

Transport equations for electroweak baryogenesis

Catch 22+2,
Dublin, 1-5.5.2024

Kimmo Kainulainen, University of Jyväskylä, Finland

1. Introduction

Overall EWBG-problem
Model building, Dark Sectors
2. Computing BAU

SC-method vs VIA-method
3. Moment expansion

Low moment approximations
Convergence issues with high moments
4. Beyond SC-limit
5. Conclusions

1. Overall EWBG problem

$$
\text { Why } \eta_{B} \equiv \frac{n_{B}}{n_{\gamma}}=6 \times 10^{-10} ?
$$

Sphaleron bound:
$\frac{v_{n}}{T_{n}}>1.1$
1st order transition

Need 1st order transtion
=> bubble passage time:

$$
\frac{1}{t_{w}} \sim \frac{v_{w}}{L_{w}} \sim 10^{-5} T_{100}
$$

Equilibrium: perturbative / nonperturbative

- B violation rate
- PT-parameters, $T_{c}, T_{n}, L, C_{s}, \ldots$

Transition strength, B-washout bound, GW-production,.
Out-of-equilibrium:
$\begin{array}{ll}\text { - CP-even perturbations } \delta f_{\text {even }} & ==>V_{w}, L_{w}, \ldots \\ \text { - CP-odd perturbations, } \mu_{B_{L}}(z) & ==>\text { BAU }\end{array}$

EWBG model building \&

Transition strength CP-violation

$$
\delta V_{\mathrm{eff}}=-\sum_{i} \frac{T m_{i}^{3}(\phi, T)}{12 \pi}+\ldots
$$

"SUSY cannot be disproved, only abandoned"

Anything relying on 1-step transition...

Issue: strong transition from loops requires very large couplings

- PT breaks down for $V_{\text {eff }}$
- DR breaks down for 3d-lattice
- large eDM's and nDM's

Some activity still observed eg. around nHDM models ...

EWBG model building

3
Two-step transitions:

$$
V=\frac{1}{2} \lambda_{h s} h^{2} s^{2}-\left(\mu_{s}^{2}-c_{s} T^{2}\right) s^{2}-\left(\mu_{h}^{2}-c_{h} T^{2}\right) h^{2}+\ldots
$$

Works even for perturbative couplings

Low energy DS-models motivated by the near UV-completeness of the SM with little new physics beyond EW-scale

Shaposhnikov and Wetterich
Giudice etal, ..

Profumo. Ramsev-Musolf. Shauahnessv. JHEP 0708 (2007) 010 Inoue, Ovanesyan, Ramsey-Musolf, PRD93 (2016) 015013, J.R.Espinosa, T.Konstandin, F.Riva, NPB854 (2012) 592
J.M.Cline, KK, JCAP 1301 (2013) 012

Laine, Rummukainen,
Cline, Moore, Quiros ...,

Portal models to Dark Sector(s)

2. Computing B from EWBG

How to accurately model the CP-violating out-of-equilibrium interactions of particles with the expanding phase transition wall?

SC-method Boltzmann equation

$$
v_{h \pm} \partial_{z} f_{h \pm}+F_{h \pm} \partial_{k_{z}} f_{h \pm}=\mathcal{C}_{h \pm}[f]
$$

$$
\begin{aligned}
& F_{h \pm}=-\frac{|m|^{2 \prime}}{2 \omega_{h \pm}} \pm h s_{k} \gamma_{\|} \frac{\left(|m|^{2} \theta^{\prime}\right)^{\prime}}{2 \omega_{0}^{2}} \\
& \text { leading classical } \sim \hbar^{0} \quad \text { quantum } \sim \hbar
\end{aligned}
$$

WKB M.Joyce, T.Prokopec and N. Turok
J.M.Cline, M.Joyce and KK PLB417 (1998) 79; JHEP 0007 (2000) 018 J.M.Cline and KK, PRL85 (2000) 5519

CTP KK, T.Prokopec, M.G.Schmidt and S.Weinstock, JHEP 0106, 031 (2001); PRD66 (2002) 043502.
J.M.Cline, M.Joyce and KK, PLB417 (1998) 79; JHEP 0007 (2000) 018;

KK, JCAP 11 (2021) 11, 042.

VIA-method current divergence
P. Huet, A.Nelson,

$$
\partial_{\mu} j_{\mathrm{R}}^{\mu}(x) \equiv S_{\mathrm{R}}^{\mathrm{CP}}(x)+S_{\mathrm{R}}^{\mathrm{qP}}(x)
$$

$$
S_{\mathrm{R}}^{\phi_{\mathrm{P}}}=-v_{w} \gamma_{w}|m|^{2} \theta^{\prime} \times I_{\gamma}
$$

Identify jas a diffusion current
and employ Ficks law: $\mathbf{j}=-D \nabla n$
=> Diffusion equations

2. Computing B from EWBG

How to accurately model the CP-violating out-of-equilibrium interactions of particles with the expanding phase transition wall?

$$
v_{h \pm} \partial_{z} f_{h \pm}+F_{h \pm} \partial_{k_{z}} f_{h \pm}=\mathcal{C}_{h \pm}[f]
$$

$$
\begin{gathered}
F_{h \pm}=-\frac{|m|^{2 \prime}}{2 \omega_{h \pm}} \pm h s_{k} \gamma_{\| I} \frac{\left(|m|^{2} \theta^{\prime}\right)^{\prime}}{2 \omega_{0}^{2}} \\
\text { leading classical } \sim \hbar^{0} \quad \text { quantum } \sim \hbar
\end{gathered}
$$

WKB M.Joyce, T.Prokopec and N. Turok
J.M.Cline, M.Joyce and KK PLB417 (1998) 79; JHEP 0007 (2000) 018
J.M.Cline and KK, PRL85 (2000) 5519.

CTP
KK, T.Prokopec, M.G.Schmidt and S.Weinstock, JHEP 0106, 031 (2001); PRD66 (2002) 043502.
J.M.Cline, M.Joyce and KK, PLB417 (1998) 79; JHEP 0007 (2000) 018; KK, JCAP 11 (2021) 11, 042.

ouflo $=$ she There is no such thing

K.K. JCAP 11 (2021) 11, 042.

Postma etal JHEP 1,2en(2022) 12ills
$S_{\mathrm{R}}^{\mathrm{CP}_{\mathrm{P}}}=-v_{w} \gamma_{w}|m|^{2} \theta^{\prime} \times I_{\gamma}$
and employ Ficks law: $\mathbf{j}=-D \nabla n$
=> Diffusion equations

2.3 SC-BE equation

SC-equations describe classical motion under CP -violating force of QM-origin:

$$
v_{h \pm} \partial_{z} f_{h \pm}+F_{h \pm} \partial_{k_{z}} f_{h \pm}=\mathcal{C}_{h \pm}[f]
$$

2.3 SC-BE equation

SC-equations describe classical motion under CP-violating force of QM-origin:

$$
v_{h \pm} \partial_{z} f_{h \pm}+F_{h \pm} \partial_{k_{z}} f_{h \pm}=\mathcal{C}_{h \pm}[f]
$$

$$
\begin{array}{rr}
f_{h \pm} \equiv f_{\mathrm{FD}}^{h \pm}+\Delta f_{h \pm} \quad \text { with } & f_{\mathrm{FD}}^{h \pm}=\frac{1}{e^{\beta \gamma_{w}\left(\omega_{h \pm}-\nu_{w} p_{2}\right)} \pm 1} \\
\text { consistent gradient expansion } & \uparrow_{\text {true energy }}
\end{array}
$$

$$
\frac{k_{z}}{\omega_{0}} \partial_{z} \Delta f_{h}-\frac{|m|^{2 \prime}}{2 \omega_{0}} \partial_{k_{z}} \Delta f_{h}=\mathcal{S}_{h}+\mathcal{C}_{h}[f]
$$

and

|CP-even
 $\Delta f_{h \pm}=\Delta f \pm \Delta f_{h}$.

§CP-odd, depends on h

2.3 SC-BE equation

SC-equations describe classical motion under CP-violating force of QM-origin:

$$
v_{h \pm} \partial_{z} f_{h \pm}+F_{h \pm} \partial_{k_{z}} f_{h \pm}=\mathcal{C}_{h \pm}[f]
$$

$$
\begin{aligned}
& f_{h \pm} \equiv f_{\mathrm{FD}}^{h \pm}+\Delta f_{h \pm} \quad \text { with } \quad f_{\mathrm{FD}}^{h \pm}=\frac{1}{e^{\beta \gamma_{w}\left(\omega_{h \pm}-\nu_{w} p_{z}\right)} \pm 1} \quad \text { and } \quad \Delta f_{h \pm}=\Delta f \pm \Delta f_{h} . \\
& \text { consistent gradient expansion } \uparrow_{\text {true energy }} \\
& \frac{k_{z}}{\omega_{0}} \partial_{z} \Delta f_{h}-\frac{|m|^{2 \prime}}{2 \omega_{0}} \partial_{k_{z}} \Delta f_{h}=\mathcal{S}_{h}+\mathcal{C}_{h}[f] \xrightarrow{\mathrm{CP}-\text { odd }} \mathcal{S}_{h}=-v_{w} \gamma_{w} h s_{\mathrm{k}} \gamma_{\|}\left[\frac{\left(|m|^{2} \theta^{\prime}\right)^{\prime}}{2 \omega_{0}^{2}} f_{0 w}^{\prime}-\frac{|m|^{2 \prime}|m|^{2} \theta^{\prime}}{4 \omega_{0}^{4}}\left(f_{0 w}^{\prime \prime}-\gamma_{w} \omega_{0} f_{0 w}^{\prime \prime}\right)\right]
\end{aligned}
$$

