

ATLAS^{* CMS} Searches for DiHiggs

Jana Schaarschmidt (University of Washington)

CATCH22+2 Dublin, 02.05.2024

Introduction

Di-Higgs production is a key process for Standard Model and Beyond-the-SM physics

Discovery of **non-resonant HH production** would establish the shape of the Higgs potential and tests an important prediction of the SM by measuring λ_{HHH} . Higgs potential

In case of deviations from the SM (κ_{λ} = 1), the HH cross section increases considerably (also m_{HH} shape changes).

 \rightarrow Can already now establish constraints on that parameter κ_{λ}

Box

H

t/b

 K_t

8 6666666

Introduction

Di-Higgs production is a key process for Standard Model and Beyond-the-SM physics

Discovery of **non-resonant HH production** would establish the shape of the Higgs potential and tests an important prediction of the SM by measuring λ_{HHH} . Higgs potential

Cross section for non-resonant VBF (13 TeV): 1.73 fb

VBF production is sensitive to κ_{2V} coupling

 $\kappa_{2V} = g_{HHVV} / g_{HHVV}^{SM}$

SM: κ_{2V} =1

Introduction

Searches for resonant production of Di-Higgs could establish the presence of new particles

Limits on the production of these resonances can be used to constrain BSM model parameters

Benchmark signal models:

Heavy scalar $X \rightarrow HH$, with a negligible decay width, could e.g. be a heavy Higgs in the MSSM

Spin-2 gravitons G \rightarrow **HH**, as predicted by the bulkRandall-Sundrum model (with $k/M_{Pl}=1$)

New: Narrow width scalar $X \rightarrow SH$

Can have larger rates than $X \rightarrow HH$ in some models, e.g. TRSM, 2HDM+S, NMSSM, ... for some parameter values.

Non-resonant HH \rightarrow **bb** $\tau\tau$

New!

- Best non-resonant limit in previous round of publications (4.7xSM obs, 3.7 exp) 2209.10910
- New: Better MVA classifier and considering VBF production (in addition to ggF)
- Channels: τ_{had}τ_{had}, τ_{lep}τ_{had} (single lepton triger), τ_{lep}τ_{had} (lepton+tau trigger)
- In each channel: BDTs to split into three categories: VBF, low-mHH, high-mHH (>350 GeV)
- Another BDTs then trained in each category to discriminate signal and background (trained on κ_{λ} =10 for the low-mHH cateorgy, κ_{λ} =1 elsewhere)

Non-resonant HH \rightarrow **bb** $\tau\tau$

- 95% CL limit on μ_{HH} = 5.9 (observed) and 3.3 (expected) (ggF and VBF combined) Best fit: $\hat{\mu}$ = 2.2 ± 1.7
- Limit on ggF: 5.8 (observed) and 3.4 (expected), VBF: 91 (observed) and 73 (expected)
- Sensitivity is most-limited by data statistics.
- Largest systematics: QCD scales and top-quark mass scheme, MC statistical uncertainties.

Non-resonant HH \rightarrow **bbbb**

<u>2301.03212</u>

7 / 20

- Largest BR (~0.3) of all DiHiggs channels, but large backgrounds that are difficult to estimate
- Triggers: **2b+1j** (b-jet $E_T > 55$ GeV, extra jet $E_T > 100-150$ GeV) or **2b+2j** (jet $E_T > 35$ GeV)
- **4 resolved b-jets** \rightarrow 3 ways to pair them to two Higgs boson candidates. Simple solution gave best efficiency: Highest pT-pair must have lowest ΔR_{bb} separation
- VBF selection: Two additional foward jets and $m_{ii} > 1$ TeV and $|\Delta \eta_{ii}| > 3$
- Background (~90% multijet) estimated from 2b data (signal-depleted), reweighted to resemble 4b data using two control regions
 m_{4b} is the final discriminant:

Non-resonant HH → **bbbb**

95% CL limits on SM HH:

	Observed Limit	-2σ	-1σ	Expected Limit	+1 σ	+2 σ
$\mu_{ m ggF}$	5.5	4.4	5.9	8.2	12.4	19.6
$\mu_{ m VBF}$	130	70	100	130	190	280
$\mu_{\rm ggF+VBF}$	5.4	4.3	5.8	8.1	12.2	19.1

2301.03212

Observed: -3.5 < κ_{λ} < 11.3 Expected: -5.4 < κ_{λ} < 11.4

Observed: $0.0 < \kappa_{2V} < 2.1$ Expected: $-0.1 < \kappa_{2V} < 2.1$

Better than $bb\tau\tau$ for κ_{2V} But, can do even better...

