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Introduction 2 / 20

Di-Higgs production is a key process for Standard Model and Beyond-the-SM physics

Discovery of non-resonant HH production would establish the shape of the Higgs potential and tests 
an important prediction of the SM by measuring λHHH

SM predicts κλ =1 

Higgs potential
V(H)

Gluon fusion:

The Box and Triangle diagrams interfere destructively.
SM HH cross section at 13 TeV is tiny: σ(gg→HH) = 31.1 fb
For comparison: σ(gg→H) = 48.68 pb

In case of deviations from the SM (κλ = 1), the HH cross 
section increases considerably (also mHH shape changes).

→ Can already now establish constraints on that parameter κλ

Triangle

Box
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Di-Higgs production is a key process for Standard Model and Beyond-the-SM physics

Discovery of non-resonant HH production would establish the shape of the Higgs potential and tests 
an important prediction of the SM by measuring λHHH Higgs potential

V(H)

Vector boson fusion:

HHH VVH

Cross section for non-resonant 
VBF (13 TeV): 1.73 fb

VBF production is sensitive to 
κ2V coupling

VVHH
SM: κ2V =1 
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Searches for resonant production of Di-Higgs could establish the presence of new particles 

Limits on the production of these resonances can be used to constrain BSM model parameters

Heavy scalar X → HH, with a negligible 
decay width, could e.g. be a heavy Higgs in 
the MSSM

Spin-2 gravitons G → HH, as predicted by 
the bulkRandall-Sundrum model (with 
k/MPl=1)

New: Narrow width scalar X → SH
Can have larger rates than X → HH in some 
models, e.g. TRSM, 2HDM+S, NMSSM, …
for some parameter values.

Benchmark signal models:

X
S

H
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• Best non-resonant limit in previous round of publications (4.7xSM obs, 3.7 exp) 2209.10910 

• New: Better MVA classifier and considering VBF production (in addition to ggF)
• Channels: τhadτhad, τlepτhad (single lepton triger), τlepτhad (lepton+tau trigger) 
• In each channel: BDTs to split into three categories: VBF, low-mHH, high-mHH (>350 GeV)
• Another BDTs then trained in each category to discriminate signal and background

(trained on κλ=10 for the low-mHH cateorgy, κλ =1 elsewhere)

New! 2404.12660 

https://arxiv.org/abs/2209.10910
https://arxiv.org/abs/2404.12660
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95% CL limit on µHH = 5.9 (observed) and 3.3 (expected) (ggF and VBF combined)

Best fit: µ = 2.2 ± 1.7

Limit on ggF: 5.8 (observed) and 3.4 (expected), VBF: 91 (observed) and 73 (expected)

Observed:
-3.1 < κλ < 9.0
Expected:
-2.5 < κλ < 9.3

Observed:
-0.5 < κ2V < 2.7
Expected:
-0.2 < κ2V < 2.4

Sensitivity is most-limited by data statistics.
Largest systematics: QCD scales and top-quark mass scheme, MC statistical uncertainties.

New! 2404.12660 

https://arxiv.org/abs/2404.12660


Non-resonant HH → bbbb 7 / 20

• Largest BR (~0.3) of all DiHiggs channels, but large backgrounds that are difficult to estimate
• Triggers: 2b+1j (b-jet ET>55 GeV, extra jet ET>100-150 GeV)  or 2b+2j (jet ET > 35 GeV)
• 4 resolved b-jets → 3 ways to pair them to two Higgs boson candidates.

Simple solution gave best efficiency: Highest pT-pair must have lowest ∆Rbb separation
• VBF selection: Two additional foward jets and mjj > 1 TeV and |∆ηjj| > 3
• Background (~90% multijet) estimated from 2b data (signal-depleted), reweighted to resemble 

4b data using two control regions

2301.03212 

m4b is the final discriminant:

https://arxiv.org/abs/2301.03212
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Observed:
-3.5 < κλ < 11.3
Expected:
-5.4 < κλ < 11.4

Observed:
0.0 < κ2V < 2.1
Expected:
-0.1 < κ2V < 2.1

95% CL limits on SM HH: 

Better than bbττ for κ2V
But, can do even better…

2301.03212 

https://arxiv.org/abs/2301.03212
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• VBF events with non-SM couplings tend to produce energetic boosted HH

• Each Higgs boson is reconstructed as a single large radius jet
• Leading jet pT > 450 GeV (sub-leading > 250 GeV)

• Double b-tagger based on deep neural network (60% efficiency working point)

• Background estimated from events where only one
large-radius jets is double b-tagged („1Pass“)

• BDT trained to discriminate κ2V=0 signal vs. background

Boosted VBF HH → bbbb New! ATLAS-CONF-2024-003

http://cds.cern.ch/record/2892521


10 / 20Boosted VBF HH → bbbb New!

• Boosted analysis is combined with the resolved one to maximize the sensitivity

• Allowed parameter ranges: Observed: 0.55 < κ2V < 1.49. Expected: 0.37 < κ2V < 1.67

• κ2V=0 excluded with 3.8σ. Best fit (κλ=1 fixed): κ2V = 1.01+ 0.23 – 0.22

• Analysis also used to set limits on resonant signals VBF X → HH → 4b

ATLAS-CONF-2024-003

http://cds.cern.ch/record/2892521


Non-resonant HH → Multileptons
• Combining several subleading channels with small BR: bbZZ, 4V, VVττ, γγVV, γγττ   (V=W/Z)

• ggF and VBF both considered (but not separated)

• Nine categories based on number of light leptons
(e/µ), hadronic taus and photons

• BDTs in 8 categories used to discriminate SM HH
from the backgrounds (γγ+2(l,τ) has too little statistics)

• Final discriminant is BDT score or mγγ distribution

11 / 20ATLAS-CONF-2024-005

New!

http://cds.cern.ch/record/2894145
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Combined limit on SM HH production: 18 (observed), 11 (expected)

ATLAS-CONF-2024-005

New!