2.3 SC-BE equation

SC-equations describe classical motion under CP-violating force of QM-origin:

$$
v_{h \pm} \partial_{z} f_{h \pm}+F_{h \pm} \partial_{k_{z}} f_{h \pm}=\mathcal{C}_{h \pm}[f]
$$

$$
\frac{k_{z}}{\omega_{0}} \partial_{z} \Delta f_{h}-\frac{|m|^{2 \prime}}{2 \omega_{0}} \partial_{k_{z}} \Delta f_{h}=\mathcal{S}_{h}+\mathcal{C}_{h}[f] \xrightarrow{\mathrm{CP}-\text { odd }} \mathcal{S}_{h}=-v_{w} \gamma_{w} h s_{\mathrm{k}} \gamma_{\|}\left[\frac{\left(|m|^{2} \theta^{\prime}\right)^{\prime}}{2 \omega_{0}^{2}} f_{0 w}^{\prime}-\frac{|m|^{2 \prime}|m|^{2} \theta^{\prime}}{4 \omega_{0}^{4}}\left(f_{0 w}^{\prime}-\gamma_{w} \omega_{0} f_{0 w}^{\prime \prime}\right)\right]
$$

$$
\mathcal{S}_{q s \pm}^{\gamma}=\operatorname{Re}\left[\mathcal{S}_{q s \pm}\left(\omega_{s \pm}+i \gamma_{s \pm}\right)\right]
$$

2.3 SC-BE equation

SC-equations describe classical motion under CP-violating force of QM-origin:

$$
v_{h \pm} \partial_{z} f_{h \pm}+F_{h \pm} \partial_{k_{z}} f_{h \pm}=\mathcal{C}_{h \pm}[f]
$$

$$
\begin{array}{lr}
f_{h \pm} \equiv f_{\mathrm{FD}}^{h \pm}+\Delta f_{h \pm} \quad \text { with } & f_{\mathrm{FD}}^{h \pm}=\frac{1}{e^{\beta \gamma_{w}\left(\omega_{h \pm}-\nu_{w} p_{2}\right)} \pm 1} \\
\text { consistent gradient expansion } & \hat{\mathrm{T}}_{\text {true energy }}
\end{array}
$$

$$
\text { and } \quad \Delta f_{h \pm}=\Delta f \pm \Delta f_{h} \text {. }
$$

$$
\uparrow_{\text {CP-odd, depends on } h}
$$

2.3 SC-BE equation

SC-equations describe classical motion under CP-violating force of QM-origin:

$$
v_{h \pm} \partial_{z} f_{h \pm}+F_{h \pm} \partial_{k_{z}} f_{h \pm}=\mathcal{C}_{h \pm}[f]
$$

$$
\frac{k_{z}}{\omega_{0}} \partial_{z} \Delta f_{h}-\frac{|m|^{2 \prime}}{2 \omega_{0}} \partial_{k_{z}} \Delta f_{h}=\mathcal{S}_{h}+\mathcal{C}_{h}[f] \xrightarrow{\mathrm{CP}-\text { odd }} \mathcal{S}_{h}=-v_{w} \gamma_{w} h s_{\mathrm{k}} \gamma_{\|}\left[\frac{\left(|m|^{2} \theta^{\prime}\right)^{\prime}}{2 \omega_{0}^{2}} f_{0 w}^{\prime}-\frac{|m|^{2 \prime}|m|^{2} \theta^{\prime}}{4 \omega_{0}^{4}}\left(f_{0 w}^{\prime}-\gamma_{w} \omega_{0} f_{0 w}^{\prime \prime}\right)\right]
$$

$$
-\frac{p_{z}}{\omega_{0 i}} f_{0 w i}^{\prime} \partial_{z} \mu_{h i}+v_{w} \gamma_{w} \frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} f_{0 w i}^{\prime \prime} \mu_{h i}+\frac{p_{z}}{\omega_{0 i}} \partial_{z} \delta f_{h i}-\frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} \partial_{p_{z}} \delta f_{h i}=\delta_{h i}+\left(\sum_{a, k} s_{i k}^{a} \mu_{k}\right) \Gamma_{\mathrm{inel}, i}^{a} f_{\mathrm{MBi}}(p)-\Gamma_{\mathrm{T}, \mathrm{i}}(p) \delta f_{h i}(p)
$$

Full problem consists of coupled set of SC BE's for all interacting species.

2.4 Solving the SC-BE

 $-\frac{p_{z}}{\omega_{0 i}} f_{0 w i}^{\prime} \partial_{z} \mu_{h i}+v_{w} \gamma_{w} \frac{\left|m_{i}\right|^{\left.\right|^{\prime}}}{2 \omega_{0 i}} f_{0 w i}^{\prime \prime} \mu_{h i}+\frac{p_{z}}{\omega_{0 i}} \partial_{z} \delta f_{h i}-\frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} \partial_{p_{z}} \delta f_{h i}=\delta_{h i}+\left(\sum_{a, k} s_{i k}^{a} \mu_{k}\right) \Gamma_{\text {inel }, i}^{a} f_{\mathrm{MBi}}(p)-\Gamma_{\mathrm{T}, \mathrm{i}}(p) \delta f_{h i}(p)$SC-BE is a coupled set of partial differential equations (hard).

Direct solution of nPDE	Discretize $p_{z}, p_{1 \prime}$,	~10000 coupled ODE's
	or turn into an integral equation	S. De Curtis etal. JHEP 03 (2022) 163, arXiv:2401.13522v1,

Integrated methods:

Ansaz

Fluid equations

$$
f\left(p_{z} \cdot E ; z\right)=\left[e^{\beta(z)\left(E+\left(v_{w}+v(z)\right) p_{z}+\mu(z)\right)}+1\right]^{-1}
$$

Take moment integrals over BE's...

Extended fluid equations $f\left(p_{z} \cdot E ; z\right)=\left[e^{\beta(z)\left(E+\left(v_{w}+v(z)\right) p_{i}+\mu(z)\right)}+1\right]^{-1}+\sum_{i} a_{i}(z) F_{i}(p, z) \quad=>$ ODE's for $\left.\beta(z), v(z)\right) \mu(z)$ and $a_{i}(z)$

Moore, Prokopec, Enqvist, Ignatius, Kajantie, Rummukainen, Bodeker, Espinosa, Konstandin, No, Servant Dorsch, Huber, Koczaczuck, Laurent, Cline, Garbrecht, Tamaris, De Curtis, Rose, Guiggiani, Muyor, Panico, Jinno, Cai, Wang, Sala,

Moment equations $\quad f\left(p_{z} \cdot E ; z\right)=\left[e^{\beta\left(E+v_{w} p_{z}+\mu(z)\right)}+1\right]^{-1}+\delta f$ with $\int \mathrm{d}^{3} p \delta f \equiv 0 \quad \Rightarrow$ ODE's for $\mu(z)$ and $u_{i}^{(n)}=\left\langle\left(p_{z} / \omega_{i 0}\right)^{n} \delta f_{i}\right\rangle$

Most often used. How accurate?

3. Moment expansion

$$
-\frac{p_{z}}{\omega_{0 i}} f_{0 w i}^{\prime} \partial_{z} \mu_{h i}+v_{w} \gamma_{w} \frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} f_{0 w i}^{\prime \prime} \mu_{h i}+\frac{p_{z}}{\omega_{0 i}} \partial_{z} \delta f_{h i}-\frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} \partial_{p_{z}} \delta f_{h i}=\delta_{h i}+\left(\sum_{a, k} s_{i k}^{a} \mu_{k}\right) \Gamma_{\mathrm{inel}, i}^{a} f_{\mathrm{MBi}}(p)-\Gamma_{\mathrm{T}, \mathrm{i}}(p) \delta f_{h i}(p)
$$

Multiplying the SC BE with $\left(p_{z} / \omega_{0 i}\right)^{\ell}$ and integrating over momenta, one gets relativistic fluid equations

$$
-D_{\ell+1} \xi_{h}^{\prime}+u_{h, \ell+1}^{\prime}+\frac{1}{2} v_{w} \gamma_{w}|x|^{2 \prime} Q_{\ell} \xi_{h}+\frac{\ell}{2}|x|^{2 \prime} \bar{R} u_{h, \ell}=\hat{\mathcal{S}}_{h, \ell}^{w}+\hat{\mathcal{C}}_{h \ell}^{w}
$$

$$
u_{h, \ell} \equiv\left\langle\frac{p_{z}^{\ell}}{\omega_{0}^{\ell}} \delta f_{h}\right\rangle, \quad \xi_{i} \equiv \frac{\mu_{i}}{T} \quad \text { and } \quad x \equiv \frac{m}{T} . \quad\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \quad N_{1} \equiv-2 \pi^{2} \gamma_{w} T^{2} / 3
$$

$$
\begin{aligned}
& D_{\ell} \equiv\left\langle\left(\frac{p_{z}}{E}\right)^{\ell} f_{0 w}^{\prime}\right\rangle, \\
& Q_{\ell} \equiv\left\langle\left(\frac{p_{z}^{t-1}}{2 E^{\ell}}\right) f_{0 w}^{\prime \prime}\right\rangle \\
& Q_{\ell}^{8 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{2 E^{\ell} E_{z}} f_{0 w}^{\prime}\right\rangle, \\
& Q_{t}^{g_{o}} \equiv\left\langle\frac{s_{p} p_{z}^{t-1}}{4 E^{t+1} E_{z}}\left(\frac{1}{E} f_{o w}^{\prime}-\gamma_{w} f_{o w}^{\prime \prime}\right)\right\rangle \\
& K_{\ell}=\frac{1}{n} \int_{p}\left(\frac{p_{z}}{\omega_{0}}\right)^{\ell} f_{0}(p) \\
& \langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \\
& \bar{R}=\frac{\pi}{\gamma_{w}^{2} \hat{N}_{0}} \int_{m}^{\infty}{ }_{d E \ln \left|\frac{p-v_{w} E}{p+v_{w} E}\right| f_{0} .}
\end{aligned}
$$