Boosted VBF HH → **bbbb**

- VBF events with non-SM couplings tend to produce energetic boosted HH
- Each Higgs boson is reconstructed as a single large radius jet
- Leading jet pT > 450 GeV (sub-leading > 250 GeV)
- Double b-tagger based on deep neural network (60% efficiency working point)
- Background estimated from events where only one large-radius jets is double b-tagged ("1Pass")
- BDT trained to discriminate κ_{2V} =0 signal vs. background

New!

Data

- 500 \times SM ggF

- 1000 × SM VBF - κ_{2V} = 0 VBF

Background

ATLAS-CONF-2024-003

ATLAS Preliminary

 $14 - \sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

VBF HH bbbb

SR

Post-Fit

12

9 / 20

Boosted VBF HH → **bbbb**

- Boosted analysis is combined with the resolved one to maximize the sensitivity
- Allowed parameter ranges: Observed: 0.55 < κ_{2V} < 1.49. Expected: 0.37 < κ_{2V} < 1.67

New!

10/20

ATLAS-CONF-2024-003

- κ_{2V} =0 excluded with 3.8 σ . Best fit (κ_{λ} =1 fixed): κ_{2V} = 1.01+ 0.23 0.22
- Analysis also used to set limits on resonant signals VBF X \rightarrow HH \rightarrow 4b

Non-resonant HH \rightarrow **Multileptons** 11 / 20 ATLAS-CONF-2024-005

2

0

γγ+τ

0

l+2τ

γγ+2(ℓ,τ)

 $\gamma\gamma + \ell$

2*ℓ*+2τ

2ℓSC+τ

2

2_ℓSC

New!

4ℓ+bb

4

Legend

ML

channels

γγ+ML channels

3ℓ

3

- Combining several subleading channels with small BR: **bbZZ**, **4V**, **VV**_{TT}, $\gamma\gamma$ **VV**, $\gamma\gamma$ TT (V=W/Z)
- **ggF and VBF** both considered (but not separated)
- **Nine categories** based on number of light leptons ullet (e/μ) , hadronic taus and photons
- Number of hadronic taus **BDTs** in 8 categories used to discriminate SM HH ulletfrom the backgrounds ($\gamma\gamma$ +2(I, τ) has too little statistics)
- Final discriminant is **BDT score** or $m_{\gamma\gamma}$ distribution

Non-resonant HH \rightarrow Multileptons ATLAS-CONF-2024-005

Combined limit on SM HH production: 18 (observed), 11 (expected)

Sensitivity limited by data statistics

95% CL upper limit on HH signal strength μ_{HH}

New!

Non-resonant HH \rightarrow **bb** $\gamma\gamma$

- Re-analysis of Run 2 dataset. ggF and VBF both considered.
- Better classification of events, higher sensitivity to κ_{λ} and κ_{2V}
- Events split into high-m_{HH} and low-m_{HH}
- In each category, BDTs trained to classify events into 3 or 4 regions with different S/B values
- Final discriminant: Diphoton mass. No excess found!
- Limit on SM HH (VBF+ggF): 4 (observed), 5.0 (expected) (previously: 4.2 (obs), 5.7 (exp) <u>2112.11876</u>)

2310.12301

13/20 New. 0.04 ATLAS 10¹ HH ggF, $\kappa_{\lambda}=10$ $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ Event SM HH VBF HH → bbvv HH VBF, κ_λ=10 High mass region HH VBF, κ_{2V}=3 Fraction of 10^{0} Single H yy+jets Data sidebands 10-1 0.6 0.8 04 BDT score

 κ_{λ}

CMS Resonant X \rightarrow **YH** \rightarrow **bb** $\gamma\gamma$

• X mass range: 300 - 1000 GeV, Y mass range: 90 – 800 GeV (with $Y \rightarrow bb$)

- Events split into 6 m_X - m_Y domains (ensuring $m_X > m_Y$): mX (< 500, 500 - 700, > 700) GeV and m_Y (< 300, 300 - 500, > 500) GeV
- BDT trained in each mass domain used to classify events into 3 categories each to optimize S/B sensitivity → in total 18 categories.

