

FREEZE-IN AT STRONGER COUPLING

And the highest temperature of the Universe

Francesco Costa

University of Goettingen, Institute for Theoretical Physics

Collaborators: G. Arcadi, C. Cosme, L. Covi, A. Goudelis, O. Lebedev PRD 109, 075038 (2024), 2402.04743, 2405.XXXXX

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA

CONCLUSIONS

FREEZE-IN AT STRONG COUPLING WITH THE HIGGS PORTAL

TEMPERATURE EVOLUTION DURING REHEATING

LOW REHEATING TEMPERATURE

PROBLEMS WITH FREEZE-IN

INTRO: FREEZE-IN VS FREEZE-OUT

OUTLINE:

INTRODUCTION **FREEZE-IN VS FREEZE-OUT**

FREEZE-OUT

Higgs portal

$$\mathcal{L} \supset \frac{1}{2} \lambda_{hs} s^2 H^{\dagger} H$$

"Vanilla" WIMP models are very constrained or already excluded

G. Arcadi et al. 1703.07364

- Out-of-equilibrium
- Dependence on the initial conditions

→ We assume a negligible initial abundance

• Very low couplings

$$\lambda \sim \mathcal{O}(10^{-10})$$

$$Y_{FI} \sim \lambda^2 \left(\frac{M_{Pl}}{m}\right) -$$

DM yield $Y = \frac{n_s}{S}$

DM abundace grows with the coupling squared

V

10-9

10

FREEZE-IN

- Out-of-equilibrium
- Dependence on the initial conditions

→ We assume a negligible initial abundance

• Very low couplings

$$\frac{1}{\lambda^2} \sim \frac{1}{\lambda^2}$$

Y

10-9

10

FREEZE-IN

Boltzmann equation for the evolution of the DM number density

(h_i) Back-reaction t

FREEZE-IN

Boltzmann equation for the evolution of the DM number density $\dot{n_s} + 3Hn_s = \Gamma\left(h_i h_i \to ss\right) - \Gamma\left(ss \to h_i h_i\right)$ **Back-reaction** $\propto n_h^2$ $\propto n_s^2$ Forward process

FREEZE-IN PROBLEMS AND GRAVITATIONAL PARTICLE PRODUCTION

VERY SMALL COUPLINGS $\lambda \sim \mathcal{O}(10^{-10})$

GRAVITATIONAL PARTICLE PRODUCTION

S. G. Mamaev, V. M. Mostepanenko and A. A. Starobinsky, Zh. Eksp. Teor. Fiz. 70, 1577-1591 (1976), L. Parker, Phys. Rev. 183, 1057-1068 (1969), A. A. Grib, S. G. Mamaev and V. M. Mostepanenko, Gen. Rel. Grav. 7, 535-547 (1976). L. H. Ford, Phys. Rev. D 35, 2955 (1987) Y. Ema, R. Jinno, K. Mukaida, K. Nakayama, 1502.02475 O. Lebedev, 2210.02293

Dark Matter

P. J. E. Peebles and A. Vilenkin, Phys. Rev. D 60, 103506 (1999), S. Nurmi, T. Tenkanen and K. Tuominen, JCAP 11, 001 (2015), T. Markkanen, A. Rajantie and T. Tenkanen, Phys. Rev. D 98, no.12, 123532 (2018)

Starobinsky Yokoyama statistichal method

A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357-6368 (1994).

Thursday talk by Arttu Rajantie

"Spectator DM"

HOW CAN THE FREEZE-IN ASSUMPTION BE SATISFIED?

INFLATION

s is a feebly interacting particle

PRODUCTION DURING

INFLATON OSCILLATION

DILUTION due to early matter dominated epoch

 $H_{\rm end}$

DURING INFLATION

$$\Delta_{\rm NR} \gtrsim 10^7 \lambda_s^{-3/4} \left(\frac{H_{\rm end}}{M_{\rm Pl}}\right)^{3/2} \left(\frac{m_s}{\rm GeV}\right) \qquad \bigstar \qquad \lambda_s \text{ is the } \lambda_s = 0$$

INFLATON OSCILLATION

$$\Delta_{\rm NR} \gtrsim 10^6 \left(\frac{H}{\Lambda}\right)$$

O. Lebedev, 2210.02293 Y. Ema, R. Jinno, K. Mukaida, K. Nakayama, 1502.02475 C. Cosme, FC, O. Lebedev, arXiv: 2306.13061

he self-coupling

 $\left(\frac{H_{\rm end}}{M_{\rm Pl}}\right)^{3/2} \left(\frac{m_s}{{\rm GeV}}\right)$

LONG MATTER DOMINATED EPOCH

LOW REHEATING TEMPERATURE

WHAT HAPPENS AT LOW TR?