Relativistic auxiliary functions

3. Moment expansion

 $-\frac{p_{z}}{\omega_{0 i}} f_{0 w i}^{\prime} \partial_{z} \mu_{h i}+v_{w} \gamma_{w} \frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} f_{0 w i}^{\prime \prime} \mu_{h i}+\frac{p_{z}}{\omega_{0 i}} \partial_{z} \delta f_{h i}-\frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} \partial_{p_{z}} \delta f_{h i}=\delta_{h i}+\left(\sum_{a, k} s_{i k}^{a} \mu_{k}\right) \Gamma_{\mathrm{inel}, i}^{a} f_{\mathrm{MBi}}(p)-\Gamma_{\mathrm{T}, \mathrm{i}}(p) \delta f_{h i}(p)$Multiplying the SC BE with $\left(p_{z} / \omega_{0 i}\right)^{\ell}$ and integrating over momenta, one gets relativistic fluid equations

$$
-D_{\ell+1} \xi_{h}^{\prime}+u_{h, \ell+1}^{\prime}+\frac{1}{2} v_{w} \gamma_{w}|x|^{2 \prime} Q_{\ell} \xi_{h}+\frac{\ell}{2}|x|^{2 \prime} \bar{R} u_{h, \ell}=\hat{\mathcal{S}}_{h, \ell}^{w}+\hat{\mathcal{C}}_{h \ell}^{w}
$$

$$
u_{h, \ell} \equiv\left\langle\frac{p_{z}^{\ell}}{\omega_{0}^{\ell}} \delta f_{h}\right\rangle, \quad \xi_{i} \equiv \frac{\mu_{i}}{T} \quad \text { and } \quad x \equiv \frac{m}{T} . \quad\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \quad N_{1} \equiv-2 \pi^{2} \gamma_{w} T^{2} / 3
$$

where the source in ℓ :th equations is

$$
\mathcal{S}_{h \ell}=-v_{w} \gamma_{w} h\left[\left(|m|^{2} \theta^{\prime}\right)^{\prime} Q_{\ell}^{8 o}-|m|^{2 \prime}|m|^{2} \theta^{\prime} Q_{\ell}^{9 o}\right]
$$

$$
\begin{gathered}
D_{\ell} \equiv\left\langle\left(\frac{p_{z}}{E}\right)^{\ell} f_{0 w}^{\prime}\right\rangle, \\
Q_{\ell} \equiv\left\langle\left(\frac{p_{z}^{\ell-1}}{2 E^{\ell}}\right) f_{0 w}^{\prime \prime}\right\rangle \\
Q_{\ell}^{8 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{2 E^{\ell} E_{z}} f_{0 w}^{\prime}\right\rangle, \\
Q_{\ell}^{9 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{4 E^{\ell+1} E_{z}}\left(\frac{1}{E} f_{0 w}^{\prime}-\gamma_{w} f_{0 w}^{\prime \prime}\right)\right\rangle \\
K_{\ell}=\frac{1}{n} \int_{p}\left(\frac{p_{z}}{\omega_{0}}\right)^{\ell} f_{0}(p) \\
\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \\
\left.\bar{R}=\frac{\pi}{\gamma_{w}^{2} \hat{N}_{0}} \int_{m}^{\infty} \mathrm{d} E \ln \right\rvert\, \frac{p-v_{w} E}{p+v_{w} E} f_{0}
\end{gathered}
$$

Relativistic auxiliary functions

3. Moment expansion

 $-\frac{p_{z}}{\omega_{0 i}} f_{0 w i}^{\prime} \partial_{z} \mu_{h i}+v_{w} \gamma_{w} \frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} f_{0 w i}^{\prime \prime} \mu_{h i}+\frac{p_{z}}{\omega_{0 i}} \partial_{z} \delta f_{h i}-\frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} \partial_{p_{z}} \delta f_{h i}=\mathcal{S}_{h i}+\left(\sum_{a, k} s_{i k}^{a} \mu_{k}\right) \Gamma_{\mathrm{inel}, i}^{a} f_{\mathrm{MBi}}(p)-\Gamma_{\mathrm{T}, \mathrm{i}}(p) \delta f_{h i}(p)$Multiplying the SC BE with $\left(p_{z} / \omega_{0 i}\right)^{\ell}$ and integrating over momenta, one gets relativistic fluid equations

$$
-D_{\ell+1} \xi_{h}^{\prime}+u_{h, \ell+1}^{\prime}+\frac{1}{2} v_{w} \gamma_{w}|x|^{2 \prime} Q_{\ell} \xi_{h}+\frac{\ell}{2}|x|^{2 \prime} \bar{R} u_{h, \ell}=\hat{\mathcal{S}}_{h, \ell}^{w}+\hat{\mathcal{C}}_{h \ell}^{w}
$$

$$
u_{h, \ell} \equiv\left\langle\frac{p_{z}^{\ell}}{\omega_{0}^{\ell}} \delta f_{h}\right\rangle, \quad \xi_{i} \equiv \frac{\mu_{i}}{T} \quad \text { and } \quad x \equiv \frac{m}{T} . \quad\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \quad N_{1} \equiv-2 \pi^{2} \gamma_{w} T^{2} / 3
$$

where the source in ℓ :th equations is

$$
\mathcal{S}_{h \ell}=-v_{w} \gamma_{w} h\left[\left(|m|^{2} \theta^{\prime}\right)^{\prime} Q_{\ell}^{8 o}-|m|^{2 \prime}|m|^{2} \theta^{\prime} Q_{\ell}^{9 o}\right]
$$

$$
\begin{gathered}
D_{\ell} \equiv\left\langle\left(\frac{p_{z}}{E}\right)^{\ell} f_{0 w}^{\prime}\right\rangle, \\
Q_{\ell} \equiv\left\langle\left(\frac{p_{z}^{\ell-1}}{2 E^{\ell}}\right) f_{0 w}^{\prime \prime}\right\rangle \\
Q_{\ell}^{8 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{2 E^{\ell} E_{z}} f_{0 w}^{\prime}\right\rangle, \\
Q_{\ell}^{9 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{4 E^{\ell+1} E_{z}}\left(\frac{1}{E} f_{0 w}^{\prime}-\gamma_{w} f_{0 w}^{\prime \prime}\right)\right\rangle \\
K_{\ell}=\frac{1}{n} \int_{p}\left(\frac{p_{z}}{\omega_{0}}\right)^{\ell} f_{0}(p) \\
\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \\
\bar{R}=\frac{\pi}{\gamma_{w}^{2} \hat{N}_{0}} \int_{m}^{\infty} \mathrm{d} E \ln \left|\frac{p-v_{w} E}{p+v_{w} E}\right| f_{0}
\end{gathered}
$$

Relativistic auxiliary functions

3. Moment expansion

 $-\frac{p_{z}}{\omega_{0 i}} f_{0 w i}^{\prime} \partial_{z} \mu_{h i}+v_{w} \gamma_{w} \frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} f_{0 w i}^{\prime \prime} \mu_{h i}+\frac{p_{z}}{\omega_{0 i}} \partial_{z} \delta f_{h i}-\frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} \partial_{p_{z}} \delta f_{h i}=\delta_{h i}+\left(\sum_{a, k} s_{i k}^{a} \mu_{k}\right) \Gamma_{\mathrm{inel}, i}^{a} f_{\mathrm{MBi}}(p)-\Gamma_{\mathrm{T}, \mathrm{i}}(p) \delta f_{h i}(p)$Multiplying the SC BE with $\left(p_{z} / \omega_{0 i}\right)^{\ell}$ and integrating over momenta, one gets relativistic fluid equations

$$
-D_{\ell+1} \xi_{h}^{\prime}+u_{h, \ell+1}^{\prime}+\frac{1}{2} v_{w} \gamma_{w}|x|^{2 \prime} Q_{\ell} \xi_{h}+\frac{\ell}{2}|x|^{2 \prime} \bar{R} u_{h, \ell}=\hat{\mathcal{S}}_{h, \ell}^{w}+\hat{\mathcal{C}}_{h \ell}^{w} .
$$

$$
u_{h, \ell} \equiv\left\langle\frac{p_{z}^{\ell}}{\omega_{0}^{\ell}} \delta f_{h}\right\rangle, \quad \xi_{i} \equiv \frac{\mu_{i}}{T} \quad \text { and } \quad x \equiv \frac{m}{T} . \quad\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \quad N_{1} \equiv-2 \pi^{2} \gamma_{w} T^{2} / 3
$$

where the source in ℓ :th equations is

$$
\mathcal{S}_{h \ell}=-v_{w} \gamma_{w} h\left[\left(|m|^{2} \theta^{\prime}\right)^{\prime} Q_{\ell}^{8 o}-|m|^{2 \prime}|m|^{2} \theta^{\prime} Q_{\ell}^{9 o}\right]
$$

And collision terms are

$$
C_{h \ell, i}^{w}=K_{\ell, i}^{i}\left[\sum_{a, k} s_{i k}^{a} \xi_{k}\right] \Gamma_{\mathrm{el}}^{a}-u_{h \ell, i} \kappa_{i} \Gamma_{\mathrm{T}, i} . \begin{aligned}
& \mathrm{s}_{\mathrm{ik}}=1 \$(-1) \text { for a species } \mathrm{k} \\
& \text { in the initial (final) state }
\end{aligned}
$$

$$
\begin{gathered}
D_{\ell} \equiv\left\langle\left(\frac{p_{z}}{E}\right)^{\ell} f_{0 w}^{\prime}\right\rangle, \\
Q_{\ell} \equiv\left\langle\left(\frac{p_{z}^{\ell-1}}{2 E^{\ell}}\right) f_{0 w}^{\prime \prime}\right\rangle \\
Q_{\ell}^{8 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{2 E^{\ell} E_{z}} f_{0 w}^{\prime}\right\rangle, \\
Q_{\ell}^{9 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{4 E^{\ell+1} E_{z}}\left(\frac{1}{E^{\prime}} f_{0 w}^{\prime}-\gamma_{w} f_{0 w}^{\prime \prime}\right)\right\rangle \\
K_{\ell}=\frac{1}{n} \int_{p}\left(\frac{p_{z}}{\omega_{0}}\right)^{\ell} f_{0}(p) \\
\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \\
\bar{R}=\frac{\pi}{\gamma_{w}^{2} \hat{N}_{0}} \int_{m}^{\infty} \mathrm{d} E \ln \left|\frac{p-v_{w} E}{p+v_{w} E}\right| f_{0}
\end{gathered}
$$

