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Equilibrium:  perturbative / nonperturbative 
        - B violation rate 
         - PT-parameters, Tc,Tn,L,cs,… 
 Transition strength, B-washout bound, GW-production,… 

Out-of-equilibrium: 
  - CP-even perturbations          ==> vw, Lw, … 
  - CP-odd perturbations,         ==> BAU 

δfeven
μBL

(z)
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tw
⇠ vw

Lw
⇠ 10�5T100
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Need 1st order transtion  

=> bubble passage time: 

Nucleation temperature, Tn
Tn

Tc

For not too strong phase transitions, bubbles nucleate near the
critical temperature. For stronger PTs, Tn can be significantly < Tc.

Criterion to avoid sphaleron washout inside bubbles is

vn
Tn

> 1.1, not
vc
Tc

> 1.1

Must compute bubble action S3

S3 = 4π

∫

∞

0
dr r2

(

1
2(h

′2 + s′2) + V (h, s)− V (0, sT )
)

and solve

exp(−S3/Tn) =
3

4π

(

H(Tn)

Tn

)4(2πTn

S3

)3/2

for Tn. But finding bubble wall solution at T < Tc is numerically
tricky.
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EWBG in a nutshell
• At critical temperature Tc ∼ 100 GeV, bubbles of true vacuum
(⟨H⟩ ̸= 0) form and start expanding.

• Particles interact with wall in a CP violating way.

• Baryon asymmetry forms inside the bubble.

<H> = v

baryon #
conserved

<H> = 0
L
R
L
R

baryon
violation
by sphalerons

〈 〉 〉〈
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1. Overall EWBG problem

H ⇠ 10�14
T

2
100GeV

� ⇠ 10�5T100GeV

At T ≈ 100 GeV

=>

Why     ?ηB ≡
nB

nγ
= 6 × 10−10

==> BSM

==> BSM

SM ok



“SUSY cannot be     
disproved,  only 
abandoned”

LSS SUSY 

2HDM

Some activity still  
observed eg. around  
nHDM models …
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Figure 2: The daisy diagrams that are resummed.
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Figure 3: The leading contributions to the self-energy of the gauge bosons.

butions to the self-energies are UV finite. Once the sum over the Matsubara
frequencies is performed (or if the real time formalism is used), the integrand
contains the particle distribution functions that are exponentially suppressed
for momenta larger than the temperature. Hence, the graphs that are ap-
parently UV divergent can be estimated to be of order of the temperature.
In particular, tadpole diagrams of the self-energy that arise from the gauge
interaction are of order g2T 2 (e.g. the contributions to the self-energy of the
gauge bosons shown in Fig. 3).

If the particle in the loop has a mass ml and the self-energy is of order
g2T 2, adding self-energies leads to additional factors

g2T 2

(2πnT )2 + p2 +m2
l

. (30)

As long as n > 0, this yields only a subleading correction of order g2. Still,

13

Anything relying on 1-step transition…
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FIG. 3. Shape of the Higgs potential at the critical tem-
perature and its dependence on di↵erent choices of parame-
ters: DM self-interaction �D (left panel) and SM Higgs bo-
son mass mh (right panel). While varying �D, we have fixed
mh = 120GeV, mS = 60GeV, mA = mC = 300GeV and
while varying mh, we have fixed �D = 0, mS = 76GeV,
mA = mC = 300GeV, respectively.

the improved one-loop approximation for the e↵ective po-
tential at non-zero temperature, and so one can question
its reliability at higher orders in perturbation theory. In
the examples studied up to now, such as MSSM, it turns
out the two-loop e↵ects [26] only help to strengthen the
phase transition. Similarly, the non-perturbative lattice
simulations tend to do the same over the perturbative
results [27].

Another uncertainty lies in the possibly e↵ect of the
magnetic field during the phase transition [5]. The size
of the magnetic field has been up to now only roughly
estimated [28], thus its e↵ect is not completely clear. It
was argued recently [29] though, in the context of the
MSSM, that it may have an impact on the upper limit of
the Higgs mass.

Recently, the issue of gauge invariance has been
brought up [30]. It is claimed that one may again need a
complete two-loop finite-temperature e↵ective potential
for this purpose.

Why not a singlet? Before turning to higher representa-
tions, let us discuss explicitly the case of the singlet DM.
After all, this is a simpler possibility with fewer couplings
and thus more constrained. In fact, it fails to do the job.
More precisely, while the singlet by itself can actually
help the phase transition to be of the first order [31], it
cannot simultaneously be the DM [32], and vice versa.

What happens is the following. In this case, there is
only one coupling with the Higgs and �A ⌘ �C ⌘ �S .
We survey all the points in Fig. 2 and find they all satisfy
�A,C & 1. On the other hand, direct detection, as shown
in Eq. (5), constrains this coupling to be much smaller
than what is needed to trigger a strong first-order phase
transition. The failure of the real singlet thus makes the

choice of the inert doublet scalar the simplest one.
One can further extend the real scalar singlet case to

a complex one. It was shown [33] that the double job of
dark matter and strong electroweak phase transition can
be achieved in this case.
On the other hand, the scalar singlet could be the car-

rier of the force between the SM sector and the dark mat-
ter one [34], instead of being DM itself. Such a singlet
can actually trigger [34] the first order phase transition.
This can be successfully embedded [35] in the NMSSM.

Higher representation alternative? It could be appeal-
ing to resort to higher SU(2)L representations for DM
candidate, since then there are fewer Z2 odd couplings
which destabilize them.
Let us start with integer isospin representations �. In

order to have a neutral particle, needed for the DM, they
must have even hypercharge. Therefore, they only have
two gauge invariant terms with the SM Higgs, out of
which only one can split their masses

�
�†T a�

� �
�†�a�

�
, (11)

where T a are the appropriate generators of �. In the
case of the real multiplet with Y = 0, the spectrum is
degenerate, while in the case of the complex one, the mass
splits are proportional to the electromagnetic charge once
the Higgs gets the vev.
The former case works only for a heavy DM, above

TeV, due to strong co-annihilating e↵ects on the relic
density [36]. This makes it too heavy to have an impact
on the phase transition. The latter case implies degener-
ate real and imaginary components of the neutral parti-
cle, which couple to the Z. Direct detection limits can be
evaded again with a TeV scale DM. In short, as remarked
in the Introduction, the integer isospin candidates fail to
render the phase transition be first order.
How about higher half-integer isospin multiplets? A

natural choice Y = 1/2, accommodates another term in
the potential

�
�TT a�

� �
�T�a�

�⇤
, (12)

where we ignore for simplicity the SU(2) conjugation.
In general, this term splits the real and imaginary neu-
tral components and in principle allows for light DM and
heavy enough other states, just as in the case of the dou-
blet discussed above. We will return to this intriguing
possibility in a future publication [37].

Outlook: what about genesis? Before closing let us
comment on a few related issues.

Sources of CP Violation. Successful baryogenesis re-
quires CP violation, not only the first order phase tran-
sition. It is easy to imagine new sources of CP violation,
but the problem then arises as to whether the new physics
behind it a↵ects the nature of the phase transition. In
this sense, new fermions are more welcome, at least in

�

V
e↵
(�
)

CP
CEWBG model building

Issue:  
                 

strong transition from loops 
requires very large couplings

3

- PT breaks down for Veff 

- DR breaks down for  3d-lattice 
- large eDM’s and nDM’s

Transition strength CP-violation

Light Stop  
                 



EWBG model building  
Profumo, Ramsey-Musolf, Shaughnessy, JHEP 0708 (2007) 010 

V =
1

2
�hsh

2s2 � (µ2
s � csT

2)s2 � (µ2
h � chT

2)h2 + ...

Two-step transitions:

1.
2. EWPT and EWBG

|S|

|H|

Works even for perturbative couplings

Inoue, Ovanesyan, Ramsey-Musolf, PRD93 (2016) 015013, 
J.R.Espinosa, T.Konstandin, F.Riva, NPB854 (2012) 592 
J.M.Cline, KK, JCAP 1301 (2013) 012 
Laine, Rummukainen,
Cline, Moore, Quiros …,

Portal models to Dark Sector(s)
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p
5/3g0, g2 = g, g3 = gs, of the

top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt, Mh and ↵s by ±3�.

the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4
t
g2
s
+ 30y6

t
terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓
Mt [GeV]� 173.1

0.7

◆
� 0.5

✓
↵s(MZ)� 0.1184

0.0007

◆
± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed

2

Low energy DS-models motivated by the near  
UV-completeness of the SM with little new physics  
beyond EW-scale

Shaposhnikov and Wetterich
Giudice etal, ..

SM Dark 
sector

http://inspirehep.net/author/Kainulainen%2C%20Kimmo?recid=1190813&ln=fr


5

2. Computing B from EWBG
How to accurately model the CP-violating out-of-equilibrium interactions  
of particles with the expanding phase transition wall?

where ⌃̂ ⌘ ⌃out(z, k�
i

2
@z). The precise form of the self-energy functions ⌃<,> depends on

the problem. To the lowest order in gradients the collision term becomes:

C
s<
1 [f ] ⇡ Tr

⇥
(⌃>

S
<
w � ⌃<

S
>
w)Pws

⇤
. (4.27)

Given the connection formulae between the g
s<
ab

and g
s<
00
, the collision integral can always

be reduced to a functional of gs<
00

only. Then, the spectral form (4.25) allows performing all

frequency integrals, which further reduces the collision term (4.27) into a functional of the

generalised Boltzmann distributions f<
s±. This procedure is a straightforward generalisation

of the usual Boltzmann theory to the case of WKB-quasistates.

Helicity eigenbasis So far we have labeled our states by their spin in the z-direction

in the doubly boosted frame. It is also possible to work in the helicity basis, which is

more directly related to chirality. Helicity spinors are the eigenspinors of the operator

ĥ ⌘ k̂ · ↵�
5. In the doubly boosted frame the helicity h|| and spin s are then simply

related:

s = h||sgn(kz). (4.28)

Going from s to h|| eigenstates is just a matter of relabelling in equations (4.17)–(4.19). A

little more thought is needed to extend the formulae for the wall frame helicity states as this

needs a statistical interpretation. Indeed, in the (semi)classical picture it is consistent to

compute the force acting on a helicity state h as the sum of forces acting on the projections

of the h-state onto s-states. This corresponds to setting [8]

s ! sh ⌘ hk, h|�||

�
Sz � i(v|| ⇥↵)z

�
|k, hi = h�||

kz

|k|
⌘ hsk. (4.29)

Because sh is already multiplying a gradient correction term, it was su�cient to compute

the projection using the lowest order adiabatic helicity eigenstates. From the quantum

point of view the helicity states behave on average, in the sense of a statistical ensemble, as

if they were subject to a force and a dispersion relation where s ! hsk. The s-eigenstates

are very close to the h eigenstates and the relation becomes exact in the massless limit. In

what follows we shall label the states by h and include the factor sk explicitly. However,

going from h basis to the s-basis is a simple matter of resetting sk = sgn(kz).

4.2 Semiclassical Boltzmann equation

We are now ready to put everything together. Integrating (4.18) over the frequency with

the spectral form (4.25) and using the helicity basis, one gets the semiclassical Boltzmann

equation for the WKB-quasiparticle distribution functions fh±:

vh±@zfh± + Fh±@kzfh± = Ch±[f ], (4.30)

where vh± is a velocity factor in the z-direction and Fh± is the related semiclassical force

term [8, 25, 27, 31, 37]:

vh± =
kz

!h±

and Fh± = �
|m|

20

2!h±

± hsk�||
(|m|

2
✓
0)0

2!2

0

, (4.31)
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Figure 1: The self-energy function with two mass insertions on a fermion line.

the derivation in detail. In the notation of [19] the right chiral current divergence equation

now becomes

@µj
µ

R
(x) ⌘ S

CP
R (x) + S

CP/

R
(x), (3.2)

were the source terms induced by the operator (3.1) are

S
CP
R (x) = 2

Z
d4w⇥xwRe(mxm

⇤

w)Tr
⇥
iS

>
L,xw

iS
<
R,wx

� iS
<
L,xw

iS
>
R,wx

⇤
(3.3)

S
CP/

R
(x) = �2

Z
d4w⇥xwIm(mxm

⇤

w)Im
⇥
iS

>
L,xw

iS
<
R,wx

� iS
<
L,xw

iS
>
R,wx

⇤
, (3.4)

with ⇥xw ⌘ ✓(x0�w
0) andmx ⌘ mR(x)+imI(x). Left current sources are just the negative

of these S
a

L
= �S

a

R
, so that @µj

µ

L
(x) = �@µj

µ

R
(x). Vector current is thus conserved and

both sources arise from the axial current (2.15). One evaluates these integrals by moving

to Wigner space (explicit Wigner transform is given by (4.1) below) and using massless

thermal propagators for S<,>
R,L :

iS
<,>
L,R (k) = 2⇡k/ sgn(u · k)f<,>

L,R (u · k + µL,R)�(k
2)PR,L. (3.5)

Here u
µ is the plasma 4-velocity, PR,L = 1

2
(1± �

5) and

f
<
th
(x) = f(x) and f

>
th
(x) = 1� f(x), with f(x) =

1

ex/T + 1
. (3.6)

After moving to a new integration variable r = x� w one finds:

S
CP
R (x) = 4

Z
d4r✓(r0)

Z

k1,k2

a
+

x,r k1 · k2 cR(k1, k2) cos((k1 � k2) · r) (3.7)

S
CP/

R
(x) = 4

Z
d4r✓(r0)

Z

k1,k2

b
�

x,r k1 · k2 cR(k1, k2) sin((k1 � k2) · r), (3.8)

where we defined
R
k
⌘

R
d
4
k

(2⇡)4
, and

cR(k1, k2) ⌘ 4⇡2sgn(u · k1)sgn(u · k2)
�
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3.1 Pinch singularity

Equations (3.7-3.10) agree with [19], which is the latest VIA-calculation in this model.

We will continue the calculation di↵erently from [19] however, using the fact that the

integrands in both equations (3.7) and (3.8) are symmetric under r ! �r, so that the

integration range in r0 can be continued to positive infinity2:

S
CP
R (x) = 2|m2

x| Re

Z

k1,k2

k1 · k2 cR(k1, k2)

Z
d4r e�i(k1�k2)·r (3.11)

S
CP/

R
(x) = �2|m2

x|@µ✓ Im

Z

k1,k2

k1 · k2 cR(k1, k2)

Z
d4r rµ e�i(k1�k2)·r. (3.12)

These expressions are Lorenz-covariant and can be computed either in the plasma- or in the

wall frame with identical results. One can set rµ !
i

2
(@

k
µ
1
� @

k
µ
2
), after which performing

the r-integral gives in both cases a delta-function �
4(k1� k2). With no chemical potentials

S
CP
R

would vanish because of the antisymmetry of the integrand in k1 ! k2. Working to

first order in chemical potentials in S
CP
R

and to the lowest order in S
CP/

R
, one finds

S
CP
R = |m|

2
�(µR � µL)⇥ I� and S

CP/

R
= �vw�w|m|

2
✓
0
⇥ I� , (3.13)

where � = 1/T and

I� = 8⇡2

Z
d4k

(2⇡)4
k
2 [sgn(k0)��(k

2)]2f 0(k0). (3.14)

Note that in contrast with the standard VIA-literature, both CP-even and CP-odd sources

are proportional to the same integral factor.

The CP-even term S
CP
R

is not really a source, but rather a collision term that tends

to bring right and left chiralities to equilibrium, but the CP-odd term S
CP/

R
appears to

have the expected form ⇠ vw�w|m|
2
✓
0. However, both terms are ill defined because of the

overlapping delta functions in I� . Such pinch singularities often appear when a calculation

does not contain all relevant terms to the order one is working. Indeed, the devastating

appearance of pinch singularities in the early formulations of finite temperature field theory

was instrumental to the development of the CTP formalism. Here the singularity arises

from an attempt to approximate the singular forward scattering term by a nonlocal collision

integral, which is but one in the infinite series of relevant terms. Technically it arises

because the mass insertions carry no momenta. As emphasised earlier, the problem would

disappear if one summed over all mass insertion diagrams including those with odd number

of insertions. But this is not the way chosen in the VIA-literature. Instead, the singularity

is hidden by a di↵erent order of integrations and regulated by a finite width and thermal

masses.
2This is actually more consistent to begin with. When calculating the self-energy (3.1) and the ensuing

memory integrals one is using thermal equilibrium propagators, which means that terms involving the self-

energy ⌃H and the pole function SH are implicitly absorbed to the definition of thermal quasiparticles and

should be dropped in (2.17). This reduces the memory integral in (2.14) to the last line of (2.17), which is

just what we are using here based on symmetry.

– 8 –

Identify j  as a diffusion current  
and employ Ficks law:  j = − D∇n

=> Diffusion equations

Boltzmann equation

current divergence



5

2. Computing B from EWBG
How to accurately model the CP-violating out-of-equilibrium interactions  
of particles with the expanding phase transition wall?

where ⌃̂ ⌘ ⌃out(z, k�
i

2
@z). The precise form of the self-energy functions ⌃<,> depends on

the problem. To the lowest order in gradients the collision term becomes:

C
s<
1 [f ] ⇡ Tr

⇥
(⌃>

S
<
w � ⌃<

S
>
w)Pws

⇤
. (4.27)

Given the connection formulae between the g
s<
ab

and g
s<
00
, the collision integral can always

be reduced to a functional of gs<
00

only. Then, the spectral form (4.25) allows performing all

frequency integrals, which further reduces the collision term (4.27) into a functional of the

generalised Boltzmann distributions f<
s±. This procedure is a straightforward generalisation

of the usual Boltzmann theory to the case of WKB-quasistates.

Helicity eigenbasis So far we have labeled our states by their spin in the z-direction

in the doubly boosted frame. It is also possible to work in the helicity basis, which is

more directly related to chirality. Helicity spinors are the eigenspinors of the operator

ĥ ⌘ k̂ · ↵�
5. In the doubly boosted frame the helicity h|| and spin s are then simply

related:

s = h||sgn(kz). (4.28)

Going from s to h|| eigenstates is just a matter of relabelling in equations (4.17)–(4.19). A

little more thought is needed to extend the formulae for the wall frame helicity states as this

needs a statistical interpretation. Indeed, in the (semi)classical picture it is consistent to

compute the force acting on a helicity state h as the sum of forces acting on the projections

of the h-state onto s-states. This corresponds to setting [8]

s ! sh ⌘ hk, h|�||

�
Sz � i(v|| ⇥↵)z

�
|k, hi = h�||

kz

|k|
⌘ hsk. (4.29)

Because sh is already multiplying a gradient correction term, it was su�cient to compute

the projection using the lowest order adiabatic helicity eigenstates. From the quantum

point of view the helicity states behave on average, in the sense of a statistical ensemble, as

if they were subject to a force and a dispersion relation where s ! hsk. The s-eigenstates

are very close to the h eigenstates and the relation becomes exact in the massless limit. In

what follows we shall label the states by h and include the factor sk explicitly. However,

going from h basis to the s-basis is a simple matter of resetting sk = sgn(kz).

