(\alpha_{s}+\alpha_{t}))$

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Borschensky,Dao,Gabelmann,MM,Rzehak, 22]

 $\hat{\lambda}_{abc}^{\text{eff}} : \text{renormalized loop-corrected Higgs self-coupling at vanishing external momentum}$ Estimate of theor. uncertainty via renorm. scheme dependence: $\Delta_{\text{ren}} = \frac{\left|\lambda^{m_t(\overline{\text{DR}})} - \lambda^{m_t(\text{OS})}\right|}{\lambda^{m_t(\overline{\text{DR}})}}$

Results comply w/ SM value $\lambda_{HHH}^{SM} = \frac{3M_H^2}{v} = 191 \text{ GeV}$ within theoretical uncertainty

Loop Corrected Trilinear Higgs Self-Couplings at $O(\alpha_{t}(\alpha_{s+}\alpha_{t}))$

 $\hat{\lambda}_{abc}^{\text{eff}} : \text{renormalized loop-corrected Higgs self-coupling at vanishing external momentum}$ Estimate of theor. uncertainty via renorm. scheme dependence: $\Delta_{\text{ren}} = \frac{\left|\lambda^{m_t(\overline{\text{DR}})} - \lambda^{m_t(\text{OS})}\right|}{\lambda^{m_t(\overline{\text{DR}})}}$

Results comply w/ SM value $\lambda_{HHH}^{SM} = \frac{3M_H^2}{v} = 191 \text{ GeV}$ within theoretical uncertainty

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Borschensky, Dao, Gabelmann, MM, Rzehak, 22]

$$\Delta_{\alpha_{i}}^{\alpha_{i+1}} = \frac{|\lambda^{\alpha_{i+1}} - \lambda^{\alpha_{i}}|}{\lambda^{\alpha_{i}}}$$

- Correlation with size of mass corrections
- Smaller corrections in the DRbar than in the OS scheme due to partial resummation of of higher-order terms

New Physics Effects in Higgs Pair Production

Cross section: - different trilinear couplings - different Yukawa couplings
 novel particles in the loop - resonant enhancement

+Example NMSSM:

[taken from Dao,MM eal'13]

M. Mühlleitner (KIT), 4 May 2024

CATCH22+2

New Physics Effects in Higgs Pair Production

Cross section: - different trilinear couplings - different Yukawa couplings
 novel particles in the loop - resonant enhancement

+Example NMSSM:

[taken from Dao,MM eal'13]

M. Mühlleitner (KIT), 4 May 2024

CATCH22+2

Benchmark Point BP10:

[Borschensky, Dao, Gabelmann, MM, Rzehak, 22]

Parameter Point BP10: All complex phases are set to zero and the remaining input parameters are given by

$$\begin{aligned} |\lambda| &= 0.65 , \ |\kappa| = 0.65 , \ \operatorname{Re}(A_{\kappa}) = -432 \ \operatorname{GeV}, \ |\mu_{\text{eff}}| = 225 \ \operatorname{GeV}, \ \tan \beta = 2.6 , \\ M_{H^{\pm}} &= 611 \ \operatorname{GeV}, \ m_{\tilde{Q}_3} = 1304 \ \operatorname{GeV}, \ m_{\tilde{t}_R} = 1576 \ \operatorname{GeV}, \ m_{\tilde{X} \neq \tilde{Q}_3, \tilde{t}_R} = 3 \ \operatorname{TeV}, \\ A_t &= 46 \ \operatorname{GeV}, \ A_b = -1790 \ \operatorname{GeV}, \ A_{\tau} = -93 \ \operatorname{GeV}, \ A_c = 267 \ \operatorname{GeV}, \\ A_s &= -618 \ \operatorname{GeV}, \ A_{\mu} = 1851 \ \operatorname{GeV}, \ A_u = -59 \ \operatorname{GeV}, \ A_d = -175 \ \operatorname{GeV}, \\ A_e &= 1600 \ \operatorname{GeV}, \ |M_1| = 810 \ \operatorname{GeV}, \ |M_2| = 642 \ \operatorname{GeV}, \ M_3 = 2 \ \operatorname{TeV}. \end{aligned}$$
(38)

