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What 1s inflation? i
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ds®> = —dt* + a@®)*dr* + r’dQ* with a>0, d>0

Possible pre-inflationary phases:
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often requires new physics




Inflating from the “very beginning” (H;, # 0) :

a(t)

a finite initial time #;,; — curvature singularity

(R, R"and the Kretschmann scalar)
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Unclear what happens as
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Borde-Guth-Vilenkin theorem 4.4
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Many inflating spacetimes are likely to violate the weak energy condition, a key assumption of
singularity theorems. Here we offer a simple kinematical argument, requiring(no energy condition)that

a cosmological model which is inflating—or just(expanding sufficiently fast?ust%emcomprgtan
(" null and timelike past Mirections. Specifically, we obtain a bound on the integral of the Hubble

parameter over a past-directed timelike or null geodesic. Thus inflationary models require physics
other than inflation tqfdescribe the past boundarﬁf the inflating region of spacetime.




Proof of BGV (for null in flat FLRW): I.jl
ds? = — dt* + a(®)*(dr? + r?dQ?) oMM NS

Consider an affine parameter A of a null geodesic in FLRW and
some reference time 7,

a(t
dA = L)dt
Ay
dna A5 a;
= =>[ HA)dl=1-—<1 for 0 <a; <a;
(1) 1
— H, (1) = [ HA)d <
At) — A1) ), Aty) — A1)
. 1
letceR>01f Vi, <t,, 0<c <H,() then A@)—-Af) < —
C

The past geodesics have a finite affine length = Geodesic Incompleteness

Does it always imply some kind of singularity?



Coordinate singularities

Roughly, a spacetime contains a coordinate singularity when a
defining set of coordinates fails to capture all the geometry of the
spacetime, and another set of coordinates exposes this geometry.
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Flat dS:
ds®> = — dt* + e¥(dr* + r’dQ?)

Extendible

» Closed dS

ds® = — dr* + cosh*(1)dQf;

Conformal dS

1
2 _ a2 2
ds? = ——(=dT* + Q%)

Flat de Sitter spacetimes

conformally embed into the
Einstein static universe
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But Inflation is “‘quasi de Sitter” not exact de Sitter! H
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So what if Inflation is close enough to dS?

a(t) = et + o(e?)

Ina(t) = ht + o(ht)



“Eddington-Finkelstein coordinates for quasi dS”’

Fix any f € (—o0,1,,,) then define conformal time to be
Lo df
n(t) = — J —
; alr)

then introduce new coordinates (4, v) as functions of (¢, r):

A(D) = [ dfa(f) and v(t,r) = n@) +r,

(4 1s the affine parameter of null geodesics, which are characterized by v = constant)

Yoshida & Quintin 2018



the coordinates (4, v) are a diffeomorphism from (—o0, 7., ) X (0,00) onto

U:={@4,v)| 1€ (0,4, andv € (7(2),0)}.

ds’> = —2dAdv + a(A)*dv? + a(A)*(v — n(1))*dQ?

for dS:
ds’> ==2dAldv+22dvV?+ W+ 1)%dQ*, a=1 >0

a(t) "= " + o(e™)
For o — a— 0 and a(t)n(t) > —1/h as t > — 0.
1(1) 1——co
Hy = L s,
a(t)

— (CY extendable
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H

then a continuous extension (M, ,,, g,.,) of (M, g) is given by T

M, =MUM,,, M_:={Av)|i<0andveR}xS?

and

[ —2dX\dv + a(N)3dv? + a(N)?(v — n(N))2dQ? on M
Jext = 1 —2dA\dv + h=2dQ2 on Mx<o .

Generally a — 0, 5 — —o0, 1— 0" ast— — oo and c* extendibility of the metric
requires

a2, a’n, a*n* € C*

H
if — converges to a finite limit as t - — oo, then J C? extension

a2
—> extension of geodesics
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Toy example:
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) . a(t
a(f) = e' + sin*(e e = lim “n =1 = 3 CY extension

—>—00 €t

a
But / = — does not have a limitas t - — ool = curvature singularity
a

coordinate singularities and curvature singularities are not mutually exclusive

(L(t) _ eht + O(eht) H-

H—1 . . .
— if — converges to a finite limit as
a

t - — o0, then 3 C? extension
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<
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extension of geodesics

-——
Ina(t) = ht + o(ht)
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Conformal embeddings of quasi-de Sitter spacetimes H
iIltO the Einstein static llIliVGI'SC FEETE INSTITUTE

Suppose@(t) =e" 4+ o(e")or Hit) > hast —» — oo) for
some h € R, then

Flat FLRW spacetime (M, g): M = (—o00,1,,,) X R3
g =—di’ + a(t)zh[E
TExtend
Embed l g = a)zg

FlatdS (M,2): M = RxR> and § =—di>+ e hg,
Embed l §=0% TExtend
The Einstein static (1\7 ,2): M=RxS® and g =—dT)* + hgs, = 3 C 0 conformal emb.

existence of C* extendibility similar to before

the extension is different: closed (global) de Sitter



The cosmological constant appears as an initial i
condition T LT

Proposition (G.G., E. Ling, J. Quintin '23)

Under appropriate assumptions of the scale factor, a k = 0 FLRW
spacetime is past-asymptotically de Sitter if and only if

Beyond homogeneity and isotropy

Let (1\7 ,2) be a C conformal extension of (M, g) with conformal factor Q such that
M = Ig(@, M) for some point © € d; M and

* (M, g) solves the Einstein equations with a perfect fluid (u, p, p)
* Integral curves of u have past endpoint ©® within M. Moreover, the vector field along each

integral curve of Eu extends continuously to a g-timelike vector at O .

« p and p and QzRng extend continuously to M U {O}. QzRicgis the Ricci tensor for (M, g).

« (M, 3) is strongly causal at 0.
Then the continuous extensions of p and p satisfy p = — p at O.




Conclusion

» Geometrical formulation of Inflationary spacetime “close enough” to
dS in the asymptotic past.

» Theorems on asymptotic conditions to guarantee the extendibility of
Inflationary backgrounds in the past.

* Found evidence even beyond FLRW, A appears as an initial condition