4.2 Semiclassical Boltzmann equation

We are now ready to put everything together. Integrating (4.18) over the frequency with

the spectral form (4.25) and using the helicity basis, one gets the semiclassical Boltzmann

equation for the WKB-quasiparticle distribution functions fh±:

vh±@zfh± + Fh±@kzfh± = Ch±[f ], (4.30)

where vh± is a velocity factor in the z-direction and Fh± is the related semiclassical force

term [8, 25, 27, 31, 37]:

vh± =
kz

!h±

and Fh± = �
|m|

20

2!h±

± hsk�||
(|m|

2
✓
0)0

2!2

0

, (4.31)
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the derivation in detail. In the notation of [19] the right chiral current divergence equation

now becomes
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were the source terms induced by the operator (3.1) are
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, (3.4)

with ⇥xw ⌘ ✓(x0�w
0) andmx ⌘ mR(x)+imI(x). Left current sources are just the negative

of these S
a

L
= �S

a

R
, so that @µj

µ

L
(x) = �@µj

µ

R
(x). Vector current is thus conserved and

both sources arise from the axial current (2.15). One evaluates these integrals by moving

to Wigner space (explicit Wigner transform is given by (4.1) below) and using massless

thermal propagators for S<,>
R,L :

iS
<,>
L,R (k) = 2⇡k/ sgn(u · k)f<,>

L,R (u · k + µL,R)�(k
2)PR,L. (3.5)

Here u
µ is the plasma 4-velocity, PR,L = 1

2
(1± �

5) and

f
<
th
(x) = f(x) and f

>
th
(x) = 1� f(x), with f(x) =

1

ex/T + 1
. (3.6)

After moving to a new integration variable r = x� w one finds:

S
CP
R (x) = 4

Z
d4r✓(r0)

Z

k1,k2

a
+

x,r k1 · k2 cR(k1, k2) cos((k1 � k2) · r) (3.7)
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(x) = 4

Z
d4r✓(r0)

Z

k1,k2

b
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x,r k1 · k2 cR(k1, k2) sin((k1 � k2) · r), (3.8)

where we defined
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, and
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µ + · · · , (3.10)

where · · · refer to higher order gradient corrections. We assume that mR,I(x) are real func-

tions, which are time-independent in the wall frame: mR,I(x) = mR,I(zw) = mR,I(�w(zpl �

vwtpl)), where vw is the velocity of the phase transition front and �w = 1/
p
1� v2w.
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where ⌃̂ ⌘ ⌃out(z, k�
i

2
@z). The precise form of the self-energy functions ⌃<,> depends on

the problem. To the lowest order in gradients the collision term becomes:

C
s<
1 [f ] ⇡ Tr

⇥
(⌃>

S
<
w � ⌃<

S
>
w)Pws

⇤
. (4.27)

Given the connection formulae between the g
s<
ab

and g
s<
00
, the collision integral can always

be reduced to a functional of gs<
00

only. Then, the spectral form (4.25) allows performing all

frequency integrals, which further reduces the collision term (4.27) into a functional of the

generalised Boltzmann distributions f<
s±. This procedure is a straightforward generalisation

of the usual Boltzmann theory to the case of WKB-quasistates.

Helicity eigenbasis So far we have labeled our states by their spin in the z-direction

in the doubly boosted frame. It is also possible to work in the helicity basis, which is

more directly related to chirality. Helicity spinors are the eigenspinors of the operator

ĥ ⌘ k̂ · ↵�
5. In the doubly boosted frame the helicity h|| and spin s are then simply

related:

s = h||sgn(kz). (4.28)

Going from s to h|| eigenstates is just a matter of relabelling in equations (4.17)–(4.19). A

little more thought is needed to extend the formulae for the wall frame helicity states as this

needs a statistical interpretation. Indeed, in the (semi)classical picture it is consistent to

compute the force acting on a helicity state h as the sum of forces acting on the projections

of the h-state onto s-states. This corresponds to setting [8]

s ! sh ⌘ hk, h|�||

�
Sz � i(v|| ⇥↵)z

�
|k, hi = h�||

kz

|k|
⌘ hsk. (4.29)

Because sh is already multiplying a gradient correction term, it was su�cient to compute

the projection using the lowest order adiabatic helicity eigenstates. From the quantum

point of view the helicity states behave on average, in the sense of a statistical ensemble, as

if they were subject to a force and a dispersion relation where s ! hsk. The s-eigenstates

are very close to the h eigenstates and the relation becomes exact in the massless limit. In

what follows we shall label the states by h and include the factor sk explicitly. However,

going from h basis to the s-basis is a simple matter of resetting sk = sgn(kz).

4.2 Semiclassical Boltzmann equation

We are now ready to put everything together. Integrating (4.18) over the frequency with

the spectral form (4.25) and using the helicity basis, one gets the semiclassical Boltzmann

equation for the WKB-quasiparticle distribution functions fh±:

vh±@zfh± + Fh±@kzfh± = Ch±[f ], (4.30)

where vh± is a velocity factor in the z-direction and Fh± is the related semiclassical force

term [8, 25, 27, 31, 37]:

vh± =
kz

!h±

and Fh± = �
|m|

20

2!h±

± hsk�||
(|m|

2
✓
0)0

2!2

0

, (4.31)
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SC-equations describe classical motion under CP-violating force of QM-origin:

f h±
FD =

1
eβγw(ωh±−vw pz) ± 1

with !h± ⇡ !0 ⌥ hsk�|||m|
2
✓
0
/(2!2

0
) and finally

Ch±[f ] ⌘ ±
1

Zh±

Z
dk0
2⇡

⇢h±(k0)C
h

1 [f ]. (4.32)

where ⇢h±(k0) is a weight function which singles out a given frequency and helicity solution

(such as a narrow top-hat distribution with ⇢h±(!h±) = 1). This notation formalises the

usual on-shell projection in the spectral limit.

Contrary to the common identification in the SC-literature, vh± is not the group ve-

locity. Instead, it is easy to show that vgh± ⌘ @kz!h± = Zh±vh± and similarly, the actual

semiclassical force is �@z!h± = Zh±Fh±, consistent with canonical equations. However, it

is perfectly consistent (and practical) to divide both sides of the projected equation (4.18)

by a common factor Zh±, which leads to the standard SC-equations (4.31). The explicit

Z
�1

h±
factor in the collision term (4.32) is usually omitted, but this is consistent to the order

we are working: since C
h

00
[f ] vanishes in thermal equilibrium, it must be proportional to

the perturbation generated by the source and corrections from the Z
�1

h±
-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor

contained in C
h±

00
[f ], as we shall see later in sections 6.3 and 7.

Equation (4.30) is not very useful as such. One has to first separate the non-trivial equi-

librium part of the distribution from the out-of-equilibrium perturbation. It is easy to see

that vs±@z!s±+Fs±@kz!s± = 0, which then implies vs±@zfFD(±!s±)+Fs±@kzfFD(±!s±) =

0 for the equilibrium distribution with vw = 0. The point of this excercise is to emphasise

that a lot of the work done by the semiclassical force goes into setting up the non-trivial

local equilibrium including the vacuum state. The CP-violating changes in the equilibrium

state do not lead to any physical e↵ect however, such as biasing of physical rates including

the sphaleron rate. However, in the case of a moving wall, the equilibrium distribution no

longer satisfies the Liouville equation. Indeed, let us define

fh± = fFD(�w(!h± + vwkz)) +�fh± ⌘ f
h±

FD +�fh±. (4.33)

Inserting (4.33) into equation (4.30) one gets the equation for the perturbation �fh±:

vh±@z�fh± + Fh±@kz�fh± = �vw�wFh±(f
h±

FD )0 + Ch±[f ], (4.34)

where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
20
/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:

�fh± = �f ±�fh. (4.35)
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CP-even

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz

!0

@z�fh �
|m|

20

2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||
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20
|m|
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✓
0

4!4

0
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f
0

0w � �w!0f
00

0w

��
, (4.37)

where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z

d3k

(2⇡)3
�fh± ⌘ 0 and uh ⌘

1

N1

Z
d3k

(2⇡)3
kz

!0

�fh±, (4.39)

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
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, (4.40)

where the semiclassical source functions are

Sh` = �vw�wh

h
(|m|

2
✓
0)0Q8o

`
� |m|

20
|m|

2
✓
0
Q

9o

`

i
. (4.41)

The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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Given the connection formulae between the g
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, the collision integral can always

be reduced to a functional of gs<
00

only. Then, the spectral form (4.25) allows performing all

frequency integrals, which further reduces the collision term (4.27) into a functional of the

generalised Boltzmann distributions f<
s±. This procedure is a straightforward generalisation

of the usual Boltzmann theory to the case of WKB-quasistates.

Helicity eigenbasis So far we have labeled our states by their spin in the z-direction

in the doubly boosted frame. It is also possible to work in the helicity basis, which is

more directly related to chirality. Helicity spinors are the eigenspinors of the operator

ĥ ⌘ k̂ · ↵�
5. In the doubly boosted frame the helicity h|| and spin s are then simply

related:
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Because sh is already multiplying a gradient correction term, it was su�cient to compute

the projection using the lowest order adiabatic helicity eigenstates. From the quantum
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computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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CP-odd

f h±
FD =

1
eβγw(ωh±−vw pz) ± 1

with !h± ⇡ !0 ⌥ hsk�|||m|
2
✓
0
/(2!2

0
) and finally

Ch±[f ] ⌘ ±
1

Zh±

Z
dk0
2⇡

⇢h±(k0)C
h

1 [f ]. (4.32)

where ⇢h±(k0) is a weight function which singles out a given frequency and helicity solution

(such as a narrow top-hat distribution with ⇢h±(!h±) = 1). This notation formalises the

usual on-shell projection in the spectral limit.

Contrary to the common identification in the SC-literature, vh± is not the group ve-

locity. Instead, it is easy to show that vgh± ⌘ @kz!h± = Zh±vh± and similarly, the actual

semiclassical force is �@z!h± = Zh±Fh±, consistent with canonical equations. However, it

is perfectly consistent (and practical) to divide both sides of the projected equation (4.18)

by a common factor Zh±, which leads to the standard SC-equations (4.31). The explicit

Z
�1

h±
factor in the collision term (4.32) is usually omitted, but this is consistent to the order

we are working: since C
h

00
[f ] vanishes in thermal equilibrium, it must be proportional to

the perturbation generated by the source and corrections from the Z
�1

h±
-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor

contained in C
h±

00
[f ], as we shall see later in sections 6.3 and 7.

Equation (4.30) is not very useful as such. One has to first separate the non-trivial equi-

librium part of the distribution from the out-of-equilibrium perturbation. It is easy to see

that vs±@z!s±+Fs±@kz!s± = 0, which then implies vs±@zfFD(±!s±)+Fs±@kzfFD(±!s±) =

0 for the equilibrium distribution with vw = 0. The point of this excercise is to emphasise

that a lot of the work done by the semiclassical force goes into setting up the non-trivial

local equilibrium including the vacuum state. The CP-violating changes in the equilibrium

state do not lead to any physical e↵ect however, such as biasing of physical rates including

the sphaleron rate. However, in the case of a moving wall, the equilibrium distribution no

longer satisfies the Liouville equation. Indeed, let us define

fh± = fFD(�w(!h± + vwkz)) +�fh± ⌘ f
h±

FD +�fh±. (4.33)

Inserting (4.33) into equation (4.30) one gets the equation for the perturbation �fh±:

vh±@z�fh± + Fh±@kz�fh± = �vw�wFh±(f
h±

FD )0 + Ch±[f ], (4.34)

where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
20
/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:

�fh± = �f ±�fh. (4.35)
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where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
20
/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:
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locity. Instead, it is easy to show that vgh± ⌘ @kz!h± = Zh±vh± and similarly, the actual

semiclassical force is �@z!h± = Zh±Fh±, consistent with canonical equations. However, it

is perfectly consistent (and practical) to divide both sides of the projected equation (4.18)

by a common factor Zh±, which leads to the standard SC-equations (4.31). The explicit
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factor in the collision term (4.32) is usually omitted, but this is consistent to the order
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-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor

contained in C
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librium part of the distribution from the out-of-equilibrium perturbation. It is easy to see

that vs±@z!s±+Fs±@kz!s± = 0, which then implies vs±@zfFD(±!s±)+Fs±@kzfFD(±!s±) =

0 for the equilibrium distribution with vw = 0. The point of this excercise is to emphasise

that a lot of the work done by the semiclassical force goes into setting up the non-trivial

local equilibrium including the vacuum state. The CP-violating changes in the equilibrium

state do not lead to any physical e↵ect however, such as biasing of physical rates including

the sphaleron rate. However, in the case of a moving wall, the equilibrium distribution no

longer satisfies the Liouville equation. Indeed, let us define

fh± = fFD(�w(!h± + vwkz)) +�fh± ⌘ f
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FD +�fh±. (4.33)

Inserting (4.33) into equation (4.30) one gets the equation for the perturbation �fh±:

vh±@z�fh± + Fh±@kz�fh± = �vw�wFh±(f
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FD )0 + Ch±[f ], (4.34)

where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
20
/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:

�fh± = �f ±�fh. (4.35)
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CP-even

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz

!0

@z�fh �
|m|

20

2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||
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20
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f
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00

0w
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where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z

d3k

(2⇡)3
�fh± ⌘ 0 and uh ⌘

1

N1

Z
d3k

(2⇡)3
kz

!0

�fh±, (4.39)

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
 
�D1 1

�D2 �vw
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µ
0

h
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0
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+ |m|

20

 
vw�wQ1 0

vw�wQ2 R̄

! 
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uh
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, (4.40)

where the semiclassical source functions are

Sh` = �vw�wh
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The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.

– 20 –

and
CP-odd, depends on htrue energyconsistent gradient expansion



6

where ⌃̂ ⌘ ⌃out(z, k�
i

2
@z). The precise form of the self-energy functions ⌃<,> depends on

the problem. To the lowest order in gradients the collision term becomes:

C
s<
1 [f ] ⇡ Tr

⇥
(⌃>

S
<
w � ⌃<

S
>
w)Pws

⇤
. (4.27)

Given the connection formulae between the g
s<
ab

and g
s<
00
, the collision integral can always

be reduced to a functional of gs<
00

only. Then, the spectral form (4.25) allows performing all

frequency integrals, which further reduces the collision term (4.27) into a functional of the

generalised Boltzmann distributions f<
s±. This procedure is a straightforward generalisation

of the usual Boltzmann theory to the case of WKB-quasistates.

Helicity eigenbasis So far we have labeled our states by their spin in the z-direction

in the doubly boosted frame. It is also possible to work in the helicity basis, which is

more directly related to chirality. Helicity spinors are the eigenspinors of the operator

ĥ ⌘ k̂ · ↵�
5. In the doubly boosted frame the helicity h|| and spin s are then simply

related:

s = h||sgn(kz). (4.28)

Going from s to h|| eigenstates is just a matter of relabelling in equations (4.17)–(4.19). A

little more thought is needed to extend the formulae for the wall frame helicity states as this

needs a statistical interpretation. Indeed, in the (semi)classical picture it is consistent to

compute the force acting on a helicity state h as the sum of forces acting on the projections

of the h-state onto s-states. This corresponds to setting [8]

s ! sh ⌘ hk, h|�||

�
Sz � i(v|| ⇥↵)z

�
|k, hi = h�||

kz

|k|
⌘ hsk. (4.29)

Because sh is already multiplying a gradient correction term, it was su�cient to compute

the projection using the lowest order adiabatic helicity eigenstates. From the quantum

point of view the helicity states behave on average, in the sense of a statistical ensemble, as

if they were subject to a force and a dispersion relation where s ! hsk. The s-eigenstates

are very close to the h eigenstates and the relation becomes exact in the massless limit. In

what follows we shall label the states by h and include the factor sk explicitly. However,

going from h basis to the s-basis is a simple matter of resetting sk = sgn(kz).

4.2 Semiclassical Boltzmann equation

We are now ready to put everything together. Integrating (4.18) over the frequency with

the spectral form (4.25) and using the helicity basis, one gets the semiclassical Boltzmann

equation for the WKB-quasiparticle distribution functions fh±:

vh±@zfh± + Fh±@kzfh± = Ch±[f ], (4.30)

where vh± is a velocity factor in the z-direction and Fh± is the related semiclassical force

term [8, 25, 27, 31, 37]:

vh± =
kz

!h±

and Fh± = �
|m|

20

2!h±

± hsk�||
(|m|

2
✓
0)0

2!2

0

, (4.31)
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2.3 SC-BE equation

6

ω

z

m(z),k0

s

0

q ±k

ss
vg(p)
v̄g(p)

̸=
SC-equations describe classical motion under CP-violating force of QM-origin:

in the rate [61] � ⇡ (g2sT/(6⇡))(log(m
2
g/m

2
mag)+1.1), wherem2

g = (3/2)g2sT
2. The magnetic

scale m
2
mag cannot be computed perturbatively, but one expects that m

2
g/m

2
mag ⇠ 1/g2s .

Despite di↵erent physics causing this result, it is numerically not too dissimilar with (6.56).

However, we can keep using a formally excact damping rate here, even with k-dependence

and the gradient corrections:

a00s± =
1

2
Zws±Re

⇣
�i

k0 � sCP!s± � i�s±

⌘
. (6.57)

The Zws±-dependence of the damping term (6.55) is very important the hole states. Indeed,

for holes !s� ! |k| exponentially fast for large |k| [56]. However, Z� vanishes exponentially

at the same time, so that the hole spectral function approaches exponentially quickly a

delta-distribution. This ensures that the hole spectral function does not ”leak” below the

light-cone.

6.5 Thermal SC-source including finite width

We are now ready to compute the SC source for the thermal WKB states in the Boltzmann

equation including finite width on the spectral function. The matrix valued source term

SM in (6.7) again has to be run through the now familiar reduction process to get the scalar

valued source in the equation for the perturbation �g
s<
00
. In this process, it is su�cient to

use the simple first-order expanded form for SM , which makes calculation quite simple. The

final result for the source that appears in the non-integrated (over k0) for the perturbation

�g
s

00
is

S
�

00s
(k0) = vw�w(2a00s)

⇣
|m|

20

2q0
� sR�q||

(|m|
2
✓
0)0

2q2
0

⌘
(fFD)

0
, (6.58)

where we used @kzf
<
th

= vw�wf
0

FD
and prime again refers to @�w!. If we take the limit � ! 0

then a00s/Zws becomes a delta function at the quasiparticle shells. Then integrating (6.58)

over k0, dividing with the wave-function renormalization factors and finally taking the

di↵erence of positive and negative frequency sectors would give our old source term (6.42),

here written for spin s rather than for helicity. For a finite � the integral can be performed

by complex contour integration, which picks the poles of the spectral function (6.57). The

result is simple:

S
�

qs± = Re
⇥
Sqs±(!s± + i�s±)

⇤
, (6.59)

where Sqs± is the source function defined in (6.42). This is the only e↵ect that coherence

damping has on the semiclassical equations. It only modifies only the energy-dependence in

the source function, whose parametric dependence on gradients remains unchanged. Also,

the relevance of � here depends on how it numerically compares to the total energy instead

of the gradient corrections as in the VIA-case. In the limit where � < T one then finds

S
�

qs± ⇡ Sqs± +
1

2
[@2

k0
Sqs±]|k0|=!s±(z±�)

2 + · · · . (6.60)

That is, the damping correction to the SC-source term is suppressed by a factor ⇠ (�/T )2.

It does not give rise to a new source with the parametric dependence predicted by the

VIA-mechanism.
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WKB-quasiparticles

Only correction to  
source from 
damping

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
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where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:
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where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
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with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
 
�D1 1

�D2 �vw

! 
µ
0

h

u
0

h

!
+ |m|

20

 
vw�wQ1 0

vw�wQ2 R̄

! 
µh

uh

!
=

 
Sh1

Sh2

!
+

 
�Ch1

�Ch2

!
, (4.40)

where the semiclassical source functions are
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The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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CP-odd
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where ⇢h±(k0) is a weight function which singles out a given frequency and helicity solution

(such as a narrow top-hat distribution with ⇢h±(!h±) = 1). This notation formalises the

usual on-shell projection in the spectral limit.

Contrary to the common identification in the SC-literature, vh± is not the group ve-

locity. Instead, it is easy to show that vgh± ⌘ @kz!h± = Zh±vh± and similarly, the actual

semiclassical force is �@z!h± = Zh±Fh±, consistent with canonical equations. However, it

is perfectly consistent (and practical) to divide both sides of the projected equation (4.18)

by a common factor Zh±, which leads to the standard SC-equations (4.31). The explicit

Z
�1

h±
factor in the collision term (4.32) is usually omitted, but this is consistent to the order

we are working: since C
h

00
[f ] vanishes in thermal equilibrium, it must be proportional to

the perturbation generated by the source and corrections from the Z
�1

h±
-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor

contained in C
h±

00
[f ], as we shall see later in sections 6.3 and 7.