	$h_1 \ [h_u]$	$h_2 \left[h_s ight]$	$h_3 \left[h_d ight]$	$a_1 \ [a_s]$	$a_2 [a_d]$
tree-level	97.21	307.80	626.13	556.71	617.22
one-loop	131.46	299.65	625.96	543.58	615.82
	(114.81)	(299.28)	(625.52)	(543.69)	(616.01)
two-loop $\mathcal{O}(\alpha_t \alpha_s)$	118.90	299.40	625.78	543.73	615.90
	(120.36)	(299.38)	(625.58)	(543.60)	(615.96)
two-loop $\mathcal{O}(\alpha_t(\alpha_s + \alpha_t))$	123.53	299.44	625.89	543.73	615.90
	(120.14)	(299.38)	(625.57)	(543.60)	(615.96)
two-loop $\mathcal{O}(\alpha_{\lambda\kappa}^2)$	122.36	300.27	625.94	543.34	615.91
	(119.97)	(299.90)	(625.65)	(543.47)	(616.01)

Benchmark Point BP10:

[Borschensky, Dao, Gabelmann, MM, Rzehak, 22]

Parameter Point BP10: All complex phases are set to zero and the remaining input parameters are given by

$$\begin{aligned} |\lambda| &= 0.65 , \ |\kappa| = 0.65 , \ \operatorname{Re}(A_{\kappa}) = -432 \ \operatorname{GeV}, \ |\mu_{\text{eff}}| = 225 \ \operatorname{GeV}, \ \tan \beta = 2.6 , \\ M_{H^{\pm}} &= 611 \ \operatorname{GeV}, \ m_{\tilde{Q}_3} = 1304 \ \operatorname{GeV}, \ m_{\tilde{t}_R} = 1576 \ \operatorname{GeV}, \ m_{\tilde{X} \neq \tilde{Q}_3, \tilde{t}_R} = 3 \ \operatorname{TeV}, \\ A_t &= 46 \ \operatorname{GeV}, \ A_b = -1790 \ \operatorname{GeV}, \ A_{\tau} = -93 \ \operatorname{GeV}, \ A_c = 267 \ \operatorname{GeV}, \\ A_s &= -618 \ \operatorname{GeV}, \ A_{\mu} = 1851 \ \operatorname{GeV}, \ A_u = -59 \ \operatorname{GeV}, \ A_d = -175 \ \operatorname{GeV}, \\ A_e &= 1600 \ \operatorname{GeV}, \ |M_1| = 810 \ \operatorname{GeV}, \ |M_2| = 642 \ \operatorname{GeV}, \ M_3 = 2 \ \operatorname{TeV}. \end{aligned}$$
(38)

	$h_1 \ [h_u]$	$h_2 \; [h_s]$	$h_3 \; [h_d]$	$a_1 \ [a_s]$	$a_2 \ [a_d]$
tree-level	97.21	307.80	626.13	556.71	617.22
one-loop	131.46	299.65	625.96	543.58	615.82
	(114.81)	(299.28)	(625.52)	(543.69)	(616.01)
di-Higgs cxn)-loop $\mathcal{O}(\alpha_t \alpha_s)$	118.90	299.40	625.78	543.73	615.90
dominated by	(120.36)	(299.38)	(625.58)	(543.60)	(615.96)
production w/ p-loop $\mathcal{O}(\alpha_t(\alpha_s + \alpha_t))$	123.53	299.44	625.89	543.73	615.90
h ₂ ->h _u h _u	(120.14)	(299.38)	(625.57)	(543.60)	(615.96)
two-loop $\mathcal{O}(\alpha_{\lambda\kappa}^2)$	122.36	300.27	625.94	543.34	615.91
	(119.97)	(299.90)	(625.65)	(543.47)	(616.01)

Impact on Higgs Pair Production

- 'inp': loop-corrected masses and mixing angles (-> Yukawa & trilinear couplings) in tree-level-like formulae: HO corrections to input parameters
- 'proc': additionally including loop-corrected trilinear Higgs self-coupling -> HO corrections to observable included (though only partially)
- 'inp': scheme dependence of input parameters uncanceled by scheme dependence of process-dependent corrections (at the same order)
- 'proc': remaining large uncertainty (14.6%): remaining missing EW corrections might be important

- results comply w/ SM value within theoretical uncertainties
- + Impact on di-Higgs production
 - remaining relatively large uncertainties require full calculation of EW corrections

Thank you for your attentíon!