CMS Resonant X \rightarrow **YH** \rightarrow **bb** $\gamma\gamma$

138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) CMS 138 fb⁻¹ (13 TeV) CMS CMS GeV (Spin-0) $X \rightarrow HY \rightarrow \gamma\gamma b\overline{b}$ (Spin-0) $X \rightarrow HY \rightarrow \gamma\gamma b\overline{b}$ CAT 0 CAT 0 Data m_x = 300 GeV m_v = 650 GeV m_v = 350 GeV Data $m_x = 650 \text{ GeV}$ S m_u = 125 GeV ----- S+B fit ----- S+B fit mີ = 125 GeV m_v = 90 GeV ⁻ m_∨ = 90 GeV Events / B component B component [f] ±1σ ±1σ ±2 σ ±2 σ 5Ē (ddγγ m_x = 450 GeV m_x = 500 GeV 10-10 F B component subtracted m_x = 600 GeV m_x = 650 GeV B component subtracted • X 250 300 350 400 100 150 200 250 300 350 400 100 200 170 180 120 130 140 150 160 В m_x = 800 GeV m_v = 750 GeV m_{vv} [GeV] 160 180 80 100 140 120 m_{ii} [GeV] $\overline{\times}$

Final discriminant: 2D fit to m_{vv} and m_{ii}

Events

Excess at (650, 90) GeV with 3.8σ local and 2.8 σ global significance

2310.01643

15/20

Resonant X \rightarrow **SH** \rightarrow **bb** $\gamma\gamma$

- X mass range: 170 1000 GeV
 S mass range: 15 500 GeV
- S \rightarrow bb, H (125 GeV) $\rightarrow \gamma\gamma$
- If m_X >> m_S + m_H → boosted regime.
 If boosted, reconstruct only 1 small-radius b-jet.
 If resolved, require two b-tagged jets.
- Parametrized neural networks (PNN) used for signal background discrimination, trained in each SR
- PNN score is the final discriminant
- Background estimation:
 - Sherpa for $\gamma\gamma$ +jets non-resonant background shape, normalized to data sideband in m_{$\gamma\gamma$}
 - H and SM HH resonant backgrounds from MC

Resonant X \rightarrow **SH** \rightarrow **bb** $\gamma\gamma$

2404.12915

New!

100

17 / 20

bēvv) [fb]

m_s [GeV] [GeV] ک Observed significance 500 ATLAS 500 ATLAS $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $X \rightarrow SH \rightarrow b\bar{b}\gamma\gamma$ $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ 95% CL expected upper limi $X \rightarrow SH \rightarrow b\bar{b}\gamma\gamma$ 400 300 200 300 200 400 200 [GeV] 500 ATLAS $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ ŋ 100 $X \rightarrow SH \rightarrow b\bar{b}\gamma\gamma$ 0 95% CL observed upper lim 300 1000 200 400 600 800 m_X [GeV] 200

- ATLAS sees no excess at (650, 90) GeV (CMS excess)
- ATLAS would have seen this excess with 2.7σ
- Largest ATLAS excess at (575, 200) GeV, 3.5 σ local, 2 σ global

b-jet 1

$X \rightarrow SH \rightarrow bb\gamma\gamma$ candidate event

γ2

 $m_{\gamma\gamma} = 127 \text{ GeV}$ m_{bb}=199 GeV $m_{bb\gamma\gamma}$ =570 GeV

b-jet 2

18 / 20

Resonant X \rightarrow **HH Combination**

Largest excess at 1.1 TeV driven by $bb\tau\tau$ (2209.10910): 3.3 σ local, 2.1 σ global

Low tan β region in 2HDM/MSSM excluded

2311.15956

New

Conclusions

- Many new results based on the Run 2 dataset presented here
- κ_{2V} constrained considerably through boosted 4b channel
- CMS excess at (650, 90) GeV in bbγγ not confirmed by ATLAS
- Revisiting analysis strategies and advances in ML techniques increased the sensitivity to non-resonant HH
- All searches are limited by data statistics
- Analyses with Run 3 data are ongoing!

Backup

Non-resonant combination before the re-optimizations in $bb\tau\tau$ and $bb\gamma\gamma$

m_{HH} shape on truth level

$\textbf{CMS X} \rightarrow \textbf{HH} \rightarrow \textbf{bb}\gamma\gamma$

Non-resonant HH \rightarrow bb+II+MET

- $HH \rightarrow bb+WW/ZZ/\tau\tau$
- ggF and VBF considered
- Deep Neural Network for event classification, separate DNNs for ggF and VBF topologies

Limit on SM HH: 9.7 (observed), 16.2 (expected)

- κ_λ: [-6.2, 13.3] (observed),
 [-8.1, 15.5] (expected)
- κ_{2V}: [-0.17, 2.4] (observed)
 [-0.51, 2.7] (expected)

$VHH \rightarrow bb+II+MET$

500

600

700

800

900

m_H [GeV]

1000

-Observed

-- Expected

Expected $\pm 1\sigma$

Expected $\pm 2\sigma$