Sensitivity limited by
data statistics

http://cds.cern.ch/record/2894145


Non-resonant HH → bbγγ 13 / 202310.12301 New!

Observed:
-1.4 < κλ < 6.9
Expected:
-2.8 < κλ < 7.8

Observed:
-0.5 < κ2V < 2.7
Expected:
-1.1 < κ2V < 3.3

• Re-analysis of Run 2 dataset. ggF and VBF both considered.
• Better classification of events, higher sensitivity to κλ and κ2V

• Events split into high-mHH and low-mHH

• In each category, BDTs trained to classify events into 3 or 4
regions with different S/B values

• Final discriminant: Diphoton mass. No excess found!
• Limit on SM HH (VBF+ggF): 4 (observed), 5.0 (expected)

(previously: 4.2 (obs), 5.7 (exp) 2112.11876)

Statistics limited!

https://arxiv.org/abs/2310.12301
https://arxiv.org/abs/2112.11876


CMS Resonant X → YH → bbγγ 14 / 20

• X mass range: 300 -  1000 GeV, Y mass range: 90 – 800 GeV (with Y → bb)

• Events split into 6 mX-mY domains (ensuring mX > mY):
mX ( < 500, 500 - 700, > 700 ) GeV and mY ( < 300, 300 - 500, > 500 ) GeV

• BDT – trained in each mass domain – used to classify events into 3 categories each to 
optimize S/B sensitivity → in total 18 categories.

2310.01643 

CAT 0CAT 1CAT 2

https://arxiv.org/abs/2310.01643


CMS Resonant X → YH → bbγγ 15 / 202310.01643 

Final discriminant: 2D fit to mγγ and mjj

Excess at (650, 90) GeV with 3.8σ local
and 2.8σ global significance

https://arxiv.org/abs/2310.01643


Resonant X → SH → bbγγ 16 / 20

• X mass range: 170 – 1000 GeV
S mass range: 15 – 500 GeV

• S → bb, H (125 GeV) → γγ

• If  mX >> mS + mH → boosted regime.
If boosted, reconstruct only 1 small-radius b-jet.
If resolved, require two b-tagged jets.

• Parametrized neural networks (PNN) used for signal - 
background discrimination, trained in each SR

• PNN score is the final discriminant

• Background estimation:
• Sherpa for γγ+jets non-resonant background 

shape, normalized to data sideband in mγγ

• H and SM HH resonant backgrounds from MC

2404.12915 New!

https://arxiv.org/abs/2404.12915


Resonant X → SH → bbγγ 17 / 20

• ATLAS sees no excess at (650, 90) GeV (CMS excess)
• ATLAS would have seen this excess with 2.7σ

• Largest ATLAS excess at (575, 200) GeV, 3.5σ local, 2σ global 

2404.12915 New!

https://arxiv.org/abs/2404.12915


b-jet 1

b-jet 2

γ 1

γ 2

mγγ = 127 GeV
mbb=199 GeV
mbbγγ=570 GeV

X → SH → bbγγ candidate event

18 / 20



Resonant X → HH Combination 19 / 20

Largest excess at 1.1 TeV driven by bbττ 
(2209.10910): 3.3σ local, 2.1σ global

Low tanβ region in 2HDM/MSSM excluded

New!2311.15956 

https://arxiv.org/abs/2209.10910
https://arxiv.org/abs/2311.15956
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• Many new results based on the Run 2 dataset presented here

• κ2V constrained considerably through boosted 4b channel

• CMS excess at (650, 90) GeV in bbγγ not confirmed by ATLAS

• Revisiting analysis strategies and advances in ML techniques
increased the sensitivity to non-resonant HH

• All searches are limited by data statistics

• Analyses with Run 3 data are ongoing!



Backup



Non-resonant combination before the re-optimizations in bbττ and bbγγ

2211.01216 

https://arxiv.org/abs/2211.01216


mHH shape on truth level



CMS X → HH → bbγγ



Non-resonant HH → bb+ll+MET 2310.11286 

• HH → bb+WW/ZZ/ττ

• ggF and VBF considered

• Deep Neural Network for event classification,
separate DNNs for ggF and VBF topologies

• Limit on SM HH:
9.7 (observed), 16.2 (expected)

• κλ: [−6.2, 13.3] (observed),
 [-8.1, 15.5] (expected)

• κ2V: [−0.17, 2.4] (observed)
 [-0.51, 2.7] (expected)

https://arxiv.org/abs/2310.11286


2210.05415 Vhh → bb+ll+MET

Non-Resonant:

hh → 4b
V decays leptonically (charged or neutral)

Limit on SM HH:
183 observed, 87 expected

https://arxiv.org/abs/2210.05415


2210.05415 VHH → bb+ll+MET

Resonant:

Excess at (420, 320) GeV
3.8σ local, 2.8σ global

https://arxiv.org/abs/2210.05415
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