The NMSSM Higgs Sector

+ Tree-level Higgs potential: (neglecting D-term contributions)

$$V_{H} = (|\lambda S|^{2} + m_{H_{d}}^{2})H_{d}^{\dagger}H_{d} + (|\lambda S|^{2} + m_{H_{u}}^{2})H_{u}^{\dagger}H_{u} + m_{S}^{2}|S|^{2} + |\kappa S^{2} - \lambda H_{d} \cdot H_{u}|^{2} + \left(\frac{1}{3}\kappa A_{\kappa}S^{3} - \lambda A_{\lambda}SH_{d} \cdot H_{u} + \text{h.c.}\right)$$

+ CP violation in the Higgs sector: λ , κ , A_{λ} , A_{κ} can be complex

+ Higgs fields after electroweak symmetry breaking (EWSB):

$$H_{d} = \begin{pmatrix} \frac{1}{\sqrt{2}}(v_{d} + h_{d} + ia_{d}) \\ h_{d}^{-} \end{pmatrix}, H_{u} = e^{i\varphi_{u}} \begin{pmatrix} h_{u}^{+} \\ \frac{1}{\sqrt{2}}(v_{u} + h_{u} + ia_{u}) \end{pmatrix}, S = \frac{e^{i\varphi_{s}}}{\sqrt{2}}(v_{s} + h_{s} + ia_{s})$$
effective μ parameter: $\mu = \frac{\lambda v_{s}}{\sqrt{2}}$

+ Tadpoles: (zero at tree level)

$$(\boldsymbol{t})_j = t_{\boldsymbol{\phi}_j} = rac{\partial V_H}{\partial \boldsymbol{\phi}_j}, \ j = 1, \dots, 6$$

+ The Higgs potential:

$$egin{aligned} V_H &\supset & oldsymbol{t} oldsymbol{\phi} + rac{1}{2} oldsymbol{\phi}^T \mathcal{M}_{\phi\phi} oldsymbol{\phi} + oldsymbol{h}^{c,\dagger} \mathcal{M}_{h^+h^-} oldsymbol{h}^c \ , \ & ext{with} \quad oldsymbol{\phi} = (h_d,h_u,h_s,a_d,a_u,a_s)^T, \ oldsymbol{h}^c = (h_d^{-*},h_u^+) \,, \end{aligned}$$

+ Mass matrices: neutral $\mathcal{M}_{\phi\phi}$, charged $\mathcal{M}_{h^+h^-}$

The Higgs Spectrum

* Tree-level Higgs potential: (neglecting D-term contributions)

CP-conserving (CPC): 3 CP-even Higgs bosons H_i (i=1,2,3), 2 CP-odd Higgs boson A_j (j=1,2), 2 charged H⁺,H⁻

CP-violating (CPV): 5 CP-mixing Higgs bosons H_k (k=1,...,5), 2 charged Higgs bosons H⁺, H⁻

+ Higgs boson mass:

- * SM: fundamental parameter, not predicted by the theory
- * Supersymmetry: calculable from input parameters; quantum corrections Δm^2_H are important!

- NMSSM: less important loop corrections needed compared to the MSSM, rich phenomenology See e.g. [Miller,Nevzorov,Zerwas,'03] [King,MM,Nevzorov,'12,'14] [Carena,Haber,Low,Shah,Wagner,'15]
 [Ellwanger,Rodriguez-Vazquez,'15] [Baum,Freeze,Shah,Shakya,'17] [Baum,Shah,Freeze,'19]
 [Biekötter,Grohsjean,Heinemeyer,Schwanenberger,Weiglein,'21]
- + Why precision predictions for Higgs masses?

Higher-Order NMSSM Higgs Boson Masses

- + <u>After EWSB</u>: h_i (i=1,...,5) ordered by mass, no CP eigenstates <- CP-violating NMSSM
- + <u>HO Higgs masses</u>: real parts of propagator poles; iteratively obtained from (no Goldstone boson admixture taken included, numerically small)

$$\operatorname{Det}\left(\mathbb{1}_{5\times 5}p^2 - \mathcal{M} + \hat{\Sigma}_{hh}(p^2)\right) = 0$$
[Dao eal,'19]