Equation (4.30) is not very useful as such. One has to first separate the non-trivial equi-

librium part of the distribution from the out-of-equilibrium perturbation. It is easy to see

that vs±@z!s±+Fs±@kz!s± = 0, which then implies vs±@zfFD(±!s±)+Fs±@kzfFD(±!s±) =

0 for the equilibrium distribution with vw = 0. The point of this excercise is to emphasise

that a lot of the work done by the semiclassical force goes into setting up the non-trivial

local equilibrium including the vacuum state. The CP-violating changes in the equilibrium

state do not lead to any physical e↵ect however, such as biasing of physical rates including

the sphaleron rate. However, in the case of a moving wall, the equilibrium distribution no

longer satisfies the Liouville equation. Indeed, let us define

fh± = fFD(�w(!h± + vwkz)) +�fh± ⌘ f
h±

FD +�fh±. (4.33)

Inserting (4.33) into equation (4.30) one gets the equation for the perturbation �fh±:

vh±@z�fh± + Fh±@kz�fh± = �vw�wFh±(f
h±

FD )0 + Ch±[f ], (4.34)

where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
20
/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:

�fh± = �f ±�fh. (4.35)
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factor in the collision term (4.32) is usually omitted, but this is consistent to the order

we are working: since C
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[f ] vanishes in thermal equilibrium, it must be proportional to
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-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor

contained in C
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the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
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/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:
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state do not lead to any physical e↵ect however, such as biasing of physical rates including

the sphaleron rate. However, in the case of a moving wall, the equilibrium distribution no
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Inserting (4.33) into equation (4.30) one gets the equation for the perturbation �fh±:
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where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
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/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:

�fh± = �f ±�fh. (4.35)
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CP-even

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz

!0

@z�fh �
|m|

20

2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||
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where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z

d3k

(2⇡)3
�fh± ⌘ 0 and uh ⌘

1

N1

Z
d3k

(2⇡)3
kz

!0

�fh±, (4.39)

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
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�D2 �vw
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µ
0

h

u
0

h

!
+ |m|
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vw�wQ1 0

vw�wQ2 R̄
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uh
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!
, (4.40)

where the semiclassical source functions are

Sh` = �vw�wh

h
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0)0Q8o
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� |m|

20
|m|
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0
Q
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`

i
. (4.41)

The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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and
CP-odd, depends on htrue energyconsistent gradient expansion



6

where ⌃̂ ⌘ ⌃out(z, k�
i

2
@z). The precise form of the self-energy functions ⌃<,> depends on

the problem. To the lowest order in gradients the collision term becomes:

C
s<
1 [f ] ⇡ Tr

⇥
(⌃>

S
<
w � ⌃<

S
>
w)Pws

⇤
. (4.27)

Given the connection formulae between the g
s<
ab

and g
s<
00
, the collision integral can always

be reduced to a functional of gs<
00

only. Then, the spectral form (4.25) allows performing all

frequency integrals, which further reduces the collision term (4.27) into a functional of the

generalised Boltzmann distributions f<
s±. This procedure is a straightforward generalisation

of the usual Boltzmann theory to the case of WKB-quasistates.

Helicity eigenbasis So far we have labeled our states by their spin in the z-direction

in the doubly boosted frame. It is also possible to work in the helicity basis, which is

more directly related to chirality. Helicity spinors are the eigenspinors of the operator

ĥ ⌘ k̂ · ↵�
5. In the doubly boosted frame the helicity h|| and spin s are then simply

related:

s = h||sgn(kz). (4.28)

Going from s to h|| eigenstates is just a matter of relabelling in equations (4.17)–(4.19). A

little more thought is needed to extend the formulae for the wall frame helicity states as this

needs a statistical interpretation. Indeed, in the (semi)classical picture it is consistent to

compute the force acting on a helicity state h as the sum of forces acting on the projections

of the h-state onto s-states. This corresponds to setting [8]

s ! sh ⌘ hk, h|�||

�
Sz � i(v|| ⇥↵)z

�
|k, hi = h�||

kz

|k|
⌘ hsk. (4.29)

Because sh is already multiplying a gradient correction term, it was su�cient to compute

the projection using the lowest order adiabatic helicity eigenstates. From the quantum

point of view the helicity states behave on average, in the sense of a statistical ensemble, as

if they were subject to a force and a dispersion relation where s ! hsk. The s-eigenstates

are very close to the h eigenstates and the relation becomes exact in the massless limit. In

what follows we shall label the states by h and include the factor sk explicitly. However,

going from h basis to the s-basis is a simple matter of resetting sk = sgn(kz).

4.2 Semiclassical Boltzmann equation

We are now ready to put everything together. Integrating (4.18) over the frequency with

the spectral form (4.25) and using the helicity basis, one gets the semiclassical Boltzmann

equation for the WKB-quasiparticle distribution functions fh±:

vh±@zfh± + Fh±@kzfh± = Ch±[f ], (4.30)

where vh± is a velocity factor in the z-direction and Fh± is the related semiclassical force

term [8, 25, 27, 31, 37]:

vh± =
kz

!h±

and Fh± = �
|m|

20

2!h±

± hsk�||
(|m|

2
✓
0)0

2!2

0

, (4.31)
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2.3 SC-BE equation
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vg(p)
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̸=
SC-equations describe classical motion under CP-violating force of QM-origin:

in the rate [61] � ⇡ (g2sT/(6⇡))(log(m
2
g/m

2
mag)+1.1), wherem2

g = (3/2)g2sT
2. The magnetic

scale m
2
mag cannot be computed perturbatively, but one expects that m

2
g/m

2
mag ⇠ 1/g2s .

Despite di↵erent physics causing this result, it is numerically not too dissimilar with (6.56).

However, we can keep using a formally excact damping rate here, even with k-dependence

and the gradient corrections:

a00s± =
1

2
Zws±Re

⇣
�i

k0 � sCP!s± � i�s±

⌘
. (6.57)

The Zws±-dependence of the damping term (6.55) is very important the hole states. Indeed,

for holes !s� ! |k| exponentially fast for large |k| [56]. However, Z� vanishes exponentially

at the same time, so that the hole spectral function approaches exponentially quickly a

delta-distribution. This ensures that the hole spectral function does not ”leak” below the

light-cone.

6.5 Thermal SC-source including finite width

We are now ready to compute the SC source for the thermal WKB states in the Boltzmann

equation including finite width on the spectral function. The matrix valued source term

SM in (6.7) again has to be run through the now familiar reduction process to get the scalar

valued source in the equation for the perturbation �g
s<
00
. In this process, it is su�cient to

use the simple first-order expanded form for SM , which makes calculation quite simple. The

final result for the source that appears in the non-integrated (over k0) for the perturbation

�g
s

00
is

S
�

00s
(k0) = vw�w(2a00s)

⇣
|m|

20

2q0
� sR�q||

(|m|
2
✓
0)0

2q2
0

⌘
(fFD)

0
, (6.58)

where we used @kzf
<
th

= vw�wf
0

FD
and prime again refers to @�w!. If we take the limit � ! 0

then a00s/Zws becomes a delta function at the quasiparticle shells. Then integrating (6.58)

over k0, dividing with the wave-function renormalization factors and finally taking the

di↵erence of positive and negative frequency sectors would give our old source term (6.42),

here written for spin s rather than for helicity. For a finite � the integral can be performed

by complex contour integration, which picks the poles of the spectral function (6.57). The

result is simple:

S
�

qs± = Re
⇥
Sqs±(!s± + i�s±)

⇤
, (6.59)

where Sqs± is the source function defined in (6.42). This is the only e↵ect that coherence

damping has on the semiclassical equations. It only modifies only the energy-dependence in

the source function, whose parametric dependence on gradients remains unchanged. Also,

the relevance of � here depends on how it numerically compares to the total energy instead

of the gradient corrections as in the VIA-case. In the limit where � < T one then finds

S
�

qs± ⇡ Sqs± +
1

2
[@2

k0
Sqs±]|k0|=!s±(z±�)

2 + · · · . (6.60)

That is, the damping correction to the SC-source term is suppressed by a factor ⇠ (�/T )2.

It does not give rise to a new source with the parametric dependence predicted by the

VIA-mechanism.
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WKB-quasiparticles

Only correction to  
source from 
damping

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
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@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||
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where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z
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(2⇡)3
�fh± ⌘ 0 and uh ⌘
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with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
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where the semiclassical source functions are
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The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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CP-odd

f h±
FD =

1
eβγw(ωh±−vw pz) ± 1

with !h± ⇡ !0 ⌥ hsk�|||m|
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) and finally
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Z
dk0
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⇢h±(k0)C
h

1 [f ]. (4.32)

where ⇢h±(k0) is a weight function which singles out a given frequency and helicity solution

(such as a narrow top-hat distribution with ⇢h±(!h±) = 1). This notation formalises the

usual on-shell projection in the spectral limit.

Contrary to the common identification in the SC-literature, vh± is not the group ve-

locity. Instead, it is easy to show that vgh± ⌘ @kz!h± = Zh±vh± and similarly, the actual

semiclassical force is �@z!h± = Zh±Fh±, consistent with canonical equations. However, it

is perfectly consistent (and practical) to divide both sides of the projected equation (4.18)

by a common factor Zh±, which leads to the standard SC-equations (4.31). The explicit

Z
�1

h±
factor in the collision term (4.32) is usually omitted, but this is consistent to the order

we are working: since C
h

00
[f ] vanishes in thermal equilibrium, it must be proportional to

the perturbation generated by the source and corrections from the Z
�1

h±
-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor

contained in C
h±

00
[f ], as we shall see later in sections 6.3 and 7.

Equation (4.30) is not very useful as such. One has to first separate the non-trivial equi-

librium part of the distribution from the out-of-equilibrium perturbation. It is easy to see

that vs±@z!s±+Fs±@kz!s± = 0, which then implies vs±@zfFD(±!s±)+Fs±@kzfFD(±!s±) =

0 for the equilibrium distribution with vw = 0. The point of this excercise is to emphasise

that a lot of the work done by the semiclassical force goes into setting up the non-trivial

local equilibrium including the vacuum state. The CP-violating changes in the equilibrium

state do not lead to any physical e↵ect however, such as biasing of physical rates including

the sphaleron rate. However, in the case of a moving wall, the equilibrium distribution no

longer satisfies the Liouville equation. Indeed, let us define

fh± = fFD(�w(!h± + vwkz)) +�fh± ⌘ f
h±

FD +�fh±. (4.33)

Inserting (4.33) into equation (4.30) one gets the equation for the perturbation �fh±:

vh±@z�fh± + Fh±@kz�fh± = �vw�wFh±(f
h±

FD )0 + Ch±[f ], (4.34)

where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
20
/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:

�fh± = �f ±�fh. (4.35)
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where ⇢h±(k0) is a weight function which singles out a given frequency and helicity solution

(such as a narrow top-hat distribution with ⇢h±(!h±) = 1). This notation formalises the
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locity. Instead, it is easy to show that vgh± ⌘ @kz!h± = Zh±vh± and similarly, the actual

semiclassical force is �@z!h± = Zh±Fh±, consistent with canonical equations. However, it

is perfectly consistent (and practical) to divide both sides of the projected equation (4.18)

by a common factor Zh±, which leads to the standard SC-equations (4.31). The explicit

Z
�1

h±
factor in the collision term (4.32) is usually omitted, but this is consistent to the order

we are working: since C
h

00
[f ] vanishes in thermal equilibrium, it must be proportional to

the perturbation generated by the source and corrections from the Z
�1

h±
-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor

contained in C
h±

00
[f ], as we shall see later in sections 6.3 and 7.

Equation (4.30) is not very useful as such. One has to first separate the non-trivial equi-

librium part of the distribution from the out-of-equilibrium perturbation. It is easy to see

that vs±@z!s±+Fs±@kz!s± = 0, which then implies vs±@zfFD(±!s±)+Fs±@kzfFD(±!s±) =

0 for the equilibrium distribution with vw = 0. The point of this excercise is to emphasise

that a lot of the work done by the semiclassical force goes into setting up the non-trivial

local equilibrium including the vacuum state. The CP-violating changes in the equilibrium

state do not lead to any physical e↵ect however, such as biasing of physical rates including

the sphaleron rate. However, in the case of a moving wall, the equilibrium distribution no

longer satisfies the Liouville equation. Indeed, let us define

fh± = fFD(�w(!h± + vwkz)) +�fh± ⌘ f
h±

FD +�fh±. (4.33)

Inserting (4.33) into equation (4.30) one gets the equation for the perturbation �fh±:

vh±@z�fh± + Fh±@kz�fh± = �vw�wFh±(f
h±

FD )0 + Ch±[f ], (4.34)

where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
20
/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:

�fh± = �f ±�fh. (4.35)
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with

with !h± ⇡ !0 ⌥ hsk�|||m|
2
✓
0
/(2!2

0
) and finally

Ch±[f ] ⌘ ±
1

Zh±

Z
dk0
2⇡

⇢h±(k0)C
h

1 [f ]. (4.32)

where ⇢h±(k0) is a weight function which singles out a given frequency and helicity solution

(such as a narrow top-hat distribution with ⇢h±(!h±) = 1). This notation formalises the

usual on-shell projection in the spectral limit.

Contrary to the common identification in the SC-literature, vh± is not the group ve-

locity. Instead, it is easy to show that vgh± ⌘ @kz!h± = Zh±vh± and similarly, the actual

semiclassical force is �@z!h± = Zh±Fh±, consistent with canonical equations. However, it

is perfectly consistent (and practical) to divide both sides of the projected equation (4.18)

by a common factor Zh±, which leads to the standard SC-equations (4.31). The explicit

Z
�1

h±
factor in the collision term (4.32) is usually omitted, but this is consistent to the order

we are working: since C
h

00
[f ] vanishes in thermal equilibrium, it must be proportional to

the perturbation generated by the source and corrections from the Z
�1

h±
-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor

contained in C
h±

00
[f ], as we shall see later in sections 6.3 and 7.

Equation (4.30) is not very useful as such. One has to first separate the non-trivial equi-

librium part of the distribution from the out-of-equilibrium perturbation. It is easy to see

that vs±@z!s±+Fs±@kz!s± = 0, which then implies vs±@zfFD(±!s±)+Fs±@kzfFD(±!s±) =

0 for the equilibrium distribution with vw = 0. The point of this excercise is to emphasise

that a lot of the work done by the semiclassical force goes into setting up the non-trivial

local equilibrium including the vacuum state. The CP-violating changes in the equilibrium

state do not lead to any physical e↵ect however, such as biasing of physical rates including

the sphaleron rate. However, in the case of a moving wall, the equilibrium distribution no

longer satisfies the Liouville equation. Indeed, let us define

fh± = fFD(�w(!h± + vwkz)) +�fh± ⌘ f
h±

FD +�fh±. (4.33)

Inserting (4.33) into equation (4.30) one gets the equation for the perturbation �fh±:

vh±@z�fh± + Fh±@kz�fh± = �vw�wFh±(f
h±

FD )0 + Ch±[f ], (4.34)

where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
20
/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:

�fh± = �f ±�fh. (4.35)

– 19 –

CP-even

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz

!0

@z�fh �
|m|

20

2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||


(|m|

2
✓
0)0

2!2

0

f
0

0w �
|m|

20
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f
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0w � �w!0f
00

0w

��
, (4.37)

where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z

d3k

(2⇡)3
�fh± ⌘ 0 and uh ⌘

1

N1

Z
d3k

(2⇡)3
kz

!0

�fh±, (4.39)

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
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�D2 �vw

! 
µ
0

h
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+ |m|

20

 
vw�wQ1 0

vw�wQ2 R̄
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uh
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, (4.40)

where the semiclassical source functions are

Sh` = �vw�wh

h
(|m|
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0)0Q8o

`
� |m|

20
|m|
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0
Q

9o

`

i
. (4.41)

The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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and
CP-odd, depends on htrue energyconsistent gradient expansion

Δfh ≡ − μh f′ 0w± + δfh

−
pz

ω0i
f′ 0wi ∂zμhi + vwγw

|mi |
2′ 

2ω0i
f′ ′ 0wiμhi +

pz

ω0i
∂zδfhi −

|mi |
2′ 

2ω0i
∂pz

δfhi = 𝒮hi + (∑
a,k

sa
ikμk) Γa

inel,i fMBi(p) − ΓT,i(p) δfhi(p)

MB- and relaxation limits in C-term

∫
d3p

(2π)3
δfh ≡ 0with

pseudochemical potential

kinetic perturbation



6

where ⌃̂ ⌘ ⌃out(z, k�
i

2
@z). The precise form of the self-energy functions ⌃<,> depends on

the problem. To the lowest order in gradients the collision term becomes:

C
s<
1 [f ] ⇡ Tr

⇥
(⌃>

S
<
w � ⌃<

S
>
w)Pws

⇤
. (4.27)

Given the connection formulae between the g
s<
ab

and g
s<
00
, the collision integral can always

be reduced to a functional of gs<
00

only. Then, the spectral form (4.25) allows performing all

frequency integrals, which further reduces the collision term (4.27) into a functional of the

generalised Boltzmann distributions f<
s±. This procedure is a straightforward generalisation

of the usual Boltzmann theory to the case of WKB-quasistates.

Helicity eigenbasis So far we have labeled our states by their spin in the z-direction

in the doubly boosted frame. It is also possible to work in the helicity basis, which is

more directly related to chirality. Helicity spinors are the eigenspinors of the operator

ĥ ⌘ k̂ · ↵�
5. In the doubly boosted frame the helicity h|| and spin s are then simply

related:

s = h||sgn(kz). (4.28)

Going from s to h|| eigenstates is just a matter of relabelling in equations (4.17)–(4.19). A

little more thought is needed to extend the formulae for the wall frame helicity states as this

needs a statistical interpretation. Indeed, in the (semi)classical picture it is consistent to

compute the force acting on a helicity state h as the sum of forces acting on the projections

of the h-state onto s-states. This corresponds to setting [8]

s ! sh ⌘ hk, h|�||

�
Sz � i(v|| ⇥↵)z

�
|k, hi = h�||

kz

|k|
⌘ hsk. (4.29)

Because sh is already multiplying a gradient correction term, it was su�cient to compute

the projection using the lowest order adiabatic helicity eigenstates. From the quantum

point of view the helicity states behave on average, in the sense of a statistical ensemble, as

if they were subject to a force and a dispersion relation where s ! hsk. The s-eigenstates

are very close to the h eigenstates and the relation becomes exact in the massless limit. In

what follows we shall label the states by h and include the factor sk explicitly. However,

going from h basis to the s-basis is a simple matter of resetting sk = sgn(kz).

4.2 Semiclassical Boltzmann equation

We are now ready to put everything together. Integrating (4.18) over the frequency with

the spectral form (4.25) and using the helicity basis, one gets the semiclassical Boltzmann

equation for the WKB-quasiparticle distribution functions fh±:

vh±@zfh± + Fh±@kzfh± = Ch±[f ], (4.30)

where vh± is a velocity factor in the z-direction and Fh± is the related semiclassical force

term [8, 25, 27, 31, 37]:

vh± =
kz

!h±

and Fh± = �
|m|

20

2!h±

± hsk�||
(|m|

2
✓
0)0

2!2

0

, (4.31)
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2.3 SC-BE equation

6

ω

z

m(z),k0

s

0

q ±k

ss
vg(p)
v̄g(p)

̸=
SC-equations describe classical motion under CP-violating force of QM-origin:

in the rate [61] � ⇡ (g2sT/(6⇡))(log(m
2
g/m

2
mag)+1.1), wherem2

g = (3/2)g2sT
2. The magnetic

scale m
2
mag cannot be computed perturbatively, but one expects that m

2
g/m

2
mag ⇠ 1/g2s .

Despite di↵erent physics causing this result, it is numerically not too dissimilar with (6.56).

However, we can keep using a formally excact damping rate here, even with k-dependence

and the gradient corrections:

a00s± =
1

2
Zws±Re

⇣
�i

k0 � sCP!s± � i�s±

⌘
. (6.57)

The Zws±-dependence of the damping term (6.55) is very important the hole states. Indeed,

for holes !s� ! |k| exponentially fast for large |k| [56]. However, Z� vanishes exponentially

at the same time, so that the hole spectral function approaches exponentially quickly a

delta-distribution. This ensures that the hole spectral function does not ”leak” below the

light-cone.

6.5 Thermal SC-source including finite width

We are now ready to compute the SC source for the thermal WKB states in the Boltzmann

equation including finite width on the spectral function. The matrix valued source term

SM in (6.7) again has to be run through the now familiar reduction process to get the scalar

valued source in the equation for the perturbation �g
s<
00
. In this process, it is su�cient to

use the simple first-order expanded form for SM , which makes calculation quite simple. The

final result for the source that appears in the non-integrated (over k0) for the perturbation

�g
s

00
is

S
�

00s
(k0) = vw�w(2a00s)

⇣
|m|

20

2q0
� sR�q||

(|m|
2
✓
0)0

2q2
0

⌘
(fFD)

0
, (6.58)

where we used @kzf
<
th

= vw�wf
0

FD
and prime again refers to @�w!. If we take the limit � ! 0

then a00s/Zws becomes a delta function at the quasiparticle shells. Then integrating (6.58)

over k0, dividing with the wave-function renormalization factors and finally taking the

di↵erence of positive and negative frequency sectors would give our old source term (6.42),

here written for spin s rather than for helicity. For a finite � the integral can be performed

by complex contour integration, which picks the poles of the spectral function (6.57). The

result is simple:

S
�

qs± = Re
⇥
Sqs±(!s± + i�s±)

⇤
, (6.59)

where Sqs± is the source function defined in (6.42). This is the only e↵ect that coherence

damping has on the semiclassical equations. It only modifies only the energy-dependence in

the source function, whose parametric dependence on gradients remains unchanged. Also,

the relevance of � here depends on how it numerically compares to the total energy instead

of the gradient corrections as in the VIA-case. In the limit where � < T one then finds

S
�

qs± ⇡ Sqs± +
1

2
[@2

k0
Sqs±]|k0|=!s±(z±�)

2 + · · · . (6.60)

That is, the damping correction to the SC-source term is suppressed by a factor ⇠ (�/T )2.