Example:

Higgs portal

$$\mathcal{L} \supset \frac{1}{2} \lambda_{hs} s^2 H^{\dagger} H$$

of H particles

Freeze-in

Parameter space:

$m_H < m_s \& T_R < m_s$

Boltzmann distribution

C. Cosme, FC, O. Lebedev, arXiv: 2306.13061 FC, L. Covi, to appear soon

WHAT HAPPENS AT LOW TR?

The rate of production is Boltzmann suppressed

C. Cosme, FC, O. Lebedev, arXiv: 2306.13061 FC, L. Covi, to appear soon

HIGGS PORTAL TO SCALAR DM

TEMPERATURE EVOLUTION DURING REHEATING

WHAT ABOUT TMAX?

Reheating Boltzmann Equations
$$\begin{split} \dot{\rho}_{\phi} + 3H\rho_{\phi} &= -\Gamma_{\phi}\rho_{\phi}, \\ \dot{\rho}_{\gamma} + 4H\rho_{\gamma} &= \Gamma_{\phi}\rho_{\phi}, \\ \rho_{\phi} + \rho_{\gamma} &= 3m_P^2 H^2. \end{split}$$

$$T_R \to T_{\max}$$

REHEATING VIA RH NEUTRINOS

$$\phi \rightarrow \iota$$

If the SM is produced by a subdominant component during reheating we can have

 $T_R \simeq T_{\rm max}$

Reheating Boltzmann Equations

$\nu_R \to SM$

 $\dot{\rho}_{\phi} + 3H\rho_{\phi} = -\Gamma_{\phi}\rho_{\phi},$ $\dot{\rho}_{\nu} + 4H\rho_{\nu} = \Gamma_{\phi}\rho_{\phi} - \Gamma_{\nu}\rho_{\nu},$ $\dot{\rho}_{\gamma} + 4H\rho_{\gamma} = \Gamma_{\nu}\rho_{\nu},$ $\rho_{\phi} + \rho_{\nu} + \rho_{\gamma} = 3H^2 m_P^2,$

CORRECTION TO THE DM PRODUCTION

 $T_R \to 0.95 \times T_R$

5% correction wrt instantaneous reheating approximation

HIGGS PORTAL For different spin DM

HIGGS PORTAL

$$-\Delta \mathcal{L}_{\text{scal}} = \frac{1}{2} \lambda_{hs} H^{\dagger} H s^{2}$$
$$-\Delta \mathcal{L}_{\text{ferm}} = \frac{1}{\Lambda} H^{\dagger} H \bar{\chi} \chi + \frac{1}{\Lambda_{5}} H^{\dagger} H \bar{\chi} i \gamma_{5} \chi$$
$$-\Delta \mathcal{L}_{\text{vect}} = \frac{1}{2} \lambda_{hv} H^{\dagger} H V_{\mu} V^{\mu}$$

Majorana fermion. CP even and fully CP odd case.

2405.XXXXX

SCALAR DM

High DM mass: DD detection constraint

Low DM mass: LHC and future collider constraint

Colliders can test below the reach of DD experiments (below the neutrino fog)

CP EVEN

New parameter space opened up at low DM masses and testable at collider!

CONCLUSIONS

Freeze-in is realised with tiny couplings. Natural? Observable?

Early gravitational particle production can spoil freeze-in DM models.

This issue can be addressed and solved by an early matter dominated epoch, which is long and leads to low reheating temperatures.

Low reheating freeze-in production is accessible by direct detection experiments and can be a target for future DD experiments

See also Javier S. Malpartida, N. Bernal, J. Jones-Pérez, R. A. Lineros, arxiv 2306:1493

At low masses LHC probes freeze-in a stronger couplings and future colliders can set bound below the neutrino fog!