Relativistic auxiliary functions

3. Moment expansion

 $-\frac{p_{z}}{\omega_{0 i}} f_{0 w i}^{\prime} \partial_{z} \mu_{h i}+v_{w} \gamma_{w} \frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} f_{0 w i}^{\prime \prime} \mu_{h i}+\frac{p_{z}}{\omega_{0 i}} \partial_{z} \delta f_{h i}-\frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} \partial_{p_{z}} \delta f_{h i}=\delta_{h i}+\left(\sum_{a, k} s_{i k}^{a} \mu_{k}\right) \Gamma_{\mathrm{inel}, i}^{a} f_{\mathrm{MBi}}(p)-\Gamma_{\mathrm{T}, \mathrm{i}}(p) \delta f_{h i}(p)$Multiplying the SC BE with $\left(p_{z} / \omega_{0 i}\right)^{\ell}$ and integrating over momenta, one gets relativistic fluid equations

$$
-D_{\ell+1} \xi_{h}^{\prime}+u_{h, \ell+1}^{\prime}+\frac{1}{2} v_{w} \gamma_{w}|x|^{2 \prime} Q_{\ell} \xi_{h}+\frac{\ell}{2}|x|^{2 \prime} \bar{R} u_{h, \ell}=\hat{\mathcal{S}}_{h, \ell}^{w}+\hat{\mathcal{C}}_{h \ell}^{w} .
$$

$$
u_{h, \ell} \equiv\left\langle\frac{p_{z}^{\ell}}{\omega_{0}^{\ell}} \delta f_{h}\right\rangle, \quad \xi_{i} \equiv \frac{\mu_{i}}{T} \quad \text { and } \quad x \equiv \frac{m}{T} . \quad\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \quad N_{1} \equiv-2 \pi^{2} \gamma_{w} T^{2} / 3
$$

where the source in ℓ :th equations is

$$
\mathcal{S}_{h \ell}=-v_{w} \gamma_{w} h\left[\left(|m|^{2} \theta^{\prime}\right)^{\prime} Q_{\ell}^{8 o}-|m|^{2 \prime}|m|^{2} \theta^{\prime} Q_{\ell}^{9 o}\right]
$$

And collision terms are
 only model dependent parts

$$
C_{h \ell, i}^{w}=K_{\ell, i}^{i}\left[\sum_{a, k \uparrow} s_{i k}^{a} \xi_{k}\right] \Gamma_{\mathrm{el}}^{a}-u_{h \ell, i} \kappa_{i} \Gamma_{\mathrm{T}, i}
$$

$S_{i k}=1 \$(-1)$ for a species k
in the initial (final) state

$$
\begin{gathered}
D_{\ell} \equiv\left\langle\left(\frac{p_{z}}{E}\right)^{\ell} f_{0 w}^{\prime}\right\rangle, \\
Q_{\ell} \equiv\left\langle\left(\frac{p_{z}^{\ell-1}}{2 E^{\ell}}\right) f_{0 w}^{\prime \prime}\right\rangle \\
Q_{\ell}^{8 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{2 E^{\ell} E_{z}} f_{0 w}^{\prime}\right\rangle, \\
Q_{\ell}^{9 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{4 E^{\ell+1} E_{z}}\left(\frac{1}{E^{\prime}} f_{0 w}^{\prime}-\gamma_{w} f_{0 w}^{\prime \prime}\right)\right\rangle \\
K_{\ell}=\frac{1}{n} \int_{p}\left(\frac{p_{z}}{\omega_{0}}\right)^{\ell} f_{0}(p) \\
\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \\
\bar{R}=\frac{\pi}{\gamma_{w}^{2} \hat{N}_{0}} \int_{m}^{\infty} \mathrm{d} E \ln \left|\frac{p-v_{w} E}{p+v_{w} E}\right| f_{0}
\end{gathered}
$$

Relativistic auxiliary functions

3. Moment expansion

 $-\frac{p_{z}}{\omega_{0 i}} f_{0 w i}^{\prime} \partial_{z} \mu_{h i}+v_{w} \gamma_{w} \frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} f_{0 w i}^{\prime \prime} \mu_{h i}+\frac{p_{z}}{\omega_{0 i}} \partial_{z} \delta f_{h i}-\frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} \partial_{p_{z}} \delta f_{h i}=\delta_{h i}+\left(\sum_{a, k} s_{i k}^{a} \mu_{k}\right) \Gamma_{\mathrm{inel}, i}^{a} f_{\mathrm{MBi}}(p)-\Gamma_{\mathrm{T}, \mathrm{i}}(p) \delta f_{h i}(p)$Multiplying the SC BE with $\left(p_{z} / \omega_{0 i}\right)^{\ell}$ and integrating over momenta, one gets relativistic fluid equations

$$
-D_{\ell+1} \xi_{h}^{\prime}+u_{h, \ell+1}^{\prime}+\frac{1}{2} v_{w} \gamma_{w}|x|^{2 \prime} Q_{\ell} \xi_{h}+\frac{\ell}{2}|x|^{2 \prime} \bar{R} u_{h, \ell}=\hat{\mathcal{S}}_{h, \ell}^{w}+\hat{\mathcal{C}}_{h \ell}^{w} .
$$

$$
u_{h, \ell} \equiv\left\langle\frac{p_{z}^{\ell}}{\omega_{0}^{\ell}} \delta f_{h}\right\rangle, \quad \xi_{i} \equiv \frac{\mu_{i}}{T} \quad \text { and } \quad x \equiv \frac{m}{T} . \quad\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \quad N_{1} \equiv-2 \pi^{2} \gamma_{w} T^{2} / 3
$$

where the source in ℓ :th equations is

$$
u_{n+1}=?=>\text { need for truncation }
$$

$$
\mathcal{S}_{h \ell}=-v_{w} \gamma_{w} h\left[\left(|m|^{2} \theta^{\prime}\right)^{\prime} Q_{\ell}^{8 o}-|m|^{2 \prime}|m|^{2} \theta^{\prime} Q_{\ell}^{9 o}\right]
$$

And collision terms are
 only model dependent parts

$$
\begin{gathered}
C_{h \ell, i}^{w}=K_{\ell, i}^{i}\left[\sum_{a, k} s_{i k}^{a} \xi_{k}\right] \Gamma_{\mathrm{el}}^{a}-u_{h \ell, i} \kappa_{i} \Gamma_{\mathrm{T}, i} \\
\mathrm{sink}_{\mathrm{ik}}=1 \$(-1) \text { for a species } \mathrm{k}
\end{gathered}
$$

in the initial (final) state

$$
\begin{gathered}
D_{\ell} \equiv\left\langle\left(\frac{p_{z}}{E}\right)^{\ell} f_{0 w}^{\prime}\right\rangle, \\
Q_{\ell} \equiv\left\langle\left(\frac{p_{z}^{\ell-1}}{2 E^{\ell}}\right) f_{0 w}^{\prime \prime}\right\rangle \\
Q_{\ell}^{8 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{2 E^{\ell} E_{z}} f_{0 w}^{\prime}\right\rangle, \\
Q_{\ell}^{9 o} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{4 E^{\ell+1} E_{z}}\left(\frac{1}{E} f_{0 w}^{\prime}-\gamma_{w} f_{0 w}^{\prime \prime}\right)\right\rangle \\
K_{\ell}=\frac{1}{n} \int_{p}\left(\frac{p_{z}}{\omega_{0}}\right)^{\ell} f_{0}(p) \\
\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \\
\bar{R}=\frac{\pi}{\gamma_{w}^{2} \hat{N}_{0}} \int_{m}^{\infty} \mathrm{d} E \ln \left|\frac{p-v_{w} E}{p+v_{w} E}\right| f_{0}
\end{gathered}
$$

Relativistic auxiliary functions

3. Moment expansion

 $-\frac{p_{z}}{\omega_{0 i}} f_{0 w i}^{\prime} \partial_{z} \mu_{h i}+v_{w} \gamma_{w} \frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} f_{0 w i}^{\prime \prime} \mu_{h i}+\frac{p_{z}}{\omega_{0 i}} \partial_{z} \delta f_{h i}-\frac{\left|m_{i}\right|^{2^{\prime}}}{2 \omega_{0 i}} \partial_{p_{z}} \delta f_{h i}=\delta_{h i}+\left(\sum_{a, k} s_{i k}^{a} \mu_{k}\right) \Gamma_{\mathrm{inel}, i}^{a} f_{\mathrm{MBi}}(p)-\Gamma_{\mathrm{T}, \mathrm{i}}(p) \delta f_{h i}(p)$Multiplying the SC BE with $\left(p_{z} / \omega_{0 i}\right)^{\ell}$ and integrating over momenta, one gets relativistic fluid equations

$$
-D_{\ell+1} \xi_{h}^{\prime}+u_{h, \ell+1}^{\prime}+\frac{1}{2} v_{w} \gamma_{w}|x|^{2 \prime} Q_{\ell} \xi_{h}+\frac{\ell}{2}|x|^{2 \prime} \bar{R} u_{h, \ell}=\hat{\mathcal{S}}_{h, \ell}^{w}+\hat{\mathcal{C}}_{h \ell}^{w} .
$$

$$
u_{h, \ell} \equiv\left\langle\frac{p_{z}^{\ell}}{\omega_{0}^{\ell}} \delta f_{h}\right\rangle, \quad \xi_{i} \equiv \frac{\mu_{i}}{T} \quad \text { and } \quad x \equiv \frac{m}{T} . \quad\langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \quad N_{1} \equiv-2 \pi^{2} \gamma_{w} T^{2} / 3
$$

where the source in ℓ :th equations is

$$
u_{n+1}=?=>\text { need for truncation }
$$

Assumed a specific factorization

$$
\mathcal{S}_{h \ell}=-v_{w} \gamma_{w} h\left[\left(|m|^{2} \theta^{\prime}\right)^{\prime} Q_{\ell}^{8 o}-|m|^{2 \prime}|m|^{2} \theta^{\prime} Q_{\ell}^{9 o}\right]
$$