It does not give rise to a new source with the parametric dependence predicted by the

VIA-mechanism.
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WKB-quasiparticles

Only correction to  
source from 
damping

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz

!0

@z�fh �
|m|

20

2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||
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where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z

d3k

(2⇡)3
�fh± ⌘ 0 and uh ⌘

1

N1

Z
d3k

(2⇡)3
kz

!0

�fh±, (4.39)

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
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where the semiclassical source functions are

Sh` = �vw�wh
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The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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CP-odd

f h±
FD =

1
eβγw(ωh±−vw pz) ± 1

with !h± ⇡ !0 ⌥ hsk�|||m|
2
✓
0
/(2!2

0
) and finally

Ch±[f ] ⌘ ±
1

Zh±

Z
dk0
2⇡

⇢h±(k0)C
h

1 [f ]. (4.32)

where ⇢h±(k0) is a weight function which singles out a given frequency and helicity solution

(such as a narrow top-hat distribution with ⇢h±(!h±) = 1). This notation formalises the

usual on-shell projection in the spectral limit.

Contrary to the common identification in the SC-literature, vh± is not the group ve-

locity. Instead, it is easy to show that vgh± ⌘ @kz!h± = Zh±vh± and similarly, the actual

semiclassical force is �@z!h± = Zh±Fh±, consistent with canonical equations. However, it

is perfectly consistent (and practical) to divide both sides of the projected equation (4.18)

by a common factor Zh±, which leads to the standard SC-equations (4.31). The explicit

Z
�1

h±
factor in the collision term (4.32) is usually omitted, but this is consistent to the order

we are working: since C
h

00
[f ] vanishes in thermal equilibrium, it must be proportional to

the perturbation generated by the source and corrections from the Z
�1

h±
-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor

contained in C
h±

00
[f ], as we shall see later in sections 6.3 and 7.

Equation (4.30) is not very useful as such. One has to first separate the non-trivial equi-

librium part of the distribution from the out-of-equilibrium perturbation. It is easy to see

that vs±@z!s±+Fs±@kz!s± = 0, which then implies vs±@zfFD(±!s±)+Fs±@kzfFD(±!s±) =

0 for the equilibrium distribution with vw = 0. The point of this excercise is to emphasise

that a lot of the work done by the semiclassical force goes into setting up the non-trivial

local equilibrium including the vacuum state. The CP-violating changes in the equilibrium

state do not lead to any physical e↵ect however, such as biasing of physical rates including

the sphaleron rate. However, in the case of a moving wall, the equilibrium distribution no

longer satisfies the Liouville equation. Indeed, let us define

fh± = fFD(�w(!h± + vwkz)) +�fh± ⌘ f
h±

FD +�fh±. (4.33)

Inserting (4.33) into equation (4.30) one gets the equation for the perturbation �fh±:

vh±@z�fh± + Fh±@kz�fh± = �vw�wFh±(f
h±

FD )0 + Ch±[f ], (4.34)

where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
20
/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:

�fh± = �f ±�fh. (4.35)
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where ⇢h±(k0) is a weight function which singles out a given frequency and helicity solution

(such as a narrow top-hat distribution with ⇢h±(!h±) = 1). This notation formalises the

usual on-shell projection in the spectral limit.

Contrary to the common identification in the SC-literature, vh± is not the group ve-

locity. Instead, it is easy to show that vgh± ⌘ @kz!h± = Zh±vh± and similarly, the actual

semiclassical force is �@z!h± = Zh±Fh±, consistent with canonical equations. However, it

is perfectly consistent (and practical) to divide both sides of the projected equation (4.18)

by a common factor Zh±, which leads to the standard SC-equations (4.31). The explicit

Z
�1

h±
factor in the collision term (4.32) is usually omitted, but this is consistent to the order

we are working: since C
h

00
[f ] vanishes in thermal equilibrium, it must be proportional to

the perturbation generated by the source and corrections from the Z
�1

h±
-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor

contained in C
h±

00
[f ], as we shall see later in sections 6.3 and 7.

Equation (4.30) is not very useful as such. One has to first separate the non-trivial equi-

librium part of the distribution from the out-of-equilibrium perturbation. It is easy to see

that vs±@z!s±+Fs±@kz!s± = 0, which then implies vs±@zfFD(±!s±)+Fs±@kzfFD(±!s±) =

0 for the equilibrium distribution with vw = 0. The point of this excercise is to emphasise

that a lot of the work done by the semiclassical force goes into setting up the non-trivial

local equilibrium including the vacuum state. The CP-violating changes in the equilibrium

state do not lead to any physical e↵ect however, such as biasing of physical rates including

the sphaleron rate. However, in the case of a moving wall, the equilibrium distribution no

longer satisfies the Liouville equation. Indeed, let us define

fh± = fFD(�w(!h± + vwkz)) +�fh± ⌘ f
h±

FD +�fh±. (4.33)

Inserting (4.33) into equation (4.30) one gets the equation for the perturbation �fh±:

vh±@z�fh± + Fh±@kz�fh± = �vw�wFh±(f
h±

FD )0 + Ch±[f ], (4.34)

where prime acting on f denotes @f/@(�w!). Thus, the perturbation �fh± around the

local equilibrium is sourced by a velocity suppressed force term related to the derivative of

the equilibrium distribution.

CP-violating perturbation The perturbation �fh± contains a CP-conserving and a

CP-violating part. The former is sourced by the force F0 = �|m|
20
/(2!0), which is first

order in gradients, while the CP-odd force arises only at second order in gradients. The

larger CP-even perturbation is mainly responsible for the friction that determines the speed

and the shape of the phase transition wall (for non-runaway walls), while the CP-violating

perturbation will eventually bias sphalerons to create a baryon asymmetry. We separate

the two by defining:

�fh± = �f ±�fh. (4.35)
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with

with !h± ⇡ !0 ⌥ hsk�|||m|
2
✓
0
/(2!2

0
) and finally

Ch±[f ] ⌘ ±
1

Zh±

Z
dk0
2⇡

⇢h±(k0)C
h

1 [f ]. (4.32)

where ⇢h±(k0) is a weight function which singles out a given frequency and helicity solution

(such as a narrow top-hat distribution with ⇢h±(!h±) = 1). This notation formalises the

usual on-shell projection in the spectral limit.
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locity. Instead, it is easy to show that vgh± ⌘ @kz!h± = Zh±vh± and similarly, the actual
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Z
�1

h±
factor in the collision term (4.32) is usually omitted, but this is consistent to the order
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h

00
[f ] vanishes in thermal equilibrium, it must be proportional to

the perturbation generated by the source and corrections from the Z
�1

h±
-factor are thus of

higher order in gradients. Curiously this factor also gets cancelled by another Zh±-factor
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h±

00
[f ], as we shall see later in sections 6.3 and 7.
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CP-even

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz

!0

@z�fh �
|m|

20

2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||
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2
✓
0)0

2!2

0

f
0

0w �
|m|

20
|m|

2
✓
0

4!4

0

�
f
0

0w � �w!0f
00

0w

��
, (4.37)

where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z

d3k

(2⇡)3
�fh± ⌘ 0 and uh ⌘

1

N1

Z
d3k

(2⇡)3
kz

!0

�fh±, (4.39)

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
 
�D1 1

�D2 �vw

! 
µ
0

h

u
0

h

!
+ |m|

20

 
vw�wQ1 0

vw�wQ2 R̄

! 
µh

uh

!
=

 
Sh1

Sh2

!
+

 
�Ch1

�Ch2

!
, (4.40)

where the semiclassical source functions are

Sh` = �vw�wh

h
(|m|

2
✓
0)0Q8o

`
� |m|

20
|m|

2
✓
0
Q

9o

`

i
. (4.41)

The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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and
CP-odd, depends on htrue energyconsistent gradient expansion

Δfh ≡ − μh f′ 0w± + δfh

−
pz

ω0i
f′ 0wi ∂zμhi + vwγw

|mi |
2′ 

2ω0i
f′ ′ 0wiμhi +

pz

ω0i
∂zδfhi −

|mi |
2′ 

2ω0i
∂pz

δfhi = 𝒮hi + (∑
a,k

sa
ikμk) Γa

inel,i fMBi(p) − ΓT,i(p) δfhi(p)

MB- and relaxation limits in C-term

∫
d3p

(2π)3
δfh ≡ 0with

pseudochemical potential

kinetic perturbation

Full problem consists of coupled set of SC BE’s for all interacting species.
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2.4 Solving the SC-BE

    with    f (pz . E; z) = [eβ(E+vw pz+μ(z)) + 1]−1 + δf ∫ d3pδf ≡ 0 => ODE’s for  and μ(z) u(n)
i = ⟨(pz /ωi0)nδfi⟩

Discretize pz, pII,  

or turn into an integral equation S. De Curtis etal. JHEP 03 (2022) 163,
arXiv:2401.13522v1, …

Fluid equations 

Extended fluid equations

f (pz . E; z) = [eβ(z)(E+(vw+v(z))pz+μ(z)) + 1]−1 => ODE’s for

f (pz . E; z) = [eβ(z)(E+(vw+v(z))pz+μ(z)) + 1]−1 + ∑
i

ai(z)Fi(p, z) => ODE’s for β(z), v(z)) μ(z) and ai(z)

 Take moment integrals over BE’s…Ansaz
Integrated methods:

β(z), v(z)) and μ(z)

Direct solution of nPDE

Moment equations

SC-BE is a coupled set of partial differential equations (hard). 

~10000 coupled ODE’s

−
pz

ω0i
f ′ 0wi ∂z μhi + vwγw

|mi |
2′ 

2ω0i
f ′ ′ 0wi μhi +

pz

ω0i
∂zδ fhi −

|mi |
2′ 

2ω0i
∂pzδ fhi = 𝒮hi + (∑

a,k

sa
ik μk) Γa

inel,i fMBi( p) − ΓT,i( p) δ fhi( p)

 Most often used. How accurate?

Moore, Prokopec, Enqvist, Ignatius, Kajantie, Rummukainen, Bodeker, Espinosa, Konstandin, No, Servant Dorsch, Huber, Koczaczuck, 
Laurent, Cline, Garbrecht, Tamaris, De Curtis, Rose, Guiggiani, Muyor, Panico, Jinno, Cai, Wang, Sala, ….



Multiplying the SC BE with    and integrating over momenta, one gets relativistic fluid equations(pz /ω0i)ℓ
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3. Moment expansion
N1 ≡

Z
d3pf00w;FD ¼ γw

Z
d3pf00;FD

≡ γwN̂1 ¼ −γw
2π3

3
T2; ð20Þ

where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1

N1

Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
!"

pz

E

#
l
δf

$
: ð22Þ

The lth moment of the evolution equation can then be
written as

!"
pz

E

#
l
L
$

¼
!"

pz

E

#
l
ðS þ δCÞ

$
: ð23Þ

Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ
!
pz

E
L
$

¼ −D2μ0 þ u02 þ vwγwðm2Þ0Q2μ

þ ðm2Þ0
!

1

2E2
δf

$
; ð25Þ

where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions

Dl ≡
!"

pz

E

#
l
f00w

$
; ð26Þ

Ql ≡
!"

pl−1
z

2El

#
f000w

$
: ð27Þ

The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

!
1

2E2
δf

$
→

%
1

2pzE

&
u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.

ELECTROWEAK BARYOGENESIS AT HIGH BUBBLE WALL … PHYS. REV. D 101, 063525 (2020)

063525-5

Following FH06 we use the factorization rule also to
define the truncation scheme,

u2 ¼
!"

pz

E

#
2

δf
$

→
%
pz

E

&
u≡ Ru; ð33Þ

where the bracket average ½·% is defined in (29). Then R
becomes just the expectation value of the fluid velocity in
the wall frame,

R ¼ −vw; ð34Þ

which is an exact result. Comparing with FH06 R ¼
vwK̃FH

5 , this implies that K̃FH
5 ¼ −1 exactly. Although

unstated in FH06, it is indeed the case.
The factorization and the truncation rules are, of course,

somewhat arbitrary. It is therefore reassuring that the
R̄-term has but a weak effect on solutions: toggling between
the choice (32) versus setting R̄≡ 0 changes the final
baryon asymmetry at the level of a few percent. Moreover
the definition (34) for R is reasonable because −vw is
roughly the ratio between adjacent source terms, order by
order in the moment expansion.

E. Sources and collision terms

Assembling the previous results, and including the
collision and source terms, the fluid equations can be
presented in full detail. Defining a vector w ¼ ðμ; uÞT,
the general form of the two moment equations may be
expressed as

Aw0 þ ðm2Þ0Bw ¼ Sþ δC; ð35Þ

where

A ¼
"−D1 1

−D2 R

#
; B ¼

"
vwγwQ1 0

vwγwQ2 R̄

#
; ð36Þ

and S ¼ ðS1; S2ÞT with S1 ¼ hSi and S2 ¼ hðpz=EÞSi, and
similarly for the δC vector. The form (36) is generic to both
CP-even and CP-odd sectors, which are only distinguished
by their respective source terms.
Let us consider the source terms first. In the CP-even

sector one finds using (17)

Sel ¼ vwγwðm2Þ0Qe
l; ð37Þ

with the definition

Qe
l ≡

!
pl−1
z

2El f00w

$
: ð38Þ

In the small-vw limit one finds Qe
2 → KFH

3 .

In the CP-odd sector, using Eq. (19) similarly gives

Sohl ¼ −vwγwh½ðm2θ0Þ0Q8o
l − ðm2Þ0m2θ0Q9o

l %; ð39Þ

where the coefficient functions are

Q8o
l ≡

!
sppl−1

z

2ElEz
f00w

$
; ð40Þ

Q9o
l ≡

!
sppl−1

z

4Elþ1Ez

"
1

E
f00w − γwf000w

#$
; ð41Þ

with sp defined in (5). Setting sp → signðpzÞ one finds
that Q8o

2 → KFH
8 and Q9o

2 → KFH
9 in the small vw-limit.

Moreover, in previous work, the approximation S1 ¼ 0was
always made, because it isOðv2wÞ. For large velocities there
is no hierarchy between S1 and S2 and one must include
both sources.
It remains to consider the collision integrals. Both phase

space averages δC1 ≡ hδCi and δC2 ≡ hðpz=EÞδCi are
normalized using N−1

1 , Eq. (20). The collision term
moments are derived following Appendix A of Ref. [29],

δC1 ¼ K0

X

i

Γi

X

j

sij
μj
T
;

δC2 ¼ −Γtotu − vwδC1: ð42Þ

Here sij ¼ 1 (−1) if the corresponding species is in the
initial (final) state in the interaction with rate Γi, and Γtot ¼P

i Γi is the total interaction rate, including elastic channels
that do not contribute to the sum in hδCi. The normalization
factor

K0 ≡ −hf0wi ¼ − N̂0

N̂1

ð43Þ

was neglected in FH06. For a massless fermion, for
example, K0 ≅ 1.1, Eqs. (42) are valid for both the CP-
even and the CP-odd cases.
Equations (35) obviously depend on a large number of

coefficient functions: Dl, Ql, R, R̄, Qe
l, Q

8o
l , Q9o

l , and K0.
Most of these depend on the wall velocity vw and the
dimensionless ratio x ¼ m=T. However, they are universal
and model independent. In practice, we compute them on a
grid of x and vw values and spline fit them. Explicit
expressions are given for all the integrals defining them in
the Appendix A.

F. Critical speed predictions

There is a widespread notion, apparently originating
from Ref. [49], that diffusion is inefficient for wall speeds
exceeding the plasma sound speed. This would mean in
particular that EWBG would not be feasible for detonation
walls, corresponding to very strong phase transitions, often
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2π3
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where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form
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In particular, the integrals over δf define the velocity
perturbations
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The lth moment of the evolution equation can then be
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$
: ð23Þ

Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find
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and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
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for any X that does not correspond to a velocity perturba-
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Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
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After performing the singular angular integral using the
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This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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where f0;FD is the equilibrium distribution function for a
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to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace
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where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
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Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,
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After performing the singular angular integral using the
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This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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Next we define the dimensionless `’th velocity moment of the distribution �f along with a
dimensionless chemical potential and dimensionless mass variable as follows:
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We further divide equation (3.5) by T , after which we can write the `’th moment equation in
a dimensionless form where all dimensionful quantities are measured in units of temperature:
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and the thermally corrected dimensionless source function in the wall frame is
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Finally, the temperature-scaled, dimensionless collision term is given by
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The reduction of the collision term will require a more detailed discussion and further ap-
proximations. We shall return to this question in section 4 below.

3.1 Factorization and truncation

We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
in [28] and define the following factorization rule:
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the equations independently. Expanding consistently to second order in gradients, one finds
the CP-odd equation:
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where f0w ⌘ fFD(�w(!0 + vwkz)). The CP-even perturbation �f satisfies a similar equation
with the replacement Sh ! �1

2vw�w(|m
2|0/!0)f 0

0w. In this paper we will work at the level
of vacuum dispersion relations. Thermal corrections to the semiclassical source have been
computed in ref. [31], but their implementation on the moment expansion is beyond the
scope of this work.

3 SC-moment equations

We now set up a moment expansion method for solving (2.8) with arbitrary number of mo-
ments of the perturbation. It is useful to further separate the perturbation into a piece cor-
responding to a finite effective chemical potential and an additional momentum-dependent
fluctuation. We display the results explicitly only for the CP-odd perturbation, but identical
results apply for the CP-even equations, only with a different source term. We thus define:
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Equation (3.2) is in fact just the definition of the chemical potential. Inserting the split (3.1)
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Integrating the (2.8) over the spatial momenta weighted by (pz/!0)`, with different `, one
obtains a set of equations for µh and the velocity moments of the perturbation �fh. To be
precise, we define the integration over momenta by the average2:
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2Note that our normalization differs by one power of T from that of [30].
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/3. The first equation defines the chemical potential and the second
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Relativistic auxiliary functions



Multiplying the SC BE with    and integrating over momenta, one gets relativistic fluid equations(pz /ω0i)ℓ

8

3. Moment expansion
N1 ≡

Z
d3pf00w;FD ¼ γw

Z
d3pf00;FD

≡ γwN̂1 ¼ −γw
2π3

3
T2; ð20Þ

where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1

N1

Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
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#
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The lth moment of the evolution equation can then be
written as
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l
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Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ
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where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions
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#
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The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,
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After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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Following FH06 we use the factorization rule also to
define the truncation scheme,

u2 ¼
!"
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E

#
2

δf
$

→
%
pz

E

&
u≡ Ru; ð33Þ

where the bracket average ½·% is defined in (29). Then R
becomes just the expectation value of the fluid velocity in
the wall frame,

R ¼ −vw; ð34Þ

which is an exact result. Comparing with FH06 R ¼
vwK̃FH

5 , this implies that K̃FH
5 ¼ −1 exactly. Although

unstated in FH06, it is indeed the case.
The factorization and the truncation rules are, of course,

somewhat arbitrary. It is therefore reassuring that the
R̄-term has but a weak effect on solutions: toggling between
the choice (32) versus setting R̄≡ 0 changes the final
baryon asymmetry at the level of a few percent. Moreover
the definition (34) for R is reasonable because −vw is
roughly the ratio between adjacent source terms, order by
order in the moment expansion.

E. Sources and collision terms

Assembling the previous results, and including the
collision and source terms, the fluid equations can be
presented in full detail. Defining a vector w ¼ ðμ; uÞT,
the general form of the two moment equations may be
expressed as

Aw0 þ ðm2Þ0Bw ¼ Sþ δC; ð35Þ

where

A ¼
"−D1 1

−D2 R

#
; B ¼

"
vwγwQ1 0

vwγwQ2 R̄

#
; ð36Þ

and S ¼ ðS1; S2ÞT with S1 ¼ hSi and S2 ¼ hðpz=EÞSi, and
similarly for the δC vector. The form (36) is generic to both
CP-even and CP-odd sectors, which are only distinguished
by their respective source terms.
Let us consider the source terms first. In the CP-even

sector one finds using (17)

Sel ¼ vwγwðm2Þ0Qe
l; ð37Þ

with the definition

Qe
l ≡

!
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In the small-vw limit one finds Qe
2 → KFH

3 .