+ <u>Renormalized self-energies:</u>

$$\hat{\Sigma}_{ij} = \hat{\Sigma}_{ij}^{(1)}(p^2) + \hat{\Sigma}_{ij}^{(2)}(p^2)$$
 with

$$\hat{\Sigma}^{(1)}(p^2) = \Sigma^{(1)}(p^2) + \frac{1}{2} \left[\delta^{(1)} \mathcal{Z}^{\dagger} \left(\mathbb{1} p^2 - \mathcal{M}^2 \right) + \left(\mathbb{1} p^2 - \mathcal{M}^2 \right) \delta^{(1)} \mathcal{Z} \right] + \delta^{(1)} \mathcal{M}^2.$$

computed at non-zero p² in the CP-conserving and CP-violating NMSSM in [Ender eal,'11;Graf eal,'12]

$$\hat{\Sigma}^{(2)}(p^2) = \Sigma^{(2)}(p^2) + \frac{1}{2} \left[\delta^{(2)} \mathcal{Z}^{\dagger} \left(\mathbb{1} p^2 - \mathcal{M} \right) + \left(\mathbb{1} p^2 - \mathcal{M} \right) \delta^{(2)} \mathcal{Z} \right] \\ + \frac{1}{2} \delta^{(1)} \mathcal{Z}^{\dagger} \left(\mathbb{1} p^2 - \mathcal{M} \right) \delta^{(1)} \mathcal{Z} - \delta^{(1)} \mathcal{Z}^{\dagger} \delta^{(1)} \mathcal{M} - \delta^{(1)} \mathcal{M}^{\dagger} \delta^{(1)} \mathcal{Z} \\ - \delta^{(2)} \mathcal{M}$$

computed at p²=0 and in gaugeless limit in the CP-violating NMSSM at $\mathcal{O}(\alpha_t \alpha_s)$ and $\mathcal{O}(\alpha_t^2)$ in [MM eal,'14;Dao eal,'19] This work: $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$

Matching Conditions

Quartic Coupling Matching (unbroken EW symmetry; $v_u, v_d \rightarrow 0$, $tan\beta = v_u/v_d = const.$, $v_s \neq 0$):

$$\lambda_{H}^{\mathrm{SM},\,\overline{\mathrm{MS}}}(Q_{\mathrm{match}}) = \lambda_{H}^{\mathrm{NMSSM},\,\overline{\mathrm{MS}}}(Q_{\mathrm{match}})$$

[Bagnaschi eal, 22] for real NMSSM our work: complex NMSSM

effective quartic coupling after subtracting the SM contributions:

 $\lambda_{\rm NMSSM}^{\rm \overline{DR}}(Q_{\rm match}) = \lambda_{\rm NMSSM}^{\rm tree} + \Delta \lambda_{\rm NMSSM}^{1l} + \Delta \lambda_{\rm MSSM}^{2l}$

$$\begin{split} \lambda_{\text{NMSSM}}^{\text{tree}} = \underbrace{\frac{1}{4} (g_1^2 + g_2^2) \cos^2 2\beta}_{\text{MSSM D-terms}} + \underbrace{\frac{1}{2} |\lambda| \sin^2 2\beta}_{\text{NMSSM F-terms}} \\ &- \frac{1}{24 |\kappa|^2 M_S^2 (3M_S^2 + M_{A_S}^2)} \left(3|\kappa|^2 M_{H^{\pm}}^2 - 3|\kappa|^2 M_{H^{\pm}}^2 \cos 4\beta \\ &+ (3M_S^2 + M_{A_S}^2) \left(|\kappa||\lambda| \cos \varphi_y \sin 2\beta - 2|\lambda|^2 \right) \right)^2 \\ &\underbrace{ + (3M_S^2 + M_{A_S}^2) \left(|\kappa||\lambda| \cos \varphi_y \sin 2\beta - 2|\lambda|^2 \right) }_{\text{s/t/u-channel } S} \\ &- \underbrace{ \frac{3}{8M_{A_S}^2} |\lambda|^2 (3M_S^2 + M_{A_S}^2) \sin^2 2\beta \sin^2 \varphi_y }_{\text{s/t/u-channel } A_S} \end{split}$$

Matching Conditions

Quartic Coupling Matching (unbroken EW symmetry; $v_u, v_d \rightarrow 0$, $tan\beta = v_u/v_d = const.$, $v_s \neq 0$):

$$\lambda_{H}^{\mathrm{SM},\,\overline{\mathrm{MS}}}(Q_{\mathrm{match}}) = \lambda_{H}^{\mathrm{NMSSM},\,\overline{\mathrm{MS}}}(Q_{\mathrm{match}})$$

[Bagnaschi eal, 22] for real NMSSM our work: complex NMSSM

effective quartic coupling after subtracting the SM contributions:

 $\lambda_{\rm NMSSM}^{\rm DR}(Q_{\rm match}) = \lambda_{\rm NMSSM}^{\rm tree} + \Delta \lambda_{\rm NMSSM}^{1l} + \Delta \lambda_{\rm MSSM}^{2l}$

Remark: shift due to NMSSM calc. done in $\overline{\rm DR}\,$ and discarded SM contribution done in $\overline{\rm MS}\,$ taken into account

Loop corrected NMSSM masses and couplings from NMSSMCALC

NMSSMCALC

Calculator of One-Loop and $O(a_t a_s + (a_t + a_\lambda + a_\kappa)^2)$ Two-Loop Higgs Mass Corrections and of Higgs Decay Widths in the CP-conserving and the CP-violating NMSSM

Computation of the Loop-Corrected Effective Higgs Self-Couplings and the Loop-Corrected Higgs-to-Higgs Decays up to $O(a_t a_s + a_t^2)$

Computation of the muon anomalous magnetic moment and the electric dipole moment

New: Computation of the ϱ parameter up to O($\alpha + \alpha_t \alpha_s + (\alpha_t + \alpha_\lambda + \alpha_\varkappa)^2$)); W-mass prediction in the SM, at 1-loop NMSSM, 2-loop QCD NMSSM, 2-loop EW NMSSM

The program package NMSSMCALC calculates the one-loop and $O(\alpha_t \alpha_s + (\alpha_t + \alpha_\lambda + \alpha_\varkappa)^2)$ corrected Higgs boson masses and the Higgs decay widths and branching ratios within the CP-conserving and the CP-violating NMSSM.

The decay calculator is based on an extension of the program HDECAY 6.10 now.

The effective loop-corrected trilinear Higgs self-couplings and loop-corrected Higgs-to-Higgs decays are provided up to $O(\alpha_t \alpha_s + \alpha_t^2)$.

The program also provides the options to calculate the electron and muon anomalous magnetic moments and, in the CP-violating case, the electric dipole moments. The program provides the ϱ parameter up to O($\alpha + \alpha_t \alpha_s + (\alpha_t + \alpha_\lambda + \alpha_\chi)^2$); the W-mass prediction in the SM, at 1-loop NMSSM, 2-loop QCD NMSSM, 2-loop EW NMSSM.

[Baglio,Borschensky,Dao,Gabelmann,Gröber,Krause,Le,MM,Rzehak,Spira, Streicher,Walz]

Matching Conditions

Pole Mass Matching/"Hybrid" (broken EW symmetry, v«Msusy):

$$M_{h,\mathrm{SM}}^2 \stackrel{!}{=} M_{h,\mathrm{NMSSM}}^2$$

 $M_{h,X}^2 = m_{h,X}^2 - \hat{\Sigma}_{h,X}(M_{h,X}^2)$ with X = SM, NMSSM

 $m_{h,\rm SM}$ and $m_{h,\rm NMSSM}$ denote the running $\overline{\rm MS}$ and $\overline{\rm DR}$ masses of the SM(-like) Higgs states

Tree Level:
$$m_{h,\text{SM}}^2 = 2\lambda_{\text{SM}}^{\text{eff.}} v_{\text{SM}}^2 \stackrel{!}{=} m_{h,\text{NMSSM}}^2 \rightarrow \lambda_{\text{SM}}^{\text{eff.}} = \frac{m_{h,\text{NMSSM}}^2}{2v_{\text{NMSSM}}^2}$$

$$\textbf{use} \quad v_{\text{SM}}^2 = v_{\text{NMSSM}}^2 + \delta v^2 = v_{\text{NMSSM}}^2 \left(1 + \frac{\delta v^2}{v^2} \right) \quad \textbf{with} \quad \frac{\delta v^2}{v^2} = \left[\hat{\Sigma}'_{h,\text{NMSSM}}(0) - \hat{\Sigma}'_{h,\text{SM}}(0) \right] + \mathcal{O}(v^4/M_{\text{SUSY}}^4)$$