And collision terms are
 only model dependent parts

$$
\begin{gathered}
C_{h \ell, i}^{w}=K_{\ell, i}^{i}\left[\sum_{a, k} s_{i k}^{a} \xi_{k}\right] \Gamma_{\mathrm{el}}^{a}-u_{h \ell, i} \kappa_{i} \Gamma_{\mathrm{T}, i} \\
\mathrm{~s}_{\mathrm{ik}}=1 \$(-1) \text { for a species } \mathrm{k}
\end{gathered}
$$

in the initial (final) state

$$
\begin{aligned}
& D_{\ell} \equiv\left\langle\left(\frac{p_{z}}{E}\right)^{\ell} f_{0 w}^{\prime}\right\rangle, \\
& Q_{\ell} \equiv\left\langle\left(\frac{p_{z}^{t-1}}{2 E^{\ell}}\right) f_{0 w}^{\prime \prime}\right\rangle \\
& Q_{\epsilon}^{8_{o}} \equiv\left\langle\frac{s_{\mathrm{p}} p_{z}^{\ell-1}}{2 E^{\ell} E_{z}} f_{o_{w}^{\prime}}^{\prime}\right\rangle, \\
& Q_{e}^{9_{o}} \equiv\left\langle\frac{s_{p} p_{z}^{\ell-1}}{4 E^{\ell+1} E_{z}}\left(\frac{1}{E} f_{o w}^{\prime}-\gamma_{w} f_{o w}^{\prime \prime}\right)\right\rangle \\
& K_{\ell}=\frac{1}{n} \int_{p}\left(\frac{p_{z}}{\omega_{0}}\right)^{\ell} f_{0}(p) \\
& \langle X\rangle \equiv \frac{1}{N_{1}} \int \mathrm{~d}^{3} p X \\
& \bar{R}=\frac{\pi}{\gamma_{w}^{2} \hat{N}_{0}} \int_{m}^{\infty}{ }_{d E \ln \left|\frac{p-v_{w} E}{p+v_{w} E}\right| f_{0} .}
\end{aligned}
$$

Relativistic auxiliary functions

3.1 Benchmark model

We use a simple model with $\mathrm{d}=5$ mass operator for top mass

Gripaios, J.R.Espinosa, T.Konstandin, Riva, 2012 J.M.Cline, K.K.,

$$
\begin{aligned}
v_{n} & =\frac{1}{2} w_{n}=T_{n}, \quad \Lambda=1 \mathrm{TeV} \\
L_{w} & =L_{s}=\frac{5}{T_{n}}, \quad \delta_{w}=0
\end{aligned}
$$

$$
\begin{array}{ll}
\Gamma_{\text {sph }}=1.0 \times 10^{-6} \mathrm{~T} & \Gamma_{y}=4.2 \times 10^{-3} \mathrm{~T} \\
\Gamma_{\mathrm{SS}}=4.9 \times 10^{-4} \mathrm{~T} & \Gamma_{m}=m_{t}^{2} /(63 \mathrm{~T}) \\
& \Gamma_{h}=m_{W}^{2} /(50 \mathrm{~T})
\end{array}
$$

3.2 Two-moment results

J.M.Cline, K.K. PRD 101 (2020) 6, 063525

Relativistic equations do not display the spurious "sound speed limit" $v_{w}<c_{s}$ for the EWBG, found earlier with nonrelativistic equations of L.Fromme and S.J.Huber, JHEP 03 (2007) 049.

The "sound speed limit" was also present in simple fluid ansaz approaches, but was removed in the extended fluid ansäze
G.C.Dorsh etal, JCAP 08 (2021) 020

3.3 Higher moments

Examples of solutions for the bechmark model
K.K and N. Venkatesan, in preparation

$$
\begin{aligned}
& z T=z T(u)=\frac{(z T)_{*} u}{(1-|u|+\epsilon}
\end{aligned}
$$

$$
-D_{\ell+1} \xi_{h}^{\prime}+u_{h, \ell+1}^{\prime}+\frac{1}{2} v_{w} \gamma_{w}|x|^{2 \prime} Q_{\ell} \xi_{h}+\frac{\ell}{2}|x|^{2 \prime} \bar{R} u_{h, \ell}=\hat{\mathcal{S}}_{h, \ell}^{w}+\hat{\mathcal{C}}_{h \ell}^{w} .
$$

with $\iota_{L}, b_{L}, t_{\mathrm{R}}$ and h_{0}

3.3 Higher moments

Examples of solutions for the bechmark model
K.K and N. Venkatesan, in preparation

$$
z T=z T(u)=\frac{(z T)_{*} u}{(1-|u|+\epsilon}
$$

$$
-D_{\ell+1} \xi_{h}^{\prime}+u_{h, \ell+1}^{\prime}+\frac{1}{2} v_{w} \gamma_{w}|x|^{2 \prime} Q_{\ell} \xi_{h}+\frac{\ell}{2}|x|^{2 \prime} \bar{R} u_{h, \ell}=\hat{\mathcal{S}}_{h, \ell}^{w}+\hat{\mathcal{C}}_{h \ell}^{w}
$$

with $t_{\mathrm{L}}, b_{\mathrm{L}}, t_{\mathrm{R}}$ and h_{0}

$$
\begin{gathered}
\eta_{B}\left(v_{w}\right)=\frac{405 \hat{\Gamma}_{\mathrm{sph}}}{4 \pi^{2} v_{w} \gamma_{w} g_{*}} \int d \hat{z} \xi_{B_{\mathrm{L}}} f_{\mathrm{sph}} e^{-45 \Gamma_{\mathrm{sph}}|z| / 4 v_{w} \gamma_{w}} \equiv \int \mathrm{~d} u \frac{\mathrm{~d} \eta_{\mathrm{B}}}{\mathrm{~d} u} \\
\uparrow \text { seed asymmetry } \\
\xi_{B_{\mathrm{L}}}=\frac{1}{2}\left(1+4 D_{0}^{t}\right) \xi_{t_{-}}+2 D_{0}^{t} \xi_{t_{+}}+\frac{5}{2} \xi_{b_{-}}
\end{gathered}
$$

3.3 Higher moments

Examples of solutions for the bechmark model
K.K and N. Venkatesan, in preparation

$$
z T=z T(u)=\frac{(z T)_{*} u}{(1-|u|+\epsilon}
$$

Relatively nice convergence, but $\mathrm{d} \eta_{\mathrm{B}} / \mathrm{d} u$ shows weird oscillations for high moments

$$
-D_{\ell+1} \xi_{h}^{\prime}+u_{h, \ell+1}^{\prime}+\frac{1}{2} v_{w} \gamma_{w}|x|^{2 \prime} Q_{\ell} \xi_{h}+\frac{\ell}{2}|x|^{2 \prime} \bar{R} u_{h, \ell}=\hat{\mathcal{S}}_{h, \ell}^{w}+\hat{\mathcal{C}}_{h \ell}^{w} .
$$

with $\iota_{L}, b_{L}, t_{\mathrm{R}}$ and h_{0}

$$
\eta_{B}\left(v_{w}\right)=\frac{405 \hat{\Gamma}_{\text {sph }}}{4 \pi^{2} v_{w} \gamma_{w} g_{*}} \int d \hat{z} \xi_{B_{\mathrm{L}}} f_{\mathrm{sph}} e^{-45 \Gamma_{\text {sph }}|z| / 4 v_{w} \gamma_{w}} \equiv \int \mathrm{~d} u \frac{\mathrm{~d} \eta_{\mathrm{B}}}{\mathrm{~d} u}
$$

seed asymmetry

$$
\xi_{B_{\mathrm{L}}}=\frac{1}{2}\left(1+4 D_{0}^{t}\right) \xi_{t_{-}}+2 D_{0}^{t} \xi_{t_{+}}+\frac{5}{2} \xi_{b_{-}}
$$

3.3.1 Cause of oscillations

is that the eigenfunctions of the inverse differential operator are oscillatory

$$
\begin{aligned}
& \mathcal{W}^{\prime}=\hat{\mathcal{A}}^{-1}(\hat{\mathcal{S}}+\hat{\mathcal{C}}[\mathcal{W}]-\hat{\mathcal{B}}[\mathcal{W}]) \quad \hat{\mathcal{A}}^{-1}=\operatorname{diag}\left(\hat{\mathcal{A}}_{1}^{-1}, \hat{\mathcal{A}}_{1}^{-1}, \ldots, \hat{\mathcal{A}}_{N}^{-1}\right) \\
& \rightarrow \mathscr{A}^{-1} \Gamma \mathscr{V} \\
& \text { large, }\left(n N_{s}\right)^{2} \text { constant real matrix } \\
& \hat{\mathcal{A}}^{-1}=\frac{1}{\mathcal{D}_{n}}\left(\begin{array}{cccccc}
0 & 0 & \cdots & \cdots & -R & 1 \\
\mathcal{D}_{n} & 0 & \cdots & \cdots & -R D_{1} & D_{1} \\
0 & \mathcal{D}_{n} & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \ddots & 0 & -R D_{n-3} & D_{n-3} \\
\vdots & \vdots & \cdots & \mathcal{D}_{n} & -R D_{n-2} & D_{n-2} \\
0 & 0 & \cdots & 0 & -D_{n} & D_{n-1}
\end{array}\right) \\
& \mathcal{D}_{n} \equiv(-1)^{n} \operatorname{det}(\hat{\mathcal{A}})=D_{n-1} R-D_{n}
\end{aligned}
$$