In the CP-odd sector, using Eq. (19) similarly gives

Sohl ¼ −vwγwh½ðm2θ0Þ0Q8o
l − ðm2Þ0m2θ0Q9o

l %; ð39Þ

where the coefficient functions are
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!
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z
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"
1

E
f00w − γwf000w

#$
; ð41Þ

with sp defined in (5). Setting sp → signðpzÞ one finds
that Q8o

2 → KFH
8 and Q9o

2 → KFH
9 in the small vw-limit.

Moreover, in previous work, the approximation S1 ¼ 0was
always made, because it isOðv2wÞ. For large velocities there
is no hierarchy between S1 and S2 and one must include
both sources.
It remains to consider the collision integrals. Both phase

space averages δC1 ≡ hδCi and δC2 ≡ hðpz=EÞδCi are
normalized using N−1

1 , Eq. (20). The collision term
moments are derived following Appendix A of Ref. [29],

δC1 ¼ K0

X

i

Γi

X

j

sij
μj
T
;

δC2 ¼ −Γtotu − vwδC1: ð42Þ

Here sij ¼ 1 (−1) if the corresponding species is in the
initial (final) state in the interaction with rate Γi, and Γtot ¼P

i Γi is the total interaction rate, including elastic channels
that do not contribute to the sum in hδCi. The normalization
factor

K0 ≡ −hf0wi ¼ − N̂0

N̂1

ð43Þ

was neglected in FH06. For a massless fermion, for
example, K0 ≅ 1.1, Eqs. (42) are valid for both the CP-
even and the CP-odd cases.
Equations (35) obviously depend on a large number of

coefficient functions: Dl, Ql, R, R̄, Qe
l, Q

8o
l , Q9o

l , and K0.
Most of these depend on the wall velocity vw and the
dimensionless ratio x ¼ m=T. However, they are universal
and model independent. In practice, we compute them on a
grid of x and vw values and spline fit them. Explicit
expressions are given for all the integrals defining them in
the Appendix A.

F. Critical speed predictions

There is a widespread notion, apparently originating
from Ref. [49], that diffusion is inefficient for wall speeds
exceeding the plasma sound speed. This would mean in
particular that EWBG would not be feasible for detonation
walls, corresponding to very strong phase transitions, often
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where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form
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Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
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differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH
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4 , and
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2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
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relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
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Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,
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6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1

N1

Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
!"

pz

E

#
l
δf

$
: ð22Þ

The lth moment of the evolution equation can then be
written as

!"
pz

E

#
l
L
$

¼
!"

pz

E

#
l
ðS þ δCÞ

$
: ð23Þ

Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ
!
pz

E
L
$

¼ −D2μ0 þ u02 þ vwγwðm2Þ0Q2μ

þ ðm2Þ0
!

1

2E2
δf

$
; ð25Þ

where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions

Dl ≡
!"

pz

E

#
l
f00w

$
; ð26Þ

Ql ≡
!"

pl−1
z

2El

#
f000w

$
: ð27Þ

The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

!
1

2E2
δf

$
→

%
1

2pzE

&
u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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One can further simplify this equation by using the following identity:
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Next we define the dimensionless `’th velocity moment of the distribution �f along with a
dimensionless chemical potential and dimensionless mass variable as follows:

uh,` ⌘
D
p
`
z

!
`
0

�fh

E
, ⇠i ⌘

µi

T
and x ⌘ m

T
. (3.7)

We further divide equation (3.5) by T , after which we can write the `’th moment equation in
a dimensionless form where all dimensionful quantities are measured in units of temperature:
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Here the prime denotes the dimensionless spatial derivative 0 ⌘ @/@(zT ) and ` runs from 0 to
some maximum number n. The dimensionless coefficient functions D` and Q
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and the thermally corrected dimensionless source function in the wall frame is
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Finally, the temperature-scaled, dimensionless collision term is given by
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The reduction of the collision term will require a more detailed discussion and further ap-
proximations. We shall return to this question in section 4 below.

3.1 Factorization and truncation

We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
in [28] and define the following factorization rule:
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We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
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the equations independently. Expanding consistently to second order in gradients, one finds
the CP-odd equation:

pz
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@z�fh �

|m|20

2!0
@pz�fh = Sh + Ch[f ], (2.8)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:
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where f0w ⌘ fFD(�w(!0 + vwkz)). The CP-even perturbation �f satisfies a similar equation
with the replacement Sh ! �1

2vw�w(|m
2|0/!0)f 0

0w. In this paper we will work at the level
of vacuum dispersion relations. Thermal corrections to the semiclassical source have been
computed in ref. [31], but their implementation on the moment expansion is beyond the
scope of this work.

3 SC-moment equations

We now set up a moment expansion method for solving (2.8) with arbitrary number of mo-
ments of the perturbation. It is useful to further separate the perturbation into a piece cor-
responding to a finite effective chemical potential and an additional momentum-dependent
fluctuation. We display the results explicitly only for the CP-odd perturbation, but identical
results apply for the CP-even equations, only with a different source term. We thus define:

�fh ⌘ �µhf
0
0w± + �fh, (3.1)

where Z
d3p

(2⇡)3
�fh ⌘ 0. (3.2)

Equation (3.2) is in fact just the definition of the chemical potential. Inserting the split (3.1)
into equation (2.8) the Liouville operator in the left hand side becomes
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Integrating the (2.8) over the spatial momenta weighted by (pz/!0)`, with different `, one
obtains a set of equations for µh and the velocity moments of the perturbation �fh. To be
precise, we define the integration over momenta by the average2:
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Z
d3pX, (3.4)
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2Note that our normalization differs by one power of T from that of [30].
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Z

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

Kℓ =
1
n ∫p

(
pz

ω0
)ℓ f0(p)

Relativistic auxiliary functions

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz
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where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:
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where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
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with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
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where the semiclassical source functions are
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The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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where the source in :th equations isℓ



Multiplying the SC BE with    and integrating over momenta, one gets relativistic fluid equations(pz /ω0i)ℓ

8

3. Moment expansion
N1 ≡

Z
d3pf00w;FD ¼ γw

Z
d3pf00;FD

≡ γwN̂1 ¼ −γw
2π3

3
T2; ð20Þ

where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1

N1

Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
!"

pz

E
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The lth moment of the evolution equation can then be
written as
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Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ
!
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E
L
$

¼ −D2μ0 þ u02 þ vwγwðm2Þ0Q2μ
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!
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2E2
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$
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where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions

Dl ≡
!"

pz

E

#
l
f00w

$
; ð26Þ
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!"
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z

2El

#
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The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

!
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δf

$
→

%
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2pzE
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u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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Following FH06 we use the factorization rule also to
define the truncation scheme,

u2 ¼
!"

pz

E

#
2

δf
$

→
%
pz

E

&
u≡ Ru; ð33Þ

where the bracket average ½·% is defined in (29). Then R
becomes just the expectation value of the fluid velocity in
the wall frame,

R ¼ −vw; ð34Þ

which is an exact result. Comparing with FH06 R ¼
vwK̃FH

5 , this implies that K̃FH
5 ¼ −1 exactly. Although

unstated in FH06, it is indeed the case.
The factorization and the truncation rules are, of course,

somewhat arbitrary. It is therefore reassuring that the
R̄-term has but a weak effect on solutions: toggling between
the choice (32) versus setting R̄≡ 0 changes the final
baryon asymmetry at the level of a few percent. Moreover
the definition (34) for R is reasonable because −vw is
roughly the ratio between adjacent source terms, order by
order in the moment expansion.

E. Sources and collision terms

Assembling the previous results, and including the
collision and source terms, the fluid equations can be
presented in full detail. Defining a vector w ¼ ðμ; uÞT,
the general form of the two moment equations may be
expressed as

Aw0 þ ðm2Þ0Bw ¼ Sþ δC; ð35Þ

where

A ¼
"−D1 1

−D2 R

#
; B ¼

"
vwγwQ1 0

vwγwQ2 R̄

#
; ð36Þ

and S ¼ ðS1; S2ÞT with S1 ¼ hSi and S2 ¼ hðpz=EÞSi, and
similarly for the δC vector. The form (36) is generic to both
CP-even and CP-odd sectors, which are only distinguished
by their respective source terms.
Let us consider the source terms first. In the CP-even

sector one finds using (17)

Sel ¼ vwγwðm2Þ0Qe
l; ð37Þ

with the definition

Qe
l ≡

!
pl−1
z

2El f00w

$
: ð38Þ

In the small-vw limit one finds Qe
2 → KFH

3 .

In the CP-odd sector, using Eq. (19) similarly gives

Sohl ¼ −vwγwh½ðm2θ0Þ0Q8o
l − ðm2Þ0m2θ0Q9o

l %; ð39Þ

where the coefficient functions are

Q8o
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z

2ElEz
f00w
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Q9o
l ≡

!
sppl−1

z

4Elþ1Ez

"
1

E
f00w − γwf000w

#$
; ð41Þ

with sp defined in (5). Setting sp → signðpzÞ one finds
that Q8o

2 → KFH
8 and Q9o

2 → KFH
9 in the small vw-limit.

Moreover, in previous work, the approximation S1 ¼ 0was
always made, because it isOðv2wÞ. For large velocities there
is no hierarchy between S1 and S2 and one must include
both sources.
It remains to consider the collision integrals. Both phase

space averages δC1 ≡ hδCi and δC2 ≡ hðpz=EÞδCi are
normalized using N−1

1 , Eq. (20). The collision term
moments are derived following Appendix A of Ref. [29],

δC1 ¼ K0

X

i

Γi

X

j

sij
μj
T
;

δC2 ¼ −Γtotu − vwδC1: ð42Þ

Here sij ¼ 1 (−1) if the corresponding species is in the
initial (final) state in the interaction with rate Γi, and Γtot ¼P

i Γi is the total interaction rate, including elastic channels
that do not contribute to the sum in hδCi. The normalization
factor

K0 ≡ −hf0wi ¼ − N̂0

N̂1

ð43Þ

was neglected in FH06. For a massless fermion, for
example, K0 ≅ 1.1, Eqs. (42) are valid for both the CP-
even and the CP-odd cases.
Equations (35) obviously depend on a large number of

coefficient functions: Dl, Ql, R, R̄, Qe
l, Q

8o
l , Q9o

l , and K0.
Most of these depend on the wall velocity vw and the
dimensionless ratio x ¼ m=T. However, they are universal
and model independent. In practice, we compute them on a
grid of x and vw values and spline fit them. Explicit
expressions are given for all the integrals defining them in
the Appendix A.

F. Critical speed predictions

There is a widespread notion, apparently originating
from Ref. [49], that diffusion is inefficient for wall speeds
exceeding the plasma sound speed. This would mean in
particular that EWBG would not be feasible for detonation
walls, corresponding to very strong phase transitions, often
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N1 ≡
Z

d3pf00w;FD ¼ γw

Z
d3pf00;FD

≡ γwN̂1 ¼ −γw
2π3

3
T2; ð20Þ

where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1

N1

Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
!"

pz

E

#
l
δf

$
: ð22Þ

The lth moment of the evolution equation can then be
written as

!"
pz

E

#
l
L
$

¼
!"

pz

E

#
l
ðS þ δCÞ

$
: ð23Þ

Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ
!
pz

E
L
$

¼ −D2μ0 þ u02 þ vwγwðm2Þ0Q2μ

þ ðm2Þ0
!

1

2E2
δf

$
; ð25Þ

where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions

Dl ≡
!"

pz

E

#
l
f00w

$
; ð26Þ

Ql ≡
!"

pl−1
z

2El

#
f000w

$
: ð27Þ

The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

!
1

2E2
δf

$
→

%
1

2pzE

&
u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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−
pz

ω0i
f ′ 0wi ∂z μhi + vwγw

|mi |
2′ 

2ω0i
f ′ ′ 0wi μhi +

pz

ω0i
∂zδ fhi −

|mi |
2′ 

2ω0i
∂pzδ fhi = 𝒮hi + (∑

a,k

sa
ik μk) Γa

inel,i fMBi( p) − ΓT,i( p) δ fhi( p)

One can further simplify this equation by using the following identity:

D
p
`+1
z

!
`+1
0

@z�fh

E
� 1

2
|m|20

D
p
`
z

!
`+1
0

@pz�fh

E
= @z

D
p
`+1
z

!
`+1
0

�fh

E
+

`

2
|m|20

D
p
`�1
z

!
`+1
0

�fh

E
. (3.6)

Next we define the dimensionless `’th velocity moment of the distribution �f along with a
dimensionless chemical potential and dimensionless mass variable as follows:

uh,` ⌘
D
p
`
z

!
`
0

�fh

E
, ⇠i ⌘

µi

T
and x ⌘ m

T
. (3.7)

We further divide equation (3.5) by T , after which we can write the `’th moment equation in
a dimensionless form where all dimensionful quantities are measured in units of temperature:

�D`+1⇠
0
h + u

0
h,`+1 +

1

2
vw�w|x|20Q`⇠h +

`

2
|x|20R̄uh,` = Ŝw

h,` + Ĉw
h`. (3.8)

Here the prime denotes the dimensionless spatial derivative 0 ⌘ @/@(zT ) and ` runs from 0 to
some maximum number n. The dimensionless coefficient functions D` and Q

h
` are given by:

D` ⌘ T

D
p
`
z

!
`
0

f
0
0w

E
, and Q` ⌘ T

3
D

p
`
z

!
`+1
0

f
00
0w

E
(3.9)

and the thermally corrected dimensionless source function in the wall frame is

Ŝw
h,` = �vw�w

h
(|x|2✓0)0Q8o

h,` � |x|20|x|2✓0Q9o
h,`

i
, (3.10)

where

Q
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(3.11)
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4!`+2
0 !0z
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f
0
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0w
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Finally, the temperature-scaled, dimensionless collision term is given by

Ĉw
h,` ⌘

1

T

D
p
`
z

!0
`
Ch[f ]

E
. (3.13)

The reduction of the collision term will require a more detailed discussion and further ap-
proximations. We shall return to this question in section 4 below.

3.1 Factorization and truncation

We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
in [28] and define the following factorization rule:

R̄uh,` ⌘ T
2
D
p
`�1
z

!
`+1
0

�fh

E
!

h
T
2

pz!0

i
uh,`, (3.14)
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the equations independently. Expanding consistently to second order in gradients, one finds
the CP-odd equation:

pz

!0
@z�fh �

|m|20

2!0
@pz�fh = Sh + Ch[f ], (2.8)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�wsh �||


(|m|2✓0)0

2!2
0

f
0
0w � |m|20|m|2✓0

4!4
0

�
f
0
0w � �w!0f

00
0w

��
, (2.9)

where f0w ⌘ fFD(�w(!0 + vwkz)). The CP-even perturbation �f satisfies a similar equation
with the replacement Sh ! �1

2vw�w(|m
2|0/!0)f 0

0w. In this paper we will work at the level
of vacuum dispersion relations. Thermal corrections to the semiclassical source have been
computed in ref. [31], but their implementation on the moment expansion is beyond the
scope of this work.

3 SC-moment equations

We now set up a moment expansion method for solving (2.8) with arbitrary number of mo-
ments of the perturbation. It is useful to further separate the perturbation into a piece cor-
responding to a finite effective chemical potential and an additional momentum-dependent
fluctuation. We display the results explicitly only for the CP-odd perturbation, but identical
results apply for the CP-even equations, only with a different source term. We thus define:

�fh ⌘ �µhf
0
0w± + �fh, (3.1)

where Z
d3p

(2⇡)3
�fh ⌘ 0. (3.2)

Equation (3.2) is in fact just the definition of the chemical potential. Inserting the split (3.1)
into equation (2.8) the Liouville operator in the left hand side becomes

L[µh, �fh] ⌘ � pz

!0
f
0
0w @zµh + vw�w

|m|20

2!0
f
00
0wµh +

pz

!0
@z�fh �

|m|20

2!0
@pz�fh. (3.3)

Integrating the (2.8) over the spatial momenta weighted by (pz/!0)`, with different `, one
obtains a set of equations for µh and the velocity moments of the perturbation �fh. To be
precise, we define the integration over momenta by the average2:

hXi ⌘ 1

N1

Z
d3pX, (3.4)

with N1 = �2⇡3
�wT

3
/3. The `’th moment equation then becomes:
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E
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S
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w
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�E
. (3.5)

2Note that our normalization differs by one power of T from that of [30].
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Z

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second
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Figure 1. Shown are few first source functions S
w
h,`, defined in (3.10). Left panel shows the sources

for even moments ` = 0, 2, 4, 6, 8 and right panel the odd moments ` = 1, 3, 5, 7, 9. The mass function
is defined below in equation (7.1) and we used vw = 0.1 and the benchmark parameters given in
equation (7.4).

and Ŝw
h = (Ŝw

h1, ..., Ŝw
h,n)

T and similarly for the Ĉw
h vector. This form of moment equations

is generic to both CP-even and CP-odd sectors, which only differ by the form of the source
terms. Matrix A is easily inverted, giving the equations in the simple form:

w
0
h = Â�1(Ŝw

h + Ĉw
h � B̂[wh]), Â�1 =

1

Dn

0

BBBBBBBBB@

0 0 · · · · · · �R 1
Dn 0 · · · · · · �RD1 D1

0 Dn
. . .

. . .
.
.
.

.

.

.

0 0
. . . 0 �RDn�3 Dn�3

.

.

.
.
.
. · · · Dn �RDn�2 Dn�2

0 0 · · · 0 �Dn Dn�1

1

CCCCCCCCCA

(3.21)

where the determinant factor Dn is given by

Dn ⌘ (�1)n det(Â) = Dn�1R�Dn. (3.22)

From the expression (3.9) for D`, we see that the ratio Dn/Dn�1 is a statistical measure for
the plasma velocity orthogonal to the wall in the wall frame, computed from the equilibrium
distribution. It is a function of the wall-velocity so that the determinant can be computed
as a function of vw for arbitrary n. It is important that detA is always nonzero so that the
inverse Â�1 exists. This is indeed always the case. Should make a comment on large wall
velo paper here.

Equations (3.21) depend on a large number of external functions: D`, Q`, R, R̄, Qe
` , Q

8o
`

and Q
9o
` , which in general depend on two variables, the wall velocity vw and the dimensionless

ratio x = |m|/T , and most of which can only be evaluated numerically. However, all these
functions are universal and we have evaluated them for a large number of n (up to n = 100) in
a grid in x and vw. Our numerical package automatically loads the data and creates spline-fits
for all external functions needed, which can then be used as regular functions. We give explicit
forms for all external functions in terms of a generic integral function in the Appendix A.
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Kℓ =
1
n ∫p

(
pz

ω0
)ℓ f0(p)

Relativistic auxiliary functions

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz

!0

@z�fh �
|m|

20

2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||
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00
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��
, (4.37)

where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z

d3k

(2⇡)3
�fh± ⌘ 0 and uh ⌘

1

N1

Z
d3k

(2⇡)3
kz

!0

�fh±, (4.39)

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
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+ |m|
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where the semiclassical source functions are

Sh` = �vw�wh

h
(|m|

2
✓
0)0Q8o

`
� |m|

20
|m|

2
✓
0
Q

9o

`

i
. (4.41)

The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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where the source in :th equations isℓ



Multiplying the SC BE with    and integrating over momenta, one gets relativistic fluid equations(pz /ω0i)ℓ

8

3. Moment expansion
N1 ≡
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≡ γwN̂1 ¼ −γw
2π3

3
T2; ð20Þ

where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form
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Z
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In particular, the integrals over δf define the velocity
perturbations
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Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find
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where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions
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The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,
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%
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After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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Following FH06 we use the factorization rule also to
define the truncation scheme,

u2 ¼
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#
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%
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where the bracket average ½·% is defined in (29). Then R
becomes just the expectation value of the fluid velocity in
the wall frame,

R ¼ −vw; ð34Þ

which is an exact result. Comparing with FH06 R ¼
vwK̃FH

5 , this implies that K̃FH
5 ¼ −1 exactly. Although

unstated in FH06, it is indeed the case.
The factorization and the truncation rules are, of course,

somewhat arbitrary. It is therefore reassuring that the
R̄-term has but a weak effect on solutions: toggling between
the choice (32) versus setting R̄≡ 0 changes the final
baryon asymmetry at the level of a few percent. Moreover
the definition (34) for R is reasonable because −vw is
roughly the ratio between adjacent source terms, order by
order in the moment expansion.