Dne-Loop Level:
$$\lambda_{\text{SM}}^{\text{eff.}} = \frac{1}{2v_{\text{SM}}^2} \left[m_{h,\text{NMSSM}}^2 - \hat{\Sigma}_{h,\text{NMSSM}} (m_{h,\text{NMSSM}}^2) + \hat{\Sigma}_{h,\text{SM}} (m_{h,\text{SM}}^2) \right]$$

with
$$\hat{\Sigma}_{h,X}(m_{h,X}^2) = \hat{\Sigma}_{h,X}(0) + m_{h,X}^2 \hat{\Sigma}'_{h,X}(0) + \mathcal{O}(m_{h,X}^4)$$
 and $v_{SM} \rightarrow v_{NMSSM}$ so that Leading terms in expansion in v/M_{SUSY}

$$\lambda_{\rm SM}^{\rm eff.} = \frac{1}{2v_{\rm NMSSM}^2} \left[m_{h,\rm NMSSM}^2 - \Delta \hat{\Sigma}_h - 2m_{h,\rm NMSSM}^2 \Delta \hat{\Sigma}'_h \right] \quad \text{with} \quad \Delta \hat{\Sigma}_h^{(\prime)} \equiv \Sigma_{h,\rm NMSSM}^{(\prime)}(0) - \hat{\Sigma}_{h,\rm SM}^{(\prime)}(0) - \hat{\Sigma}_{h,\rm SM$$

e.g. [Athron eal, '16]

Schematic Procedure Implemented in NMSSMCALC

Red uncertainty band:

SM uncertainties:

- scheme uncertainty using either G_F or $\alpha_{QED}(m_Z)$ as input (estimates missing 2-loop EW corrections in the relation between Lagrangian MSbar and physical OS parameters)
- scheme and scale uncertainty: $M_{H^{OS}}-M_{H^{MSbar,pole}}(\mu_{ren})$ (estimates missing corrections in the relation $\lambda^{SM,MSbar}$ and $M_{h^{SM,OS}}$)
- Estimate missing corrections in the relation between $m_t^{MSbar}(M_t)$ and M_t^{OS} by in/excluding corrections of $O(\alpha_S^3)$ & higher [mr by Kniehl,Pikelner,Veretin; SMDR by Martin,Robertson]

SUSY uncertainties:

- scale uncertainty by varying Q_{match}: estimates missing 2-loop corrections in the matching condition
- for the quartic coupling matching: difference between the quartic-coupling and pole-mass matching as an estimate of the v/M_{SUSY} terms that are not included in the quartic-coupling matching

	$\tan \beta$	λ	κ	M_1	M_2	M_3	A_0	A_{λ}	A_{κ}	$\mu_{eff.}$	$m_{\tilde{Q}_L}$	$m_{\tilde{t}_R}$
BP1	1.27	0.73	0.62	0.14	1.18	2.3	-0.39	0.06	-1.44	0.49	1.79	1.51

All parameters with mass dimension are given in units of TeV. All soft SUSY breaking trilinear couplings are set equal to A_0 , all soft SUSY breaking left-handed doublet and Right-handed singlet masses are set equal to $m_{\tilde{Q}L}$ and $m_{\tilde{T}R}$, respectively.

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, '21]

Possible for models w/ singlet-dominated (suppressed couplings to SM particles) and/or h_d-like (suppressed direct production) non-SM-like Higgs boson => NMSSM benchmark:

λ	κ	$A_{\lambda} \; [{ m GeV}]$	A_{κ} [GeV]	$\mu_{\mathrm{eff}} \; \mathrm{[GeV]}$	aneta
0.593	0.390	296	5.70	200	2.815
$m_{H^{\pm}} \; [{ m GeV}]$	$M_1 \; [{ m GeV}]$	$M_2 \; [{ m GeV}]$	$M_3 \; [\text{TeV}]$	$A_t \; [{ m GeV}]$	$A_b \; [{ m GeV}]$
505	989.204	510.544	2	-2064	-1246
$m_{ ilde{Q}_3}~[{ m GeV}]$	$m_{\tilde{t}_R} \ [\text{GeV}]$	$m_{\tilde{b}_R} ~[{ m GeV}]$	$A_{\tau} \; [\text{GeV}]$	$m_{\tilde{L}_3} ~[{ m GeV}]$	$m_{ ilde{ au}_R}$ [GeV]
1377	1207	3000	-1575.91	3000	3000