3.3.1 Cause of oscillations

is that the eigenfunctions of the inverse differential operator are oscillatory

$$
\begin{aligned}
& \mathcal{W}^{\prime}=\hat{\mathcal{A}}^{-1}(\hat{\mathcal{S}}+\hat{\mathcal{C}}[\mathcal{W}]-\hat{\mathcal{B}}[\mathcal{W}]) \quad \hat{\mathcal{A}}^{-1}=\operatorname{diag}\left(\hat{\mathcal{A}}_{1}^{-1}, \hat{\mathcal{A}}_{1}^{-1}, \ldots, \hat{\mathcal{A}}_{N}^{-1}\right) \\
& \rightarrow \mathscr{A}^{-1} \Gamma \mathscr{V} \\
& \text { large, }\left(n N_{s}\right)^{2} \text { constant real matrix } \\
& \hat{\mathcal{A}}^{-1}=\frac{1}{\mathcal{D}_{n}}\left(\begin{array}{cccccc}
0 & 0 & \cdots & \cdots & -R & 1 \\
\mathcal{D}_{n} & 0 & \cdots & \cdots & -R D_{1} & D_{1} \\
0 & \mathcal{D}_{n} & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \ddots & 0 & -R D_{n-3} & D_{n-3} \\
\vdots & \vdots & \cdots & \mathcal{D}_{n} & -R D_{n-2} & D_{n-2} \\
0 & 0 & \cdots & 0 & -D_{n} & D_{n-1}
\end{array}\right) \\
& \mathcal{D}_{n} \equiv(-1)^{n} \operatorname{det}(\hat{\mathcal{A}})=D_{n-1} R-D_{n}
\end{aligned}
$$

Eigenvalues are real only for the $\mathrm{n}=2$ case

3.3.1 Cause of oscillations

is that the eigenfunctions of the inverse differential operator are oscillatory

$$
\begin{aligned}
& \mathcal{W}^{\prime}=\hat{\mathcal{A}}^{-1}(\hat{\mathcal{S}}+\hat{\mathcal{C}}[\mathcal{W}]-\hat{\mathcal{B}}[\mathcal{W}]) \\
& \rightarrow \mathscr{A}^{-1} \Gamma \mathscr{V} \\
& \text { large, }\left(n N_{s}\right)^{2} \text { constant real matrix } \\
& \hat{\mathcal{A}}^{-1}=\operatorname{diag}\left(\hat{\mathcal{A}}_{1}^{-1}, \hat{\mathcal{A}}_{1}^{-1}, \ldots, \hat{\mathcal{A}}_{N}^{-1}\right) \\
& \hat{\mathcal{A}}^{-1}=\frac{1}{\mathcal{D}_{n}}\left(\begin{array}{cccccc}
0 & 0 & \cdots & \cdots & -R & 1 \\
\mathcal{D}_{n} & 0 & \cdots & \cdots & -R D_{1} & D_{1} \\
0 & \mathcal{D}_{n} & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \ddots & 0 & -R D_{n-3} & D_{n-3} \\
\vdots & \vdots & \cdots & \mathcal{D}_{n} & -R D_{n-2} & D_{n-2} \\
0 & 0 & \cdots & 0 & -D_{n} & D_{n-1}
\end{array}\right) \\
& \mathcal{D}_{n} \equiv(-1)^{n} \operatorname{det}(\hat{\mathcal{A}})=D_{n-1} R-D_{n}
\end{aligned}
$$

Eigenvalues are real only for the $\mathrm{n}=2$ case

The larger the number of moments n, the more rapidly oscillating, slowly converging eigenfunctions emerge
=> moment equations become computationally more expensive and numerical accuracy more challenging to keep.

3.3.2 Higher moments, convergence

Oscillations do not affect the integrated baryon asymmetry very much however

3.3.2 Higher moments, convergence

Oscillations do not affect the integrated baryon asymmetry very much however

Truncations used:
constant

$$
u_{n+1}=R u_{n} \quad u_{\ell}=\frac{1}{N_{1}} \int_{p} v_{z}^{\ell} \delta f
$$

variance

$$
\int_{p}\left(v_{z}-\left\langle v_{z}\right\rangle\right)^{n+1} \delta f=0
$$

3.3.2 Higher moments, convergence

Oscillations do not affect the integrated baryon asymmetry very much however

For reasonably large v_{w} the convergence is good and does not seem to depend on the truncation method.

Difference to 2-moment result is large however, and convergence requires a large number of momenta $\mathrm{n} \sim 50$.

Truncations used:
constant

$$
u_{n+1}=R u_{n} \quad u_{\ell}=\frac{1}{N_{1}} \int_{p} v_{z}^{\ell} \delta f
$$

variance

3.3.2 Higher moments, convergence

For smaller v_{w} the convergence gets worse and results become more truncation dependent.

Perhaps, with some dose of optimistm, one could claim that results with $n=20$ or so, are representative of the true BAU? Or perhaps, not.

At any rate, low moment expansion results may not give a good estimate and tend to overestimate |BAU| For precision calculation more advanced (tedious) methods (direct solution of SC-BE) are needed.

4. Beyond SC-limit

SC-BE's are based on gradient expansion of the full KB-equations. Formally valid for $L_{w} \gg 1 / T$.
They seem to remain quite accurate down to $L_{w} \sim(2-3) / T$

Very strong transitions, that could also source GW's, typically lead to very sharp walls: $L_{w} \sim 1 / T$

4. Beyond SC-limit

SC-BE's are based on gradient expansion of the full KB-equations. Formally valid for $L_{w} \gg 1 / T$.

Very strong transitions, that could also source GW's, typically lead to very sharp walls: $L_{w} \sim 1 / T$

In this regime quantum reflection becomes imporant and fully QM-treatment becomes necessary

Problem was studied in the 90's in the collisionless limit, and with phenomenological introduction of decoherence.
G.R.Farrar and M.Shaposhnikov, PRD50 (1994) 774, PRL70 (1993) 2833-2836, PRL71 (1993) 210 (erratum)
B.Gavela etal, Mod.Phys.Lett.A 9 (1994) 795-810,

NPB 430 (1994) 382-426, NPB 430 (1994) 345-381
They seem to remain quite accurate down to $L_{w} \sim(2-3) / T$

4. Beyond SC-limit

SC-BE's are based on gradient expansion of the full KB-equations. Formally valid for $L_{w} \gg 1 / T$.

They seem to remain quite accurate down to $L_{w} \sim(2-3) / T$
Very strong transitions, that could also source GW's, typically lead to very sharp walls: $L_{w} \sim 1 / T$

In this regime quantum reflection becomes imporant and fully QM-treatment becomes necessary

Problem was studied in the 90's in the collisionless limit, and with phenomenological introduction of decoherence.
G.R.Farrar and M.Shaposhnikov, PRD50 (1994) 774, PRL70 (1993) 2833-2836, PRL71 (1993) 210 (erratum) B.Gavela etal, Mod.Phys.Lett.A 9 (1994) 795-810, NPB 430 (1994) 382-426, NPB 430 (1994) 345-381

H.Jukkala, K.K, O.Koskivaara, JHEP01(2020)012

The main issue is how to treat collisions of (with) particles that are coherent mixtures of left- and right going states?

The problem can be handled by the methods introduced in

```
H.Jukkala, KK, O.Koskivaara JHEP09(2021)119 (resonant leptogenesis)
```

KK, H.Parkkinen, JHEP 02 (2024) 217 (general neutrino QKE's)

Tehcnically, the (necessary) numerical solution of the momentum dependent QKE-equation netrowrks will be ... tough.

5．Conclusions

粦 EWBG still a viable solution in some setups involving Dark Sectors

米 We＇ve come a long way from first attempts in 90 ＇s to the current consistent QKE＇s for the EWBG－problem．

米 The only one method in town to compute BAU in the EWBG is the semiclassical method．
The extension of SC－method to include thermal corrections to one－loop order．
Basically： $\mathcal{S}_{q s \pm}^{\gamma}=\operatorname{Re}\left[\mathcal{S}_{q s \pm}\left(\omega_{s \pm}+i \gamma_{s \pm}\right)\right]$ ：no VIA sources exist．

粦 Solving the SC－BE in the moment expansion straightforward，but convergence can be an issue

Direct solution to SC－BE to test the accuracy of moment and polynominal expansions？

类 Extension of the SC－formalism to the quantum regime doable in the cQPA context

Extra slides

VIA-method

Problem 1. Foundational error

Mass is a singular self-energy function, which contributes to Σ_{H} and not to $\Sigma^{<}$.

$$
\begin{aligned}
& \partial_{\mu} j_{5}^{\mu}(x)=-\lim _{y \rightarrow x} \operatorname{Tr}\left[\gamma^{5}(m(x)+m(y)) S^{<}(x, y)\right] \quad \begin{array}{c}
\text { the true singular mass correction } \\
\text { to axial vector current divergence }
\end{array} \\
&+2 \operatorname{Re} \int \mathrm{~d}^{3} \boldsymbol{w} \int_{t_{\mathrm{in}}}^{x_{0}} \mathrm{~d} w_{0} \operatorname{Tr}\left[\gamma^{5}\left(\Sigma^{>}(x, w) S^{<}(w, x)-\Sigma^{<}(x, w) S^{>}(w, x)\right)\right] \\
& \text { true scattering terms = nonlocal memory integrals }
\end{aligned}
$$

VIA-method

Problem 1. Foundational error

Mass is a singular self-energy function, which contributes to Σ_{H} and not to $\Sigma^{<}$.