E. Sources and collision terms

Assembling the previous results, and including the
collision and source terms, the fluid equations can be
presented in full detail. Defining a vector w ¼ ðμ; uÞT,
the general form of the two moment equations may be
expressed as
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where
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#
; B ¼

"
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#
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and S ¼ ðS1; S2ÞT with S1 ¼ hSi and S2 ¼ hðpz=EÞSi, and
similarly for the δC vector. The form (36) is generic to both
CP-even and CP-odd sectors, which are only distinguished
by their respective source terms.
Let us consider the source terms first. In the CP-even

sector one finds using (17)
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with the definition

Qe
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!
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$
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In the small-vw limit one finds Qe
2 → KFH

3 .

In the CP-odd sector, using Eq. (19) similarly gives
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where the coefficient functions are
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with sp defined in (5). Setting sp → signðpzÞ one finds
that Q8o

2 → KFH
8 and Q9o

2 → KFH
9 in the small vw-limit.

Moreover, in previous work, the approximation S1 ¼ 0was
always made, because it isOðv2wÞ. For large velocities there
is no hierarchy between S1 and S2 and one must include
both sources.
It remains to consider the collision integrals. Both phase

space averages δC1 ≡ hδCi and δC2 ≡ hðpz=EÞδCi are
normalized using N−1

1 , Eq. (20). The collision term
moments are derived following Appendix A of Ref. [29],

δC1 ¼ K0

X

i

Γi

X

j

sij
μj
T
;

δC2 ¼ −Γtotu − vwδC1: ð42Þ

Here sij ¼ 1 (−1) if the corresponding species is in the
initial (final) state in the interaction with rate Γi, and Γtot ¼P

i Γi is the total interaction rate, including elastic channels
that do not contribute to the sum in hδCi. The normalization
factor

K0 ≡ −hf0wi ¼ − N̂0

N̂1

ð43Þ

was neglected in FH06. For a massless fermion, for
example, K0 ≅ 1.1, Eqs. (42) are valid for both the CP-
even and the CP-odd cases.
Equations (35) obviously depend on a large number of

coefficient functions: Dl, Ql, R, R̄, Qe
l, Q

8o
l , Q9o

l , and K0.
Most of these depend on the wall velocity vw and the
dimensionless ratio x ¼ m=T. However, they are universal
and model independent. In practice, we compute them on a
grid of x and vw values and spline fit them. Explicit
expressions are given for all the integrals defining them in
the Appendix A.

F. Critical speed predictions

There is a widespread notion, apparently originating
from Ref. [49], that diffusion is inefficient for wall speeds
exceeding the plasma sound speed. This would mean in
particular that EWBG would not be feasible for detonation
walls, corresponding to very strong phase transitions, often
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where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
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Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find
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The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,
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After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π
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p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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One can further simplify this equation by using the following identity:
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Next we define the dimensionless `’th velocity moment of the distribution �f along with a
dimensionless chemical potential and dimensionless mass variable as follows:
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We further divide equation (3.5) by T , after which we can write the `’th moment equation in
a dimensionless form where all dimensionful quantities are measured in units of temperature:
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and the thermally corrected dimensionless source function in the wall frame is
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Finally, the temperature-scaled, dimensionless collision term is given by
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The reduction of the collision term will require a more detailed discussion and further ap-
proximations. We shall return to this question in section 4 below.

3.1 Factorization and truncation

We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
in [28] and define the following factorization rule:
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the equations independently. Expanding consistently to second order in gradients, one finds
the CP-odd equation:

pz
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2!0
@pz�fh = Sh + Ch[f ], (2.8)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:
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where f0w ⌘ fFD(�w(!0 + vwkz)). The CP-even perturbation �f satisfies a similar equation
with the replacement Sh ! �1

2vw�w(|m
2|0/!0)f 0

0w. In this paper we will work at the level
of vacuum dispersion relations. Thermal corrections to the semiclassical source have been
computed in ref. [31], but their implementation on the moment expansion is beyond the
scope of this work.

3 SC-moment equations

We now set up a moment expansion method for solving (2.8) with arbitrary number of mo-
ments of the perturbation. It is useful to further separate the perturbation into a piece cor-
responding to a finite effective chemical potential and an additional momentum-dependent
fluctuation. We display the results explicitly only for the CP-odd perturbation, but identical
results apply for the CP-even equations, only with a different source term. We thus define:

�fh ⌘ �µhf
0
0w± + �fh, (3.1)

where Z
d3p

(2⇡)3
�fh ⌘ 0. (3.2)

Equation (3.2) is in fact just the definition of the chemical potential. Inserting the split (3.1)
into equation (2.8) the Liouville operator in the left hand side becomes

L[µh, �fh] ⌘ � pz

!0
f
0
0w @zµh + vw�w

|m|20

2!0
f
00
0wµh +

pz

!0
@z�fh �

|m|20

2!0
@pz�fh. (3.3)

Integrating the (2.8) over the spatial momenta weighted by (pz/!0)`, with different `, one
obtains a set of equations for µh and the velocity moments of the perturbation �fh. To be
precise, we define the integration over momenta by the average2:

hXi ⌘ 1

N1

Z
d3pX, (3.4)

with N1 = �2⇡3
�wT

3
/3. The `’th moment equation then becomes:

�
D
p
`+1
z

!
`+1
0

f
0
0w

E
@zµh +

1

2
vw�w|m|20

D
p
`
z

!
`+1
0

f
00
0w

E
µh

+
D
p
`+1
z

!
`+1
0

@z�fh

E
� 1

2
|m|20

D
p
`
z

!
`+1
0

@pz�fh

E
=

D
p
`
z

!
`
0

�
S
w
h + C

w
h

�E
. (3.5)

2Note that our normalization differs by one power of T from that of [30].
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with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second
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Figure 1. Shown are few first source functions S
w
h,`, defined in (3.10). Left panel shows the sources

for even moments ` = 0, 2, 4, 6, 8 and right panel the odd moments ` = 1, 3, 5, 7, 9. The mass function
is defined below in equation (7.1) and we used vw = 0.1 and the benchmark parameters given in
equation (7.4).

and Ŝw
h = (Ŝw

h1, ..., Ŝw
h,n)

T and similarly for the Ĉw
h vector. This form of moment equations

is generic to both CP-even and CP-odd sectors, which only differ by the form of the source
terms. Matrix A is easily inverted, giving the equations in the simple form:

w
0
h = Â�1(Ŝw

h + Ĉw
h � B̂[wh]), Â�1 =

1

Dn

0

BBBBBBBBB@

0 0 · · · · · · �R 1
Dn 0 · · · · · · �RD1 D1

0 Dn
. . .

. . .
.
.
.

.

.

.

0 0
. . . 0 �RDn�3 Dn�3

.

.

.
.
.
. · · · Dn �RDn�2 Dn�2

0 0 · · · 0 �Dn Dn�1

1

CCCCCCCCCA

(3.21)

where the determinant factor Dn is given by

Dn ⌘ (�1)n det(Â) = Dn�1R�Dn. (3.22)

From the expression (3.9) for D`, we see that the ratio Dn/Dn�1 is a statistical measure for
the plasma velocity orthogonal to the wall in the wall frame, computed from the equilibrium
distribution. It is a function of the wall-velocity so that the determinant can be computed
as a function of vw for arbitrary n. It is important that detA is always nonzero so that the
inverse Â�1 exists. This is indeed always the case. Should make a comment on large wall
velo paper here.

Equations (3.21) depend on a large number of external functions: D`, Q`, R, R̄, Qe
` , Q

8o
`

and Q
9o
` , which in general depend on two variables, the wall velocity vw and the dimensionless

ratio x = |m|/T , and most of which can only be evaluated numerically. However, all these
functions are universal and we have evaluated them for a large number of n (up to n = 100) in
a grid in x and vw. Our numerical package automatically loads the data and creates spline-fits
for all external functions needed, which can then be used as regular functions. We give explicit
forms for all external functions in terms of a generic integral function in the Appendix A.
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Kℓ =
1
n ∫p

(
pz

ω0
)ℓ f0(p)

Relativistic auxiliary functions

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz

!0

@z�fh �
|m|

20

2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||


(|m|

2
✓
0)0

2!2

0

f
0

0w �
|m|

20
|m|

2
✓
0

4!4

0

�
f
0

0w � �w!0f
00

0w

��
, (4.37)

where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z

d3k

(2⇡)3
�fh± ⌘ 0 and uh ⌘

1

N1

Z
d3k

(2⇡)3
kz

!0

�fh±, (4.39)

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
 
�D1 1

�D2 �vw

! 
µ
0

h

u
0

h

!
+ |m|

20

 
vw�wQ1 0

vw�wQ2 R̄

! 
µh

uh

!
=

 
Sh1

Sh2

!
+

 
�Ch1

�Ch2

!
, (4.40)

where the semiclassical source functions are

Sh` = �vw�wh

h
(|m|

2
✓
0)0Q8o

`
� |m|

20
|m|

2
✓
0
Q

9o

`

i
. (4.41)

The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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where the source in :th equations isℓ

And collision terms are

sik = 1$ (-1) for a species k  
in the initial (final) state 

Cw
hℓ,i = Ki

ℓ,i[∑
a,k

sa
ikξk]Γa

el − uhℓ,iκiΓT,i



Multiplying the SC BE with    and integrating over momenta, one gets relativistic fluid equations(pz /ω0i)ℓ

8

3. Moment expansion
N1 ≡

Z
d3pf00w;FD ¼ γw

Z
d3pf00;FD

≡ γwN̂1 ¼ −γw
2π3

3
T2; ð20Þ

where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1

N1

Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
!"

pz

E

#
l
δf

$
: ð22Þ

The lth moment of the evolution equation can then be
written as

!"
pz

E

#
l
L
$

¼
!"

pz

E

#
l
ðS þ δCÞ

$
: ð23Þ

Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ
!
pz

E
L
$

¼ −D2μ0 þ u02 þ vwγwðm2Þ0Q2μ

þ ðm2Þ0
!

1

2E2
δf

$
; ð25Þ

where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions

Dl ≡
!"

pz

E

#
l
f00w

$
; ð26Þ

Ql ≡
!"

pl−1
z

2El

#
f000w

$
: ð27Þ

The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

!
1

2E2
δf

$
→

%
1

2pzE

&
u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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Following FH06 we use the factorization rule also to
define the truncation scheme,

u2 ¼
!"

pz

E

#
2

δf
$

→
%
pz

E

&
u≡ Ru; ð33Þ

where the bracket average ½·% is defined in (29). Then R
becomes just the expectation value of the fluid velocity in
the wall frame,

R ¼ −vw; ð34Þ

which is an exact result. Comparing with FH06 R ¼
vwK̃FH

5 , this implies that K̃FH
5 ¼ −1 exactly. Although

unstated in FH06, it is indeed the case.
The factorization and the truncation rules are, of course,

somewhat arbitrary. It is therefore reassuring that the
R̄-term has but a weak effect on solutions: toggling between
the choice (32) versus setting R̄≡ 0 changes the final
baryon asymmetry at the level of a few percent. Moreover
the definition (34) for R is reasonable because −vw is
roughly the ratio between adjacent source terms, order by
order in the moment expansion.

E. Sources and collision terms

Assembling the previous results, and including the
collision and source terms, the fluid equations can be
presented in full detail. Defining a vector w ¼ ðμ; uÞT,
the general form of the two moment equations may be
expressed as

Aw0 þ ðm2Þ0Bw ¼ Sþ δC; ð35Þ

where

A ¼
"−D1 1

−D2 R

#
; B ¼

"
vwγwQ1 0

vwγwQ2 R̄

#
; ð36Þ

and S ¼ ðS1; S2ÞT with S1 ¼ hSi and S2 ¼ hðpz=EÞSi, and
similarly for the δC vector. The form (36) is generic to both
CP-even and CP-odd sectors, which are only distinguished
by their respective source terms.
Let us consider the source terms first. In the CP-even

sector one finds using (17)

Sel ¼ vwγwðm2Þ0Qe
l; ð37Þ

with the definition

Qe
l ≡

!
pl−1
z

2El f00w

$
: ð38Þ

In the small-vw limit one finds Qe
2 → KFH

3 .

In the CP-odd sector, using Eq. (19) similarly gives

Sohl ¼ −vwγwh½ðm2θ0Þ0Q8o
l − ðm2Þ0m2θ0Q9o

l %; ð39Þ

where the coefficient functions are

Q8o
l ≡

!
sppl−1

z

2ElEz
f00w

$
; ð40Þ

Q9o
l ≡

!
sppl−1

z

4Elþ1Ez

"
1

E
f00w − γwf000w

#$
; ð41Þ

with sp defined in (5). Setting sp → signðpzÞ one finds
that Q8o

2 → KFH
8 and Q9o

2 → KFH
9 in the small vw-limit.

Moreover, in previous work, the approximation S1 ¼ 0was
always made, because it isOðv2wÞ. For large velocities there
is no hierarchy between S1 and S2 and one must include
both sources.
It remains to consider the collision integrals. Both phase

space averages δC1 ≡ hδCi and δC2 ≡ hðpz=EÞδCi are
normalized using N−1

1 , Eq. (20). The collision term
moments are derived following Appendix A of Ref. [29],

δC1 ¼ K0

X

i

Γi

X

j

sij
μj
T
;

δC2 ¼ −Γtotu − vwδC1: ð42Þ

Here sij ¼ 1 (−1) if the corresponding species is in the
initial (final) state in the interaction with rate Γi, and Γtot ¼P

i Γi is the total interaction rate, including elastic channels
that do not contribute to the sum in hδCi. The normalization
factor

K0 ≡ −hf0wi ¼ − N̂0

N̂1

ð43Þ

was neglected in FH06. For a massless fermion, for
example, K0 ≅ 1.1, Eqs. (42) are valid for both the CP-
even and the CP-odd cases.
Equations (35) obviously depend on a large number of

coefficient functions: Dl, Ql, R, R̄, Qe
l, Q

8o
l , Q9o

l , and K0.
Most of these depend on the wall velocity vw and the
dimensionless ratio x ¼ m=T. However, they are universal
and model independent. In practice, we compute them on a
grid of x and vw values and spline fit them. Explicit
expressions are given for all the integrals defining them in
the Appendix A.

F. Critical speed predictions

There is a widespread notion, apparently originating
from Ref. [49], that diffusion is inefficient for wall speeds
exceeding the plasma sound speed. This would mean in
particular that EWBG would not be feasible for detonation
walls, corresponding to very strong phase transitions, often
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2π3
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where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1
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Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
!"

pz

E

#
l
δf
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The lth moment of the evolution equation can then be
written as
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$
: ð23Þ

Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ
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þ ðm2Þ0
!

1

2E2
δf
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where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions
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The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

!
1

2E2
δf

$
→

%
1

2pzE

&
u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
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fluid equations can be expressed as averages over the phase
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Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find
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differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
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In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
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systematic expansion in velocity moments.
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One can further simplify this equation by using the following identity:
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Next we define the dimensionless `’th velocity moment of the distribution �f along with a
dimensionless chemical potential and dimensionless mass variable as follows:
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We further divide equation (3.5) by T , after which we can write the `’th moment equation in
a dimensionless form where all dimensionful quantities are measured in units of temperature:
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Here the prime denotes the dimensionless spatial derivative 0 ⌘ @/@(zT ) and ` runs from 0 to
some maximum number n. The dimensionless coefficient functions D` and Q
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and the thermally corrected dimensionless source function in the wall frame is
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Finally, the temperature-scaled, dimensionless collision term is given by
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The reduction of the collision term will require a more detailed discussion and further ap-
proximations. We shall return to this question in section 4 below.

3.1 Factorization and truncation

We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
in [28] and define the following factorization rule:
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h`. (3.8)

Here the prime denotes the dimensionless spatial derivative 0 ⌘ @/@(zT ) and ` runs from 0 to
some maximum number n. The dimensionless coefficient functions D` and Q

h
` are given by:

D` ⌘ T

D
p
`
z

!
`
0

f
0
0w

E
, and Q` ⌘ T

3
D

p
`
z

!
`+1
0

f
00
0w

E
(3.9)

and the thermally corrected dimensionless source function in the wall frame is

Ŝw
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the equations independently. Expanding consistently to second order in gradients, one finds
the CP-odd equation:

pz

!0
@z�fh �

|m|20

2!0
@pz�fh = Sh + Ch[f ], (2.8)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�wsh �||
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4!4
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�
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0w � �w!0f

00
0w

��
, (2.9)

where f0w ⌘ fFD(�w(!0 + vwkz)). The CP-even perturbation �f satisfies a similar equation
with the replacement Sh ! �1

2vw�w(|m
2|0/!0)f 0

0w. In this paper we will work at the level
of vacuum dispersion relations. Thermal corrections to the semiclassical source have been
computed in ref. [31], but their implementation on the moment expansion is beyond the
scope of this work.

3 SC-moment equations

We now set up a moment expansion method for solving (2.8) with arbitrary number of mo-
ments of the perturbation. It is useful to further separate the perturbation into a piece cor-
responding to a finite effective chemical potential and an additional momentum-dependent
fluctuation. We display the results explicitly only for the CP-odd perturbation, but identical
results apply for the CP-even equations, only with a different source term. We thus define:

�fh ⌘ �µhf
0
0w± + �fh, (3.1)

where Z
d3p

(2⇡)3
�fh ⌘ 0. (3.2)

Equation (3.2) is in fact just the definition of the chemical potential. Inserting the split (3.1)
into equation (2.8) the Liouville operator in the left hand side becomes

L[µh, �fh] ⌘ � pz
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f
0
0w @zµh + vw�w

|m|20

2!0
f
00
0wµh +

pz

!0
@z�fh �

|m|20

2!0
@pz�fh. (3.3)

Integrating the (2.8) over the spatial momenta weighted by (pz/!0)`, with different `, one
obtains a set of equations for µh and the velocity moments of the perturbation �fh. To be
precise, we define the integration over momenta by the average2:

hXi ⌘ 1
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Z
d3pX, (3.4)

with N1 = �2⇡3
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3
/3. The `’th moment equation then becomes:

�
D
p
`+1
z

!
`+1
0

f
0
0w

E
@zµh +

1

2
vw�w|m|20

D
p
`
z

!
`+1
0

f
00
0w

E
µh

+
D
p
`+1
z

!
`+1
0

@z�fh

E
� 1

2
|m|20

D
p
`
z

!
`+1
0

@pz�fh

E
=

D
p
`
z

!
`
0

�
S
w
h + C

w
h

�E
. (3.5)

2Note that our normalization differs by one power of T from that of [30].
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with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second
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Figure 1. Shown are few first source functions S
w
h,`, defined in (3.10). Left panel shows the sources

for even moments ` = 0, 2, 4, 6, 8 and right panel the odd moments ` = 1, 3, 5, 7, 9. The mass function
is defined below in equation (7.1) and we used vw = 0.1 and the benchmark parameters given in
equation (7.4).

and Ŝw
h = (Ŝw

h1, ..., Ŝw
h,n)

T and similarly for the Ĉw
h vector. This form of moment equations

is generic to both CP-even and CP-odd sectors, which only differ by the form of the source
terms. Matrix A is easily inverted, giving the equations in the simple form:

w
0
h = Â�1(Ŝw

h + Ĉw
h � B̂[wh]), Â�1 =

1

Dn

0

BBBBBBBBB@

0 0 · · · · · · �R 1
Dn 0 · · · · · · �RD1 D1

0 Dn
. . .

. . .
.
.
.

.

.

.

0 0
. . . 0 �RDn�3 Dn�3

.

.

.
.
.
. · · · Dn �RDn�2 Dn�2

0 0 · · · 0 �Dn Dn�1

1

CCCCCCCCCA

(3.21)

where the determinant factor Dn is given by

Dn ⌘ (�1)n det(Â) = Dn�1R�Dn. (3.22)

From the expression (3.9) for D`, we see that the ratio Dn/Dn�1 is a statistical measure for
the plasma velocity orthogonal to the wall in the wall frame, computed from the equilibrium
distribution. It is a function of the wall-velocity so that the determinant can be computed
as a function of vw for arbitrary n. It is important that detA is always nonzero so that the
inverse Â�1 exists. This is indeed always the case. Should make a comment on large wall
velo paper here.