					1
	$m_{H_1} \; [{ m GeV}]$	$m_{H_2} \; [{ m GeV}]$	$m_{H_3} \; [{ m GeV}]$	$m_{A_1} { m [GeV]}$	$m_{A_2} \; [{ m GeV}]$
	127.78	253	518	116	508
	$\Gamma_{H_1}^{\text{tot}} [\text{GeV}]$	$\Gamma_{H_2}^{\rm tot} \; [{\rm GeV}]$	$\Gamma_{H_3}^{\rm tot} \; [{ m GeV}]$	$\Gamma_{A_1}^{ m tot} \ [{ m GeV}]$	$\Gamma_{A_2}^{\rm tot} [{\rm GeV}]$
	$4.264 \ 10^{-3}$	0.466	3.145	9.910^{-7}	4.750
singlet-like	h_{11}	h_{12}	h_{13}	h_{21}	h_{22}
H ₂	0.325	0.939	-0.112	0.234	0.034
	h_{23}	h_{31}	h_{32}	h_{33}	a_{11}
	0.971	0.916	-0.321	-0.209	-0.0063
	a_{21}	a_{13}	a_{23}		
	-0.0022	0.999	0.0067		

Di-Higgs Beats Single-Higgs

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, '21]

Possible for models w/ singlet-dominated (suppressed couplings to SM particles) and/or h_d-like (suppressed direct production) non-SM-like Higgs boson => NMSSM benchmark:

 H_2 is singlet-like: dominant decay channel into $A_1 A_1$

Single Higgs Production (4b final state)

$$\sigma^{\text{NNLO}}(H_2)_{4b} = \sigma^{\text{NNLO}}(H_2) \times \text{BR}(H_2 \to A_1 A_1) \times \text{BR}(A_1 \to b\bar{b})^2$$

= 13.54 × 0.887 × 0.704² fb = 5.95 fb.

Di-Higgs Production (6b final state)

 $\sigma^{\rm NLO}(H_1H_2) = 111 \text{ fb}$ $BR(H_1 \to b\bar{b}) = 0.539$

 $\sigma^{\text{NLO}}(H_1H_2) \times \text{BR}(H_1 \to b\bar{b}) \times \text{BR}(H_2 \to A_1A_1) = 53 \text{ fb}$

 $\sigma^{\rm NLO}(H_1H_2)_{6b} = 53 \times 0.704^2 \text{ fb} = 26 \text{ fb}$

+ Scans in parameter spaces of the models w/ ScannerS:

take into account all relevant theoretical and experimental constraints

+ limits from di-Higgs searches

4b: [ATLAS-CONF-Note-2021-030, ATLAS,1804.06174], WWγγ: [ATLAS,1807.08567] bbγγ: [ATLAS,1807.04873]; bbWW: [ATLAS,1811.04671, bbZZ: [CMS,2006.06391] bbττ: [ATLAS,1808.00336; ATLAS-CONF-Note-2021-035; ATLAS,2007.14811], 4W: [ATLAS,1811.11028]

+ Computation of Higgs pair production cxn:

HPAIR [Spira] for C2HDM [Gröber,MM,Spira,'17], NMSSM [Dao,MM,Streicher,Walz,'13], 2HDM [MM], N2HDM [MM]: Born-improved HTL cxn; K-factors 1.4-2.1

+ Scatter plots:

LO cxn times factor 2 (to approx. account for NLO QCD), benchmark points include NLO QCD calculated w/ HPAIR

Allowed values of the trilinear Higgs self-coupling

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, '21]