TAKE HOME MESSAGE

EARLY UNIVERSE EFFICIENT GRAVITATIONAL PRODUCTION OF FEEBLY COUPLED PARTICLES

• BOLTZMANN SUPPRESSED PRODUCTION RATE AND POSSIBLE DIRECT DETECTION AND COLLIDER SIGNATURES! NEED FOR A "LONG" MATTER DOMINATED EPOCH AND THEREFORE LOW REHEATING TEMPERATURE TO AVOID OVEPRODUCTION

• NO OVERPRODUCTION GAP BETWEEN FREEZE-OUT AND FREEZE-IN AT LOW REHEATING TEMPERATURES

This project has received funding/support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-HIDDeN

THANK YOU

Francesco Costa

Institute for Theoretical Physics, University of Goettingen

BACK-UP

C. Cosme, FC, O. Lebedev, arXiv: 2306.13061

HIGGS PORTAL TO SCALAR DM

$m_s = 1460 \text{ GeV} \quad \lambda_{hs} = 0.10$ — 3 H n Γ_{ss→hh} Γ_{hh→ss} 40 45 50 55 60 $T_R = 60 \text{ GeV}$ T [GeV]

Boltzmann equation

 $\dot{n_s} + 3Hn_s = \Gamma \left(h_i h_i \to ss \right) - \Gamma \left(ss \to h_i h_i \right)$

3 H n Γ_{ss→hh} Γ_{hh→ss} 50 55 60 T [GeV]

 $\Gamma(h_i h_i \to ss) > 3Hn \not\Longrightarrow$ Thermalisation $\Gamma(h_i h_i \to ss) = \Gamma(ss \to h_i h_i) \implies$ Thermalisation

— 3 H n Γ_{ss→hh} Γ_{hh→ss} 50 55 60 T [GeV]

In fact the number density does not follow the equilibrium curve **OUT OF EQUILIBRIUM**

Looks like a UV freeze-in production, peaked at the reheating temperature

INTERMEDIATE REGIME

HIGGS PORTAL TO SCALAR DM

ANNIHILIATION BECOMES IMPORTANT $m_s = 1451 \text{ GeV} \quad \lambda_{hs} = 0.39$ Boltzmann equation 10⁻¹⁵ 10⁻¹⁷ Γ [GeV]⁴ 10⁻¹⁹ Γ_H ss→hh 10-21 Γ_{hh→ss} 10-23 10^{-25} 20 30 40 50 T [GeV]

$$\dot{n_s} + 3Hn_s = \Gamma\left(h_i h_i \to ss\right) - \Gamma\left(ss \to h_i h_i\right)$$

Here the backreaction is not negligible anymore

The number density still does not follow the equilibrium curve **OUT OF EQUILIBRIUM**

FREEZE-OUT REGIME

FREEZE-OUT REGIME

Boltzmann equation 10⁻¹⁴ [GeV]⁴ 10⁻¹⁹ 10⁻²⁴ 10⁻²⁹ 20 30 T [GeV]

$$\dot{n_s} + 3Hn_s = \Gamma\left(h_i h_i \to ss\right) - \Gamma\left(ss \to h_i h_i\right)$$

Freeze-out

$$\Gamma\left(h_i h_i \to ss\right) = \Gamma\left(ss \to h_i h_i\right)$$

TIME

 $m_s = 1012 \text{ GeV} \quad \lambda_{hs} = 0.29$

The number density is equal to the equilibrium number density until freeze-out **IN EQUILIBIRIUM**

Non-instantaneous reheating

$$m_{\psi}Y = 4 \times m_{\psi}Y_{inst}$$

Relativistic effect

DILUTION

DILUTION

$$a \propto t^{2/3}$$

 $\propto \left(\frac{a_{end}}{a_t}\right)^3 n(t_{end}) \propto \left(\frac{t_{end}}{t}\right)^2 n(t_{end})$

DILUTION

$$a \propto t^{2/3}$$

 $\propto \left(\frac{a_{end}}{a_t}\right)^3 n(t_{end}) \propto \left(\frac{t_{end}}{t}\right)^2 n(t_{end})$

$$\left(\frac{T}{T_{\rm end}}\right)$$

FREEZE-IN TO FREEZE-OUT

Figure 4: Freeze-in to freeze-out transition at low and high temperatures. The purple line corresponds to thermal DM as in Fig. 2. Left: $T_R = 1$ GeV. Right: $T_R = 300$ GeV.