Equations (3.21) depend on a large number of external functions: D`, Q`, R, R̄, Qe
` , Q

8o
`

and Q
9o
` , which in general depend on two variables, the wall velocity vw and the dimensionless

ratio x = |m|/T , and most of which can only be evaluated numerically. However, all these
functions are universal and we have evaluated them for a large number of n (up to n = 100) in
a grid in x and vw. Our numerical package automatically loads the data and creates spline-fits
for all external functions needed, which can then be used as regular functions. We give explicit
forms for all external functions in terms of a generic integral function in the Appendix A.
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Kℓ =
1
n ∫p

(
pz

ω0
)ℓ f0(p)

Relativistic auxiliary functions

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz

!0

@z�fh �
|m|

20

2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||
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where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z

d3k

(2⇡)3
�fh± ⌘ 0 and uh ⌘

1

N1

Z
d3k

(2⇡)3
kz

!0

�fh±, (4.39)

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
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+ |m|
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where the semiclassical source functions are

Sh` = �vw�wh

h
(|m|

2
✓
0)0Q8o

`
� |m|

20
|m|

2
✓
0
Q

9o

`

i
. (4.41)

The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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where the source in :th equations isℓ

only model dependent partsAnd collision terms are

sik = 1$ (-1) for a species k  
in the initial (final) state 

Cw
hℓ,i = Ki

ℓ,i[∑
a,k

sa
ikξk]Γa

el − uhℓ,iκiΓT,i



Multiplying the SC BE with    and integrating over momenta, one gets relativistic fluid equations(pz /ω0i)ℓ

8

3. Moment expansion
N1 ≡

Z
d3pf00w;FD ¼ γw

Z
d3pf00;FD

≡ γwN̂1 ¼ −γw
2π3

3
T2; ð20Þ

where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1

N1

Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
!"

pz

E

#
l
δf

$
: ð22Þ

The lth moment of the evolution equation can then be
written as

!"
pz

E

#
l
L
$

¼
!"

pz

E

#
l
ðS þ δCÞ

$
: ð23Þ

Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ
!
pz

E
L
$

¼ −D2μ0 þ u02 þ vwγwðm2Þ0Q2μ

þ ðm2Þ0
!

1

2E2
δf

$
; ð25Þ

where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions

Dl ≡
!"

pz

E

#
l
f00w

$
; ð26Þ

Ql ≡
!"

pl−1
z

2El

#
f000w

$
: ð27Þ

The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

!
1

2E2
δf

$
→

%
1

2pzE

&
u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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Following FH06 we use the factorization rule also to
define the truncation scheme,

u2 ¼
!"

pz

E

#
2

δf
$

→
%
pz

E

&
u≡ Ru; ð33Þ

where the bracket average ½·% is defined in (29). Then R
becomes just the expectation value of the fluid velocity in
the wall frame,

R ¼ −vw; ð34Þ

which is an exact result. Comparing with FH06 R ¼
vwK̃FH

5 , this implies that K̃FH
5 ¼ −1 exactly. Although

unstated in FH06, it is indeed the case.
The factorization and the truncation rules are, of course,

somewhat arbitrary. It is therefore reassuring that the
R̄-term has but a weak effect on solutions: toggling between
the choice (32) versus setting R̄≡ 0 changes the final
baryon asymmetry at the level of a few percent. Moreover
the definition (34) for R is reasonable because −vw is
roughly the ratio between adjacent source terms, order by
order in the moment expansion.

E. Sources and collision terms

Assembling the previous results, and including the
collision and source terms, the fluid equations can be
presented in full detail. Defining a vector w ¼ ðμ; uÞT,
the general form of the two moment equations may be
expressed as

Aw0 þ ðm2Þ0Bw ¼ Sþ δC; ð35Þ

where

A ¼
"−D1 1

−D2 R

#
; B ¼

"
vwγwQ1 0

vwγwQ2 R̄

#
; ð36Þ

and S ¼ ðS1; S2ÞT with S1 ¼ hSi and S2 ¼ hðpz=EÞSi, and
similarly for the δC vector. The form (36) is generic to both
CP-even and CP-odd sectors, which are only distinguished
by their respective source terms.
Let us consider the source terms first. In the CP-even

sector one finds using (17)

Sel ¼ vwγwðm2Þ0Qe
l; ð37Þ

with the definition

Qe
l ≡

!
pl−1
z

2El f00w

$
: ð38Þ

In the small-vw limit one finds Qe
2 → KFH

3 .

In the CP-odd sector, using Eq. (19) similarly gives

Sohl ¼ −vwγwh½ðm2θ0Þ0Q8o
l − ðm2Þ0m2θ0Q9o

l %; ð39Þ

where the coefficient functions are

Q8o
l ≡

!
sppl−1

z

2ElEz
f00w

$
; ð40Þ

Q9o
l ≡

!
sppl−1

z

4Elþ1Ez

"
1

E
f00w − γwf000w

#$
; ð41Þ

with sp defined in (5). Setting sp → signðpzÞ one finds
that Q8o

2 → KFH
8 and Q9o

2 → KFH
9 in the small vw-limit.

Moreover, in previous work, the approximation S1 ¼ 0was
always made, because it isOðv2wÞ. For large velocities there
is no hierarchy between S1 and S2 and one must include
both sources.
It remains to consider the collision integrals. Both phase

space averages δC1 ≡ hδCi and δC2 ≡ hðpz=EÞδCi are
normalized using N−1

1 , Eq. (20). The collision term
moments are derived following Appendix A of Ref. [29],

δC1 ¼ K0

X

i

Γi

X

j

sij
μj
T
;

δC2 ¼ −Γtotu − vwδC1: ð42Þ

Here sij ¼ 1 (−1) if the corresponding species is in the
initial (final) state in the interaction with rate Γi, and Γtot ¼P

i Γi is the total interaction rate, including elastic channels
that do not contribute to the sum in hδCi. The normalization
factor

K0 ≡ −hf0wi ¼ − N̂0

N̂1

ð43Þ

was neglected in FH06. For a massless fermion, for
example, K0 ≅ 1.1, Eqs. (42) are valid for both the CP-
even and the CP-odd cases.
Equations (35) obviously depend on a large number of

coefficient functions: Dl, Ql, R, R̄, Qe
l, Q

8o
l , Q9o

l , and K0.
Most of these depend on the wall velocity vw and the
dimensionless ratio x ¼ m=T. However, they are universal
and model independent. In practice, we compute them on a
grid of x and vw values and spline fit them. Explicit
expressions are given for all the integrals defining them in
the Appendix A.

F. Critical speed predictions

There is a widespread notion, apparently originating
from Ref. [49], that diffusion is inefficient for wall speeds
exceeding the plasma sound speed. This would mean in
particular that EWBG would not be feasible for detonation
walls, corresponding to very strong phase transitions, often
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where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1

N1

Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
!"

pz

E

#
l
δf

$
: ð22Þ

The lth moment of the evolution equation can then be
written as

!"
pz

E

#
l
L
$

¼
!"

pz

E

#
l
ðS þ δCÞ

$
: ð23Þ

Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ
!
pz

E
L
$

¼ −D2μ0 þ u02 þ vwγwðm2Þ0Q2μ

þ ðm2Þ0
!

1

2E2
δf

$
; ð25Þ

where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions

Dl ≡
!"

pz

E

#
l
f00w

$
; ð26Þ

Ql ≡
!"

pl−1
z

2El

#
f000w

$
: ð27Þ

The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

!
1

2E2
δf

$
→

%
1

2pzE

&
u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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One can further simplify this equation by using the following identity:
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Next we define the dimensionless `’th velocity moment of the distribution �f along with a
dimensionless chemical potential and dimensionless mass variable as follows:

uh,` ⌘
D
p
`
z

!
`
0

�fh

E
, ⇠i ⌘

µi

T
and x ⌘ m

T
. (3.7)

We further divide equation (3.5) by T , after which we can write the `’th moment equation in
a dimensionless form where all dimensionful quantities are measured in units of temperature:

�D`+1⇠
0
h + u

0
h,`+1 +

1

2
vw�w|x|20Q`⇠h +

`

2
|x|20R̄uh,` = Ŝw

h,` + Ĉw
h`. (3.8)

Here the prime denotes the dimensionless spatial derivative 0 ⌘ @/@(zT ) and ` runs from 0 to
some maximum number n. The dimensionless coefficient functions D` and Q

h
` are given by:
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D
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and the thermally corrected dimensionless source function in the wall frame is

Ŝw
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h
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Finally, the temperature-scaled, dimensionless collision term is given by

Ĉw
h,` ⌘

1

T

D
p
`
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`
Ch[f ]

E
. (3.13)

The reduction of the collision term will require a more detailed discussion and further ap-
proximations. We shall return to this question in section 4 below.

3.1 Factorization and truncation

We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
in [28] and define the following factorization rule:

R̄uh,` ⌘ T
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D
p
`�1
z
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T
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pz!0

i
uh,`, (3.14)
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the equations independently. Expanding consistently to second order in gradients, one finds
the CP-odd equation:

pz

!0
@z�fh �

|m|20

2!0
@pz�fh = Sh + Ch[f ], (2.8)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�wsh �||
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0w � |m|20|m|2✓0

4!4
0

�
f
0
0w � �w!0f

00
0w

��
, (2.9)

where f0w ⌘ fFD(�w(!0 + vwkz)). The CP-even perturbation �f satisfies a similar equation
with the replacement Sh ! �1

2vw�w(|m
2|0/!0)f 0

0w. In this paper we will work at the level
of vacuum dispersion relations. Thermal corrections to the semiclassical source have been
computed in ref. [31], but their implementation on the moment expansion is beyond the
scope of this work.

3 SC-moment equations

We now set up a moment expansion method for solving (2.8) with arbitrary number of mo-
ments of the perturbation. It is useful to further separate the perturbation into a piece cor-
responding to a finite effective chemical potential and an additional momentum-dependent
fluctuation. We display the results explicitly only for the CP-odd perturbation, but identical
results apply for the CP-even equations, only with a different source term. We thus define:

�fh ⌘ �µhf
0
0w± + �fh, (3.1)

where Z
d3p

(2⇡)3
�fh ⌘ 0. (3.2)

Equation (3.2) is in fact just the definition of the chemical potential. Inserting the split (3.1)
into equation (2.8) the Liouville operator in the left hand side becomes

L[µh, �fh] ⌘ � pz

!0
f
0
0w @zµh + vw�w

|m|20

2!0
f
00
0wµh +

pz

!0
@z�fh �

|m|20

2!0
@pz�fh. (3.3)

Integrating the (2.8) over the spatial momenta weighted by (pz/!0)`, with different `, one
obtains a set of equations for µh and the velocity moments of the perturbation �fh. To be
precise, we define the integration over momenta by the average2:

hXi ⌘ 1
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Z
d3pX, (3.4)

with N1 = �2⇡3
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3
/3. The `’th moment equation then becomes:
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2Note that our normalization differs by one power of T from that of [30].
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with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second
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Figure 1. Shown are few first source functions S
w
h,`, defined in (3.10). Left panel shows the sources

for even moments ` = 0, 2, 4, 6, 8 and right panel the odd moments ` = 1, 3, 5, 7, 9. The mass function
is defined below in equation (7.1) and we used vw = 0.1 and the benchmark parameters given in
equation (7.4).

and Ŝw
h = (Ŝw

h1, ..., Ŝw
h,n)

T and similarly for the Ĉw
h vector. This form of moment equations

is generic to both CP-even and CP-odd sectors, which only differ by the form of the source
terms. Matrix A is easily inverted, giving the equations in the simple form:

w
0
h = Â�1(Ŝw

h + Ĉw
h � B̂[wh]), Â�1 =

1

Dn

0

BBBBBBBBB@

0 0 · · · · · · �R 1
Dn 0 · · · · · · �RD1 D1

0 Dn
. . .

. . .
.
.
.

.

.

.

0 0
. . . 0 �RDn�3 Dn�3

.

.

.
.
.
. · · · Dn �RDn�2 Dn�2

0 0 · · · 0 �Dn Dn�1

1

CCCCCCCCCA

(3.21)

where the determinant factor Dn is given by

Dn ⌘ (�1)n det(Â) = Dn�1R�Dn. (3.22)

From the expression (3.9) for D`, we see that the ratio Dn/Dn�1 is a statistical measure for
the plasma velocity orthogonal to the wall in the wall frame, computed from the equilibrium
distribution. It is a function of the wall-velocity so that the determinant can be computed
as a function of vw for arbitrary n. It is important that detA is always nonzero so that the
inverse Â�1 exists. This is indeed always the case. Should make a comment on large wall
velo paper here.

Equations (3.21) depend on a large number of external functions: D`, Q`, R, R̄, Qe
` , Q

8o
`

and Q
9o
` , which in general depend on two variables, the wall velocity vw and the dimensionless

ratio x = |m|/T , and most of which can only be evaluated numerically. However, all these
functions are universal and we have evaluated them for a large number of n (up to n = 100) in
a grid in x and vw. Our numerical package automatically loads the data and creates spline-fits
for all external functions needed, which can then be used as regular functions. We give explicit
forms for all external functions in terms of a generic integral function in the Appendix A.
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Kℓ =
1
n ∫p

(
pz

ω0
)ℓ f0(p)

Relativistic auxiliary functions

 => need for truncationun+1 = ?

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz
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2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:
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where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
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with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
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where the semiclassical source functions are

Sh` = �vw�wh
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The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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where the source in :th equations isℓ

only model dependent partsAnd collision terms are

sik = 1$ (-1) for a species k  
in the initial (final) state 

Cw
hℓ,i = Ki
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ikξk]Γa

el − uhℓ,iκiΓT,i



Multiplying the SC BE with    and integrating over momenta, one gets relativistic fluid equations(pz /ω0i)ℓ
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equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1

N1

Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
!"

pz

E

#
l
δf

$
: ð22Þ

The lth moment of the evolution equation can then be
written as
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l
ðS þ δCÞ

$
: ð23Þ

Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ
!
pz

E
L
$

¼ −D2μ0 þ u02 þ vwγwðm2Þ0Q2μ

þ ðm2Þ0
!

1

2E2
δf

$
; ð25Þ

where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions

Dl ≡
!"

pz

E

#
l
f00w

$
; ð26Þ

Ql ≡
!"

pl−1
z

2El

#
f000w

$
: ð27Þ

The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

!
1

2E2
δf

$
→

%
1

2pzE

&
u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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Following FH06 we use the factorization rule also to
define the truncation scheme,

u2 ¼
!"

pz

E

#
2

δf
$

→
%
pz

E

&
u≡ Ru; ð33Þ

where the bracket average ½·% is defined in (29). Then R
becomes just the expectation value of the fluid velocity in
the wall frame,

R ¼ −vw; ð34Þ

which is an exact result. Comparing with FH06 R ¼
vwK̃FH

5 , this implies that K̃FH
5 ¼ −1 exactly. Although

unstated in FH06, it is indeed the case.
The factorization and the truncation rules are, of course,

somewhat arbitrary. It is therefore reassuring that the
R̄-term has but a weak effect on solutions: toggling between
the choice (32) versus setting R̄≡ 0 changes the final
baryon asymmetry at the level of a few percent. Moreover
the definition (34) for R is reasonable because −vw is
roughly the ratio between adjacent source terms, order by
order in the moment expansion.

E. Sources and collision terms

Assembling the previous results, and including the
collision and source terms, the fluid equations can be
presented in full detail. Defining a vector w ¼ ðμ; uÞT,
the general form of the two moment equations may be
expressed as

Aw0 þ ðm2Þ0Bw ¼ Sþ δC; ð35Þ

where

A ¼
"−D1 1

−D2 R

#
; B ¼

"
vwγwQ1 0

vwγwQ2 R̄

#
; ð36Þ

and S ¼ ðS1; S2ÞT with S1 ¼ hSi and S2 ¼ hðpz=EÞSi, and
similarly for the δC vector. The form (36) is generic to both
CP-even and CP-odd sectors, which are only distinguished
by their respective source terms.
Let us consider the source terms first. In the CP-even

sector one finds using (17)

Sel ¼ vwγwðm2Þ0Qe
l; ð37Þ

with the definition

Qe
l ≡

!
pl−1
z

2El f00w

$
: ð38Þ

In the small-vw limit one finds Qe
2 → KFH

3 .

In the CP-odd sector, using Eq. (19) similarly gives

Sohl ¼ −vwγwh½ðm2θ0Þ0Q8o
l − ðm2Þ0m2θ0Q9o

l %; ð39Þ

where the coefficient functions are

Q8o
l ≡

!
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z

2ElEz
f00w

$
; ð40Þ

Q9o
l ≡

!
sppl−1

z

4Elþ1Ez

"
1

E
f00w − γwf000w

#$
; ð41Þ

with sp defined in (5). Setting sp → signðpzÞ one finds
that Q8o

2 → KFH
8 and Q9o

2 → KFH
9 in the small vw-limit.

Moreover, in previous work, the approximation S1 ¼ 0was
always made, because it isOðv2wÞ. For large velocities there
is no hierarchy between S1 and S2 and one must include
both sources.
It remains to consider the collision integrals. Both phase

space averages δC1 ≡ hδCi and δC2 ≡ hðpz=EÞδCi are
normalized using N−1

1 , Eq. (20). The collision term
moments are derived following Appendix A of Ref. [29],

δC1 ¼ K0

X

i

Γi

X

j

sij
μj
T
;

δC2 ¼ −Γtotu − vwδC1: ð42Þ

Here sij ¼ 1 (−1) if the corresponding species is in the
initial (final) state in the interaction with rate Γi, and Γtot ¼P

i Γi is the total interaction rate, including elastic channels
that do not contribute to the sum in hδCi. The normalization
factor

K0 ≡ −hf0wi ¼ − N̂0

N̂1

ð43Þ

was neglected in FH06. For a massless fermion, for
example, K0 ≅ 1.1, Eqs. (42) are valid for both the CP-
even and the CP-odd cases.
Equations (35) obviously depend on a large number of

coefficient functions: Dl, Ql, R, R̄, Qe
l, Q

8o
l , Q9o

l , and K0.
Most of these depend on the wall velocity vw and the
dimensionless ratio x ¼ m=T. However, they are universal
and model independent. In practice, we compute them on a
grid of x and vw values and spline fit them. Explicit
expressions are given for all the integrals defining them in
the Appendix A.

F. Critical speed predictions

There is a widespread notion, apparently originating
from Ref. [49], that diffusion is inefficient for wall speeds
exceeding the plasma sound speed. This would mean in
particular that EWBG would not be feasible for detonation
walls, corresponding to very strong phase transitions, often
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where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form
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In particular, the integrals over δf define the velocity
perturbations
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Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find
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where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions
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The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ&u; ð28Þ

½X &≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

!
1

2E2
δf

$
→

%
1

2pzE
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u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

''''
p − vwE
pþ vwE

''''f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
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to the FH06-functions as D1 → −vwKFH
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4 , and
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2 . The Q2 term was, however, overlooked
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Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further
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for any X that does not correspond to a velocity perturba-
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Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
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6 in FH06 it does not.
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but this is an ansatz for the distribution function, rather than a
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One can further simplify this equation by using the following identity:
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Next we define the dimensionless `’th velocity moment of the distribution �f along with a
dimensionless chemical potential and dimensionless mass variable as follows:
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We further divide equation (3.5) by T , after which we can write the `’th moment equation in
a dimensionless form where all dimensionful quantities are measured in units of temperature:
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Here the prime denotes the dimensionless spatial derivative 0 ⌘ @/@(zT ) and ` runs from 0 to
some maximum number n. The dimensionless coefficient functions D` and Q
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and the thermally corrected dimensionless source function in the wall frame is
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Finally, the temperature-scaled, dimensionless collision term is given by
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The reduction of the collision term will require a more detailed discussion and further ap-
proximations. We shall return to this question in section 4 below.

3.1 Factorization and truncation

We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
in [28] and define the following factorization rule:
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the equations independently. Expanding consistently to second order in gradients, one finds
the CP-odd equation:

pz

!0
@z�fh �

|m|20

2!0
@pz�fh = Sh + Ch[f ], (2.8)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:
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where f0w ⌘ fFD(�w(!0 + vwkz)). The CP-even perturbation �f satisfies a similar equation
with the replacement Sh ! �1

2vw�w(|m
2|0/!0)f 0

0w. In this paper we will work at the level
of vacuum dispersion relations. Thermal corrections to the semiclassical source have been
computed in ref. [31], but their implementation on the moment expansion is beyond the
scope of this work.