	R2H	IDM	C2H	IDM
	$y_{t,H_{ m SM}}^{ m R2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m R2HDM}/\lambda_{3H}$	$y_{t,H_{ m SM}}^{ m C2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m C2HDM}/\lambda_{3H}$
light I	0.8931.069	-0.0961.076	0.8981.035	-0.0351.227
$\mathrm{medium}\ \mathrm{I}$	n.a.	n.a.	0.8891.028	0.2511.172
heavy I	0.9461.054	0.4811.026	0.8931.019	0.6711.229
light II	0.9511.040	0.6920.999	0.9561.040	0.0960.999
medium II	n.a.	n.a.	_	—
heavy II	—	—	_	—
	N2H	IDM	NM	SSM
	$N2H$ $y_{t,H_{ m SM}}^{ m N2HDM}/y_{t,H}$	${ m IDM} \ \lambda_{3H_{ m SM}}^{ m N2HDM}/\lambda_{3H}$	$\frac{\rm NMS}{y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}}$	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H}$
light I	N2H $y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}$ 0.8951.079	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H} \\ \text{-}1.1601.004 \end{array}$	$\frac{\text{NMS}}{y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H}}$ n.a.	$\begin{array}{c} \text{SSM} \\ \lambda_{3H_{\text{SM}}}^{\text{NMSSM}}/\lambda_{3H} \\ \text{n.a.} \end{array}$
light I medium I	$\frac{\text{N2H}}{y_{t,H_{\text{SM}}}^{\text{N2HDM}}/y_{t,H}}$ 0.8951.079 0.8741.049	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \end{array}$	$\begin{array}{c c} & \text{NMS} \\ & y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \end{array}$	$\begin{array}{c} \mathrm{SSM} & & \ \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H} & \ & \mathrm{n.a.} & \ & \mathrm{n.a.} & \end{array}$
light I medium I heavy I	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\end{array}$	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168 0.7701.112	$\begin{array}{c c} \text{NMS} \\ y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H} \\ \text{n.a.} \\ \text{n.a.} \\ \text{n.a.} \\ \text{n.a.} \end{array}$	$\begin{array}{c} \mathrm{SSM} & & \ \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H} & \ & \mathrm{n.a.} & \end{array}$
light I medium I heavy I light II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\end{array}$	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \\ 0.7701.112 \\ \text{-}0.6080.999 \end{array}$	$\begin{array}{c c} & \text{NMS} \\ & y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & 0.8261.003 \end{array}$	$\begin{array}{c} \mathrm{SSM} \\ \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H} \\ \mathrm{n.a.} \\ \mathrm{n.a.} \\ \mathrm{n.a.} \\ 0.0240.747 \end{array}$
light I medium I heavy I light II medium II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\\ 0.9421.029\end{array}$	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \\ 0.7701.112 \\ \text{-}0.6080.999 \\ 0.6130.994 \end{array}$	$\begin{array}{c c} & \text{NMS} \\ \hline y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & 0.8261.003 \\ & 0.9161.000 \end{array}$	SSM $\lambda_{3H_{\rm SM}}^{\rm NMSSM}/\lambda_{3H}$ n.a. n.a. 0.0240.747 -0.5020.666

Allowed values of the trilinear Higgs self-coupling

		[Abouabid,Arh	rib,Azevedo,El F	Falaki,Ferreira,N
	R2H	IDM	C2H	IDM
	$y_{t,H_{ m SM}}^{ m R2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m R2HDM}/\lambda_{3H}$	$y_{t,H_{ m SM}}^{ m C2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m C2HDM}/\lambda_{3H}$
light I	0.8931.069	-0.0961.076	0.8981.035	-0.0351.227
medium I	n.a.	n.a.	0.8891.028	0.2511.172
heavy I	0.9461.054	0.4811.026	0.8931.019	0.6711.229
light II	0.9511.040	0.6920.999	0.9561.040	0.0960.999
medium II	n.a.	n.a.	_	
heavy II	_	—	_	_
	N2H	IDM	NM	SSM
	$N2H$ $y_{t,H_{ m SM}}^{ m N2HDM}/y_{t,H}$	$\mathrm{IDM} \ \lambda^{\mathrm{N2HDM}}_{3H_{\mathrm{SM}}}/\lambda_{3H}$	$\frac{\text{NMS}}{y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H}}$	${ m SSM}\ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H}$
light I	N2H $y_{t,H_{\rm SM}}^{ m N2HDM}/y_{t,H}$ 0.8951.079	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-1.1601.004} \end{array}$	$\frac{\text{NMS}}{y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H}}$ n.a.	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.}$
light I medium I	N2H $y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}$ 0.8951.079 0.8741.049	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168	$NMS y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a. n.a.	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.} \ { m n.a.}$
light I medium I heavy I	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\end{array}$	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168 0.7701.112	$\frac{\text{NMS}}{y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H}}$ n.a. n.a. n.a.	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.} \ { m n.a.} \ { m n.a.} \ { m n.a.} \ { m n.a.}$
light I medium I heavy I light II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\end{array}$	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \\ 0.7701.112 \\ \text{-}0.6080.999 \end{array}$	$\begin{array}{c c} & \text{NMS} \\ & y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & 0.8261.003 \end{array}$	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.} \ { m 0.0240.747}$
light I medium I heavy I light II medium II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\\ 0.9421.029\end{array}$	IDM $\lambda_{3H_{SM}}^{N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168 0.7701.112 -0.6080.999 0.6130.994	$\begin{array}{c c} & \text{NMS} \\ & y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & 0.8261.003 \\ & 0.9161.000 \end{array}$	SSM $\lambda_{3H_{\rm SM}}^{\rm NMSSM}/\lambda_{3H}$ n.a. n.a. 0.0240.747 -0.5020.666

some models: λ_{HHH} compatible w/ zero still possible