\Downarrow

$$
\begin{aligned}
& \partial_{\mu} j_{5}^{\mu}(x)=-\lim _{y \rightarrow x} \operatorname{Tr}\left[\gamma^{5}(m(x)+m(y)) S^{<}(x, y)\right] \quad \begin{array}{c}
\text { the true singular mass correction } \\
\text { to axial vector current divergence }
\end{array} \\
&+2 \operatorname{Re} \int \mathrm{~d}^{3} \boldsymbol{w} \int_{t_{\text {in }}}^{x_{0}} \mathrm{~d} w_{0} \operatorname{Tr}\left[\gamma^{5}\left(\Sigma^{>}(x, w) S^{<}(w, x)-\Sigma^{<}(x, w) S^{>}(w, x)\right)\right] \\
& \text { true scattering terms = nonlocal memory integrals }
\end{aligned}
$$

Problem 2. Pinch singularity

Using symmetries of the integrals one can show that the CP-odd VIA-source is

$$
S_{\mathrm{R}}^{\phi_{\mathrm{P}}}=-v_{w} \gamma_{w}|m|^{2} \theta^{\prime} \times I_{\gamma} \quad \text { where } \quad I_{\gamma}=8 \pi^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} k^{2}\left[\operatorname{sgn}\left(k_{0}\right) \delta_{\gamma}\left(k^{2}\right)\right]^{2} f^{\prime}\left(k_{0}\right) \quad \text { is ill-defined }
$$

Pinch singularities are familiar in CTP-formalism and signal the need for resummation...

VIA-method

$$
\Rightarrow \Sigma^{<}(x, y)_{\mathrm{VIA}}=\text { nonlocal memory integral }
$$

Problem 1. Foundational error

Mass is a singular self-energy function,
which contributes to Σ_{H} and not to $\Sigma^{<}$.

\downarrow

$$
\begin{aligned}
\partial_{\mu} j_{5}^{\mu}(x) & =-\lim _{y \rightarrow x} \operatorname{Tr}\left[\gamma^{5}(m(x)+m(y)) S^{<}(x, y)\right] \quad \begin{array}{l}
\text { the true singular mass correction } \\
\text { to axial vector current divergence }
\end{array} \\
& +2 \operatorname{Re} \int \mathrm{~d}^{3} \boldsymbol{w} \int_{t_{\mathrm{in}}}^{x_{0}} \mathrm{~d} w_{0} \operatorname{Tr}\left[\gamma^{5}\left(\Sigma^{>}(x, w) S^{<}(w, x)-\Sigma^{<}(x, w) S^{>}(w, x)\right)\right]
\end{aligned}
$$

Problem 2. Pinch singularity

Using symmetries of the integrals one can show that the CP-odd VIA-source is

$$
S_{\mathrm{R}}^{\phi \mathrm{P}}=-v_{w} \gamma_{w}|m|^{2} \theta^{\prime} \times I_{\gamma} \quad \text { where } \quad I_{\gamma}=8 \pi^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} k^{2}\left[\operatorname{sgn}\left(k_{0}\right) \delta_{\gamma}\left(k^{2}\right)\right]^{2} f^{\prime}\left(k_{0}\right) \quad \text { is ill-defined }
$$

Pinch singularities are familiar in CTP-formalism and signal the need for resummation...

Problem 3. further math issues

$$
\begin{aligned}
\operatorname{sgn}\left(k_{0}\right) \delta_{\gamma}\left(k^{2}\right) & \rightarrow \frac{1}{2 \omega_{a}} \sum_{ \pm} \pm \delta_{\gamma}\left(k_{0} \mp \omega_{a}\right) \\
& \equiv \frac{1}{2 \pi \omega_{a}} \sum_{ \pm} \frac{ \pm \gamma_{a}}{\left(k_{0} \mp \omega_{a}\right)^{2}+\gamma_{a}^{2}} \equiv \frac{1}{2 \pi \omega_{a}} \sum_{ \pm} g_{\boldsymbol{k} a}^{ \pm}\left(k_{0}\right)
\end{aligned}
$$

I_{γ} may be, and was regulated eg by a finite width γ and thermal masses
(though, depending on the regulator, it can have an arbitrary value)

$$
\begin{array}{rll}
I_{\gamma, r}^{\phi \mathrm{P}}=2 \int_{\boldsymbol{k}} & \frac{1}{\omega_{\mathrm{L}} \omega_{\mathrm{R}}}\left\{\operatorname{Im}\left[\frac{f\left(E_{\mathrm{L}}^{*}\right)-f\left(E_{\mathrm{R}}\right)}{\left(E_{\mathrm{L}}^{*}-E_{\mathrm{R}}\right)^{2}} \operatorname{tr}_{1}^{\mathrm{LO}}-\frac{f\left(E_{\mathrm{L}}\right)+f\left(E_{\mathrm{R}}\right)+s}{\left(E_{\mathrm{L}}+E_{\mathrm{R}}\right)^{2}} \operatorname{tr}_{2}^{\mathrm{LO}}\right]\right. & \begin{array}{l}
\text { Familiar result in } \\
\\
\left.+r \operatorname{Re} \sum_{n=0}^{\infty} \sum_{ \pm \pm^{\prime}}\left(g_{\boldsymbol{k} L}^{ \pm}\left(-k_{0}\right) B_{\boldsymbol{k} R}^{(2) \pm^{\prime}}\left(-k_{0}\right)+g_{\boldsymbol{k} R}^{ \pm^{\prime}}\left(k_{0}\right) B_{\boldsymbol{k} L}^{(2) \pm}\left(k_{0}\right)\right)_{k_{0}=i \omega_{n}}\right\}
\end{array} \begin{array}{l}
\text { from misserature } \\
\text { of the folefunction }
\end{array}
\end{array}
$$

where $E_{\mathrm{L}, \mathrm{R}} \equiv \omega_{\mathrm{L}, \mathrm{R}}+i \gamma$ and $\operatorname{tr}_{1}^{\mathrm{LO}}=E_{L}^{*} E_{R}-\boldsymbol{k}^{2}$ and $\operatorname{tr}_{2}^{\mathrm{LO}}=-E_{L} E_{R}-\boldsymbol{k}^{2}$.

VIA-method

$$
\Rightarrow \sum^{<}(x, y)_{\mathrm{VIA}}=\text { nonlocal memory integral }
$$

Problem 1. Foundational error

Mass is a singular self-energy function,
which contributes to Σ_{H} and not to $\Sigma^{<}$.

\downarrow

$$
\begin{aligned}
& \partial_{\mu} j_{5}^{\mu}(x)=-\lim _{y \rightarrow x} \operatorname{Tr}\left[\gamma^{5}(m(x)+m(y)) S^{<}(x, y)\right] \quad \begin{array}{l}
\text { the true singular mass correction } \\
\text { to axial vector current divergence }
\end{array} \\
&+2 \operatorname{Re} \int \mathrm{~d}^{3} \boldsymbol{w} \int_{t_{\mathrm{in}}}^{x_{0}} \mathrm{~d} w_{0} \operatorname{Tr}\left[\gamma^{5}\left(\Sigma^{>}(x, w) S^{<}(w, x)-\Sigma^{<}(x, w) S^{>}(w, x)\right)\right] \\
& \text { true scattering terms = nonlocal memory integrals }
\end{aligned}
$$

Problem 2. Pinch singularity

Using symmetries of the integrals one can show that the CP-odd VIA-source is

$$
S_{\mathrm{R}}^{\phi \mathrm{P}}=-v_{w} \gamma_{w}|m|^{2} \theta^{\prime} \times I_{\gamma} \quad \text { where } \quad I_{\gamma}=8 \pi^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} k^{2}\left[\operatorname{sgn}\left(k_{0}\right) \delta_{\gamma}\left(k^{2}\right)\right]^{2} f^{\prime}\left(k_{0}\right) \quad \text { is ill-defined }
$$

Pinch singularities are familiar in CTP-formalism and signal the need for resummation...

Problem 3. further math issues

$$
\begin{aligned}
\operatorname{sgn}\left(k_{0}\right) \delta_{\gamma}\left(k^{2}\right) & \rightarrow \frac{1}{2 \omega_{a}} \sum_{ \pm} \pm \delta_{\gamma}\left(k_{0} \mp \omega_{a}\right) \\
& \equiv \frac{1}{2 \pi \omega_{a}} \sum_{ \pm} \frac{ \pm \gamma_{a}}{\left(k_{0} \mp \omega_{a}\right)^{2}+\gamma_{a}^{2}} \equiv \frac{1}{2 \pi \omega_{a}} \sum_{ \pm} g_{\boldsymbol{k} a}^{ \pm}\left(k_{0}\right)
\end{aligned}
$$

I_{γ} may be, and was regulated eg by a finite width γ and thermal masses (though, depending on the regulator, it can have an arbitrary value)

$$
\begin{array}{rll}
I_{\gamma, r}^{\phi \mathrm{P}}=2 \int_{\boldsymbol{k}} \frac{1}{\omega_{\mathrm{L}} \omega_{\mathrm{R}}}\left\{\operatorname{Im}\left[\frac{f\left(E_{\mathrm{L}}^{*}\right)-f\left(E_{\mathrm{R}}\right)}{\left(E_{\mathrm{L}}^{*}-E_{\mathrm{R}}\right)^{2}} \operatorname{tr}_{1}^{\mathrm{LO}}-\frac{f\left(E_{\mathrm{L}}\right)+f\left(E_{\mathrm{R}}\right)+s}{\left(E_{\mathrm{L}}+E_{\mathrm{R}}\right)^{2}} \operatorname{tr}_{2}^{\mathrm{LO}}\right]\right. & \begin{array}{l}
\text { Familiar result in } \\
\\
\left.+r \operatorname{Re} \sum_{n=0}^{\infty} \sum_{ \pm \pm^{\prime}}\left(g_{\boldsymbol{k} L}^{ \pm}\left(-k_{0}\right) B_{\boldsymbol{k} R}^{(2) \pm^{\prime}}\left(-k_{0}\right)+g_{\boldsymbol{k} R}^{ \pm^{\prime}}\left(k_{0}\right) B_{\boldsymbol{k} L}^{(2) \pm}\left(k_{0}\right)\right)_{k_{0}=i \omega_{n}}\right\}
\end{array} \begin{array}{l}
\text { from missed poles } \\
\text { of the } f^{\prime} \text { function }
\end{array}
\end{array}
$$

where $E_{\mathrm{L}, \mathrm{R}} \equiv \omega_{\mathrm{L}, \mathrm{R}}+i \gamma$ and $\operatorname{tr}_{1}^{\mathrm{LO}}=E_{L}^{*} E_{R}-\boldsymbol{k}^{2}$ and $\operatorname{tr}_{2}^{\mathrm{LO}}=-E_{L} E_{R}-\boldsymbol{k}^{2}$.

Actually $s=-1$, but this contribution diverges.

VIA: put s=0 by hand "renormalization"

True solution: a contribution from f^{\prime}-poles cancel this term.

SC-method extended to thermal quasiparticles does not show VIA-term: no VIA-source exists

KK, JCAP 11 (2021) 11, 042.

This was later confirmed by Postma etal. (who found yet another problem within VIA, see Mariekes talk!)
M.Postma, G.White, J.van de Vis, JHEP 12 (2022) 121.

SC-method extended to thermal quasiparticles does not show VIA-term: no VIA-source exists

KK, JCAP 11 (2021) 11, 042.

This was later confirmed by Postma etal. (who found yet another problem within VIA, see Mariekes talk!)
M.Postma, G.White, J.van de Vis, JHEP 12 (2022) 121.

Problem 4. Naive use of Fick's law
Fick's law is a phenomenological relation, which connects the diffusive flux to the rate of change of the concentration.
One must be careful to correctly identify the quantities to which it is applied. Consider the vector current divergence equation (VCDE):

$$
\begin{array}{r}
\partial_{z} j_{h \pm}^{z}=\partial_{z} \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}} v_{h \pm}\left(f_{\mathrm{FD}}^{h \pm}-\mu_{h} f_{0 w}^{\prime}+\delta f_{h \pm}\right)=C_{h 1} \\
\text { first velocity moment } \\
f_{h \pm} \approx f_{0 w}-\mu_{h} f_{0 w}^{\prime}+\delta f_{h \pm}
\end{array}
$$

kinetic perturbation

SC-method extended to thermal quasiparticles does not show VIA-term: no VIA-source exists

This was later confirmed by Postma etal. (who found yet another problem within VIA, see Mariekes talk!)
M.Postma, G.White, J.van de Vis, JHEP 12 (2022) 121.

Problem 4. Naive use of Fick's law
Fick's law is a phenomenological relation, which connects the diffusive flux to the rate of change of the concentration.
One must be careful to correctly identify the quantities to which it is applied. Consider the vector current divergence equation (VCDE):

$$
\partial_{z} j_{h \pm}^{z}=\partial_{z} \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}} v_{h \pm}\left(f_{\mathrm{FD}}^{h \pm}-\mu_{h} f_{0 w}^{\prime}+\delta f_{h \pm}\right)=C_{h 1}
$$

first velocity moment

$$
f_{h \pm} \approx f_{0 w}-\mu_{h} f_{0 w}^{\prime}+\delta f_{h \pm}
$$

Three distinct parts can be identified:
kinetic perturbation

KK, JCAP 11 (2021) 11, 042.

$$
\begin{aligned}
& \text { Source (drag): } \partial_{z} j_{h \pm, \text { force }}^{z} \equiv \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}} v_{w} \gamma_{w} F_{h \pm} f_{0 w}^{\prime}=-\mathcal{S}_{h 1 \pm}^{n} \\
& \text { source }
\end{aligned} \quad \Rightarrow \quad-v_{w} \delta n_{h}^{\prime}-D \delta n_{h}^{\prime \prime}=\mathcal{S}_{h 1}^{n}+\mathcal{C}_{h 1}^{n}
$$

SC-method extended to thermal quasiparticles does not show VIA-term: no VIA-source exists

This was later confirmed by Postma etal. (who found yet another problem within VIA, see Mariekes talk!)
M.Postma, G.White, J.van de Vis, JHEP 12 (2022) 121.

Problem 4. Naive use of Fick's law

Fick's law is a phenomenological relation, which connects the diffusive flux to the rate of change of the concentration.
One must be careful to correctly identify the quantities to which it is applied. Consider the vector current divergence equation (VCDE):

$$
\partial_{z} j_{h \pm}^{z}=\partial_{z} \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}} v_{h \pm}\left(f_{\mathrm{FD}}^{h \pm}-\mu_{h} f_{0 w}^{\prime}+\delta f_{h \pm}\right)=C_{h 1}
$$

first velocity moment

$$
f_{h \pm} \approx f_{0 w}-\mu_{h} f_{0 w}^{\prime}+\delta f_{h \pm}
$$

Three distinct parts can be identified:
kinetic perturbation
KK, JCAP 11 (2021) 11, 042.

$$
\begin{aligned}
& \text { Source (drag): } \partial_{z} j_{h \pm, \text { force }}^{z} \equiv \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}} v_{w} \gamma_{w} F_{h \pm} f_{0 w}^{\prime}=-\mathcal{S}_{h 1 \pm}^{n} \\
& \text { source }
\end{aligned} \quad \begin{aligned}
\text { Advection: } & \partial_{z} j_{h \pm, \text { adv }}^{z} \approx-v_{w} \partial_{z} \delta n_{h \pm} \\
\text { Diffusion: } & \partial_{z} j_{h \pm, \text { diff }}^{z} \equiv \partial_{z} \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}} v_{h \pm} \delta f_{h \pm} \stackrel{\mathrm{FL}}{\equiv}-D \partial_{z}^{2} \delta n_{h \pm} \\
&
\end{aligned}
$$

VCDE $=0$ th moment of the SC-equation:

$$
\begin{gathered}
\partial_{z} j_{h \pm}^{z}-C_{h 1}^{n}=0 \Leftrightarrow \int_{\mathbf{k}}\left(v_{h \pm} \partial_{z} f_{h \pm}+F_{h \pm} \partial_{k_{z}} f_{h \pm}-\mathscr{C}_{h \pm}[f]\right)=0 \\
\partial_{z} j_{h \pm}^{5 z}-C_{5 h 1}^{n}=0 \Leftrightarrow \int_{\mathbf{k}} \frac{k_{z}}{\omega}\left(v_{h \pm} \partial_{z} f_{h \pm}+F_{h \pm} \partial_{k_{z}} f_{h \pm}-\mathscr{C}_{h \pm}[f]\right)=0
\end{gathered}
$$

AVCDE $=1$ st moment of the SC-equation:

DE can be derived from the (first 2) SC moment equations. J.M.Cline, K.K. PRD 101 2020) 6, 063525,

No collisional sources

An early claim in SC-literature was that WKB-corrections to collision terms cause additional sources, of similar structure to the VIA:

$$
\propto v_{w} \gamma_{w}|m|^{2} \theta^{\prime} y^{2}
$$

(it enters diffusion equations differently from VIA, though).
Troublingly, this source was created also by equilibrium distributions.
T.Prokopec, M.G.Schmidt and S.Weinstock, Annals Phys. 314, 208 (2004), Annals Phys. 314, 267 (2004)

$$
\begin{gathered}
\Gamma_{2}=y^{2} \int_{\mathcal{C}} \mathrm{d}^{4} u \mathrm{~d}^{4} v \sum_{c d} \operatorname{Tr}\left[S^{c d} P_{R} S^{d c} P_{L}\right] \Delta^{c d} \\
\Sigma^{a b}(u, v)=-i a b \delta \Gamma_{2} / \delta S^{b a}(v, u)
\end{gathered}
$$

The problem was that at gradient level, PSW used, to write $g_{33, \text { th }}^{s<}$ in terms of $g_{00, \text { th }}^{s<}$, using wrong KMS-identities:

$$
g_{33, \text { th }}^{s<,>} \rightarrow-\frac{k_{z}}{k_{0}} g_{00, \text { th }}^{s<,>}-s \frac{|m|^{2} \theta^{\prime}}{2 k_{0} \tilde{k}_{0}} \partial_{k_{z}} g_{00, \text { th }}^{s<,>} \quad \text { and } \quad \partial_{k_{z}} g_{00, \text { th }}^{>} \rightarrow \partial_{k_{z}}\left(e^{\beta p_{0}} g_{00, \text { th }}^{<}\right) \quad \text { with } \quad p_{0}=\gamma_{w}\left(k_{0}+v_{w} k_{z}\right)
$$

These actually break the KMS-condition ==> PSW collision term was not pushing towards equilibrium, but away from it.
The correct KMS-condition must be set at the matrix, not component level, where it states that

$$
S_{\mathrm{th}}^{<} \equiv-2 i f_{\mathrm{th}}^{<} \mathcal{A} \quad \text { and } \quad S_{\mathrm{th}}^{>} \equiv-2 i f_{\mathrm{th}}^{>} \mathcal{A}
$$

non-trivial structure comes from the equation for \mathscr{A}_{s}
This implies a symmetric relation $g_{33, \text { th }}^{s<,>}=-2 i f_{0 w}^{<,>} a_{33}^{s}=-2 i f_{0 w}^{<,>}\left(\frac{k_{z}}{k_{0}} a_{00}^{s}-s \frac{|m|^{2} \theta^{\prime}}{2 k_{0} \tilde{k}_{0}} \partial_{k_{z}} a_{00}^{s}\right)$
As a result thermal equilibrium holds and the C -source term vanishes.
Related: one can use zeroth order DR's (in gradients) in SC collision integrals (to the order we computed the source).