3 SC-moment equations

We now set up a moment expansion method for solving (2.8) with arbitrary number of mo-
ments of the perturbation. It is useful to further separate the perturbation into a piece cor-
responding to a finite effective chemical potential and an additional momentum-dependent
fluctuation. We display the results explicitly only for the CP-odd perturbation, but identical
results apply for the CP-even equations, only with a different source term. We thus define:

�fh ⌘ �µhf
0
0w± + �fh, (3.1)

where Z
d3p

(2⇡)3
�fh ⌘ 0. (3.2)

Equation (3.2) is in fact just the definition of the chemical potential. Inserting the split (3.1)
into equation (2.8) the Liouville operator in the left hand side becomes
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Integrating the (2.8) over the spatial momenta weighted by (pz/!0)`, with different `, one
obtains a set of equations for µh and the velocity moments of the perturbation �fh. To be
precise, we define the integration over momenta by the average2:

hXi ⌘ 1

N1

Z
d3pX, (3.4)

with N1 = �2⇡3
�wT

3
/3. The `’th moment equation then becomes:

�
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E
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D
p
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!
`
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�
S
w
h + C

w
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. (3.5)

2Note that our normalization differs by one power of T from that of [30].
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with N1 ⌘ �2⇡2
�wT
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Figure 1. Shown are few first source functions S
w
h,`, defined in (3.10). Left panel shows the sources

for even moments ` = 0, 2, 4, 6, 8 and right panel the odd moments ` = 1, 3, 5, 7, 9. The mass function
is defined below in equation (7.1) and we used vw = 0.1 and the benchmark parameters given in
equation (7.4).

and Ŝw
h = (Ŝw

h1, ..., Ŝw
h,n)

T and similarly for the Ĉw
h vector. This form of moment equations

is generic to both CP-even and CP-odd sectors, which only differ by the form of the source
terms. Matrix A is easily inverted, giving the equations in the simple form:

w
0
h = Â�1(Ŝw

h + Ĉw
h � B̂[wh]), Â�1 =

1

Dn

0

BBBBBBBBB@

0 0 · · · · · · �R 1
Dn 0 · · · · · · �RD1 D1

0 Dn
. . .

. . .
.
.
.

.

.

.

0 0
. . . 0 �RDn�3 Dn�3

.

.

.
.
.
. · · · Dn �RDn�2 Dn�2

0 0 · · · 0 �Dn Dn�1

1

CCCCCCCCCA

(3.21)

where the determinant factor Dn is given by

Dn ⌘ (�1)n det(Â) = Dn�1R�Dn. (3.22)

From the expression (3.9) for D`, we see that the ratio Dn/Dn�1 is a statistical measure for
the plasma velocity orthogonal to the wall in the wall frame, computed from the equilibrium
distribution. It is a function of the wall-velocity so that the determinant can be computed
as a function of vw for arbitrary n. It is important that detA is always nonzero so that the
inverse Â�1 exists. This is indeed always the case. Should make a comment on large wall
velo paper here.

Equations (3.21) depend on a large number of external functions: D`, Q`, R, R̄, Qe
` , Q

8o
`

and Q
9o
` , which in general depend on two variables, the wall velocity vw and the dimensionless

ratio x = |m|/T , and most of which can only be evaluated numerically. However, all these
functions are universal and we have evaluated them for a large number of n (up to n = 100) in
a grid in x and vw. Our numerical package automatically loads the data and creates spline-fits
for all external functions needed, which can then be used as regular functions. We give explicit
forms for all external functions in terms of a generic integral function in the Appendix A.
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Kℓ =
1
n ∫p

(
pz

ω0
)ℓ f0(p)

Relativistic auxiliary functions

 => need for truncationun+1 = ?

Assumed a specific factorization

Only the CP-odd perturbation �fh depends on helicity. One can derive equations for �f

and �fh by taking the sum and the di↵erence of the equation (4.34). These equations mix

in general, but this occurs only at the third order or higher in gradients [30, 31], so we can

treat the equations independently. Expanding consistently to second order in gradients,

one finds
kz

!0

@z�fh �
|m|

20

2!0

@kz�fh = Sh + Ch[f ], (4.36)

where the collision term is Ch = (Ch+ � Ch�)/2 and the CP-violating source is:

Sh = �vw�whsk �||
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��
, (4.37)

where f0w ⌘ fFD(�w(!0+vwkz)). The CP-even perturbation �f satisfies a similar equation

with the replacement Sh !
1

2
vw�w(|m2

|
0
/!0)f 0

0w
.

4.3 Moment expansion

One usually solves the semiclassical equation (4.34) in moment expansion, by singling out

the integrated perturbation as a pseudo chemical potential9:

�fh ⌘ �µhf
0

0w + �fh, (4.38)

where
R
d3k �fh ⌘ 0 and when acting on f0w, prime denotes @/@(�w!). Integrating (4.34)

over the spatial momenta weighted by (kz/!0)n, one obtains a set of equations for µh and

the higher moments of the perturbation �fh. This procedure was revisited recently in [31]

and we collect just the main results here. We set
Z

d3k

(2⇡)3
�fh± ⌘ 0 and uh ⌘

1

N1

Z
d3k

(2⇡)3
kz

!0

�fh±, (4.39)

with N1 ⌘ �2⇡2
�wT

2
/3. The first equation defines the chemical potential and the second

the first velocity moment of the perturbation. Truncating to the two lowest moments, the

SC-equations read
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+ |m|

20

 
vw�wQ1 0

vw�wQ2 R̄
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!
=
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+
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!
, (4.40)

where the semiclassical source functions are

Sh` = �vw�wh

h
(|m|

2
✓
0)0Q8o

`
� |m|

20
|m|

2
✓
0
Q

9o

`

i
. (4.41)

The kinematic integral functions D`, Q`, R̄ and Q
8o

`
and Q

9o

`
are defined in [31]. Finally,

computing to the lowest order in gradients (see section 7), the collision integrals are given

by [25, 31],

�Ch1 = K0

X

i

�i

X

j

sij
µj

T
,

�Ch2 = ��TOT u� vw�Ch1 . (4.42)

9Note that �f is a perturbation around the actual equilibrium distribution fh±
FD , which is di↵erent from

the zeroth order quantity f0w. This di↵erence is the source for the f
00-term in (4.37). However, in the (4.38)

fh±
FD ⇡ f0w to the order we are working.
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where the source in :th equations isℓ

only model dependent partsAnd collision terms are

sik = 1$ (-1) for a species k  
in the initial (final) state 

Cw
hℓ,i = Ki

ℓ,i[∑
a,k

sa
ikξk]Γa

el − uhℓ,iκiΓT,i
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Relativistic equations do not display the spurious  
“sound speed limit” vw < cs  for the EWBG, 
found earlier with nonrelativistic equations of

3.1 Benchmark model

μBL
¼ 1

2
ð1þ 4Dt

0ÞμtL þ
1

2
ð1þ 4Db

0ÞμbL þ 2Dt
0μtR : ð59Þ

The function fsphðzÞ¼minð1;2.4Γsph

T e−40hðzÞ=TÞ is designed
to smoothly interpolate between the sphaleron rates in
the broken and unbroken phases. g% is the number of
degrees of freedom in the heat bath; in the standard
model g% ¼ 106.75.

V. COMPARISON TO FH06

We can now compare our improved fluid equations (52)
and (53) to those of FH06. The only difference between the
two lies in the definition of the various coefficient func-
tions, which we have renamed at the same time correcting
and generalizing them to arbitrary wall velocities. To
facilitate the comparison the results are collected in a
dictionary translating between the two naming schemes in
Table I. Our equations agree with those of FH06, when one
assumes h → −1 and sp → signðpzÞ in the sources and
replaces the coefficent functions according to Table I.
For the interaction rates we use the values given in [47]:

Γsph ¼ 1.0× 10−6 T, ΓSS ¼ 4.9× 10−4 T, Γy ¼ 4.2×10−3 T,
Γm ¼ m2

t =ð63 TÞ, and Γh ¼ m2
W=ð50 TÞ, where the top

mass is as given in (48) and m2
W ≡ g2hðzÞ2=4. Furthermore

the total interaction rates were defined as Γi
tot ¼ KFH

4;i =
ðDiKFH

1;i Þ with a quark diffusion constant Dq ¼ 6=T and a
Higgs diffusion constant Dh ¼ 20=T. The numerical
impact of the Higgs and bottom masses is found to be
quite small, and following FH06 we take them to be

massless. Many of these rates have been quite roughly
estimated, in some cases going back to the early refer-
ence [49], and deserve to be updated. We hope to make
better determinations in an upcoming paper.
We display dependences of the predicted baryon asym-

metry of the universe (BAU) normalized to the observed
value, BAU≡ ηB=ηB;obs, in Fig. 3. In both panels the thick
red solid lines labeled “CK-s” correspond to the improved
fluid equations with the spin-s source, where we set sp →
signðpzÞ and h ¼ −1 in Eqs. (39)–(41). The thick dash-
dotted blue lines labeled “FH-s” correspond to the same
spin-s source, but using the FH06 equations.9 Thin dashed

TABLE I. A dictionary between the CK (this work) and the
FH06 functions, depending upon x ¼ m=T and wall velocity vw.
They generally differ from each other at large vw. Functions that
are equivalent are marked by an equality sign in the middle
column. The double exclamation mark indicates functions that do
not agree even for small vw, and single exclamation marks signal
the source terms omitted in FH06.

CK FH06

D0ðxÞ = KFH
1 ðxÞ

D1ðx; vwÞ = −vwKFH
1 ðxÞ

D2ðx; vwÞ KFH
4 ðxÞ

Q1ðx; vwÞ KFH
2 ðxÞ

Q2ðx; vwÞ ! 0
R ¼ −vw = vwK̃FH

5

R̄ðx; vwÞ !! K̃FH
6 ðxÞ

Qe
1ðx; vwÞ ! 0

Qe
2ðx; vwÞ KFH

3 ðxÞ
Q8o

1 ðx; vwÞ ! 0
Q8o

2 ðx; vwÞ KFH
8 ðxÞ

Q9o
1 ðx; vwÞ ! 0

Q9o
2 ðx; vwÞ KFH

9 ðxÞ
K0ðxÞ !! 1
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FIG. 3. Predicted baryon asymmetry in units of observed
asymmetry for the fiducial profile as a function of the wall
velocity vw. From the logarithmic scale plot (upper panel) one can
appreciate the good agreement at small vw. Note the vanishing of
BAU for vw ≲ 10−5 due to the onset of thermal equilibrium. The
linear scale (lower panel) expands the large vw region more
relevant for strong transitions. The thin vertical line shows the
sound speed vs ¼ 1=

ffiffiffi
3

p
.

9We switched for the sign of the source in FH06, however, so
that the sign of the BAU matches in both cases.
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invoked in the context of gravitational wave production.
This assertion is not true, as we shall show, but it turns out
that the FH06 equations are, quite fortuitously, consistent
with the false assumption.
We noted that the fluid equations can be written in the

matrix form Aw0 ¼ F½w#, where A is given in Eq. (36),
while in FH06 the A matrix is

AFH ¼
!
vwKFH

1 1

−KFH
4 −vw

"
; ð44Þ

setting K̃FH
5 ¼ −1 as mentioned above. One can solve for

the value of vw where A becomes singular (noninvertible)
using detðAÞ ¼ 0. If a solution exists for vw < 1, it implies
a critical speed vc beyond which diffusion is quenched. The
exact prediction using the A-matrix in (36) gives (recalling
that R ¼ −vw)

vc ¼ −
!
D2

D1

"

vw¼vc

⇒ vc ¼ 1; ð45Þ

whereas the approximate FH06-condition gives a different
velocity

v0c ¼
####
KFH

4

KFH
1

####
1=2

vw¼0

: ð46Þ

The dependence of v0c on m=T as obtained in the FH06-
case (46) is shown in Fig. 2 for a Fermi-Dirac distribution.
(The corresponding curves for bosons look similar.) For
light particles the quench limit is maximal and very close to
the sound speed, but this is a mere coincidence due to
inappropriate use of the small vw-approximation. Indeed,
from (45), employing full vw-dependent function, we
find that vc ¼ 1, in accordance with the arguments given
in Sec. II. Thus diffusion efficiency should go to zero

smoothly as vw → 1, with no particular features at the
sound speed, vw ¼ vs. We will show that this indeed is
the case.

IV. PHENOMENOLOGICAL MODEL

To illustrate the consequences of our improved transport
equations, we will compute the baryon asymmetry that they
predict in a prototypical model that gives rise to EWBG,
where the top quark mass has a z-dependent CP-violating
phase in the bubble wall. The mass term can be written as

mtðzÞðt̄LeiθðzÞtR þ t̄Re−iθðzÞtLÞ ð47Þ

in terms of the chiral components, where mt ¼ ytvðzÞ and
vðzÞ is the Higgs VEV that varies spatially within the wall.
It can occur in two-Higgs-doublet models or in singlet-
plus-doublet models where a dimension-5 operator such as
iðs=ΛÞQ̄3HtR contributes a phase to the top mass, if s also
gets a VEV in the bubble wall. In such a model, the
effective top quark mass term takes the form

ythðzÞt̄L
!
1þ i

sðzÞ
Λ

"
tR þ H:c:; ð48Þ

which implies

mtðzÞ ¼ ythðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2ðzÞ=Λ2

q
;

θðzÞ ¼ tan−1
sðzÞ
Λ

: ð49Þ

Here we will not consider the CP-even equations, which
would be relevant for computing the wall speed and shape.
Instead, we concentrate on the CP-odd sector and take a
phenomenological approach, where vw is treated as a free
parameter, and the VEVs hðzÞ and sðzÞ are modeled as

hðzÞ ¼ vn
2

!
1 − tanh

z
Lw

"
;

sðzÞ ¼ wn

2

!
1þ tanh

ðz − δwÞ
Ls

"
: ð50Þ

We are primarily interested in the vw-dependence of the
results and therefore choose fiducial values for the other
parameters,

vn ¼
1

2
wn ¼ Tn; Λ ¼ 1 TeV;

Lw ¼ Ls ¼
5

Tn
; δw ¼ 0; ð51Þ

in terms of the nucleation temperature, taken to be
Tn ¼ 100 GeV.
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FIG. 2. Naive prediction for the critical wall velocity from
FH06 equations, as a function of m=T. The correct value, using
the full vw-dependence of the Dl functions, is vc ¼ 1.
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We use a simple model with d=5 mass operator for top mass

invoked in the context of gravitational wave production.
This assertion is not true, as we shall show, but it turns out
that the FH06 equations are, quite fortuitously, consistent
with the false assumption.
We noted that the fluid equations can be written in the

matrix form Aw0 ¼ F½w#, where A is given in Eq. (36),
while in FH06 the A matrix is

AFH ¼
!
vwKFH

1 1

−KFH
4 −vw
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; ð44Þ

setting K̃FH
5 ¼ −1 as mentioned above. One can solve for

the value of vw where A becomes singular (noninvertible)
using detðAÞ ¼ 0. If a solution exists for vw < 1, it implies
a critical speed vc beyond which diffusion is quenched. The
exact prediction using the A-matrix in (36) gives (recalling
that R ¼ −vw)
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velocity
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The dependence of v0c on m=T as obtained in the FH06-
case (46) is shown in Fig. 2 for a Fermi-Dirac distribution.
(The corresponding curves for bosons look similar.) For
light particles the quench limit is maximal and very close to
the sound speed, but this is a mere coincidence due to
inappropriate use of the small vw-approximation. Indeed,
from (45), employing full vw-dependent function, we
find that vc ¼ 1, in accordance with the arguments given
in Sec. II. Thus diffusion efficiency should go to zero

smoothly as vw → 1, with no particular features at the
sound speed, vw ¼ vs. We will show that this indeed is
the case.

IV. PHENOMENOLOGICAL MODEL

To illustrate the consequences of our improved transport
equations, we will compute the baryon asymmetry that they
predict in a prototypical model that gives rise to EWBG,
where the top quark mass has a z-dependent CP-violating
phase in the bubble wall. The mass term can be written as

mtðzÞðt̄LeiθðzÞtR þ t̄Re−iθðzÞtLÞ ð47Þ

in terms of the chiral components, where mt ¼ ytvðzÞ and
vðzÞ is the Higgs VEV that varies spatially within the wall.
It can occur in two-Higgs-doublet models or in singlet-
plus-doublet models where a dimension-5 operator such as
iðs=ΛÞQ̄3HtR contributes a phase to the top mass, if s also
gets a VEV in the bubble wall. In such a model, the
effective top quark mass term takes the form

ythðzÞt̄L
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1þ i

sðzÞ
Λ
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tR þ H:c:; ð48Þ

which implies

mtðzÞ ¼ ythðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2ðzÞ=Λ2

q
;

θðzÞ ¼ tan−1
sðzÞ
Λ

: ð49Þ

Here we will not consider the CP-even equations, which
would be relevant for computing the wall speed and shape.
Instead, we concentrate on the CP-odd sector and take a
phenomenological approach, where vw is treated as a free
parameter, and the VEVs hðzÞ and sðzÞ are modeled as

hðzÞ ¼ vn
2

!
1 − tanh

z
Lw
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;

sðzÞ ¼ wn
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1þ tanh
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We are primarily interested in the vw-dependence of the
results and therefore choose fiducial values for the other
parameters,

vn ¼
1

2
wn ¼ Tn; Λ ¼ 1 TeV;

Lw ¼ Ls ¼
5

Tn
; δw ¼ 0; ð51Þ

in terms of the nucleation temperature, taken to be
Tn ¼ 100 GeV.
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FIG. 2. Naive prediction for the critical wall velocity from
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invoked in the context of gravitational wave production.
This assertion is not true, as we shall show, but it turns out
that the FH06 equations are, quite fortuitously, consistent
with the false assumption.
We noted that the fluid equations can be written in the

matrix form Aw0 ¼ F½w#, where A is given in Eq. (36),
while in FH06 the A matrix is

AFH ¼
!
vwKFH

1 1

−KFH
4 −vw

"
; ð44Þ

setting K̃FH
5 ¼ −1 as mentioned above. One can solve for

the value of vw where A becomes singular (noninvertible)
using detðAÞ ¼ 0. If a solution exists for vw < 1, it implies
a critical speed vc beyond which diffusion is quenched. The
exact prediction using the A-matrix in (36) gives (recalling
that R ¼ −vw)

vc ¼ −
!
D2

D1
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vw¼vc

⇒ vc ¼ 1; ð45Þ

whereas the approximate FH06-condition gives a different
velocity

v0c ¼
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KFH
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The dependence of v0c on m=T as obtained in the FH06-
case (46) is shown in Fig. 2 for a Fermi-Dirac distribution.
(The corresponding curves for bosons look similar.) For
light particles the quench limit is maximal and very close to
the sound speed, but this is a mere coincidence due to
inappropriate use of the small vw-approximation. Indeed,
from (45), employing full vw-dependent function, we
find that vc ¼ 1, in accordance with the arguments given
in Sec. II. Thus diffusion efficiency should go to zero

smoothly as vw → 1, with no particular features at the
sound speed, vw ¼ vs. We will show that this indeed is
the case.

IV. PHENOMENOLOGICAL MODEL

To illustrate the consequences of our improved transport
equations, we will compute the baryon asymmetry that they
predict in a prototypical model that gives rise to EWBG,
where the top quark mass has a z-dependent CP-violating
phase in the bubble wall. The mass term can be written as

mtðzÞðt̄LeiθðzÞtR þ t̄Re−iθðzÞtLÞ ð47Þ

in terms of the chiral components, where mt ¼ ytvðzÞ and
vðzÞ is the Higgs VEV that varies spatially within the wall.
It can occur in two-Higgs-doublet models or in singlet-
plus-doublet models where a dimension-5 operator such as
iðs=ΛÞQ̄3HtR contributes a phase to the top mass, if s also
gets a VEV in the bubble wall. In such a model, the
effective top quark mass term takes the form
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1þ i
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which implies
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θðzÞ ¼ tan−1
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Here we will not consider the CP-even equations, which
would be relevant for computing the wall speed and shape.
Instead, we concentrate on the CP-odd sector and take a
phenomenological approach, where vw is treated as a free
parameter, and the VEVs hðzÞ and sðzÞ are modeled as
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with

invoked in the context of gravitational wave production.
This assertion is not true, as we shall show, but it turns out
that the FH06 equations are, quite fortuitously, consistent
with the false assumption.
We noted that the fluid equations can be written in the

matrix form Aw0 ¼ F½w#, where A is given in Eq. (36),
while in FH06 the A matrix is

AFH ¼
!
vwKFH

1 1

−KFH
4 −vw

"
; ð44Þ

setting K̃FH
5 ¼ −1 as mentioned above. One can solve for

the value of vw where A becomes singular (noninvertible)
using detðAÞ ¼ 0. If a solution exists for vw < 1, it implies
a critical speed vc beyond which diffusion is quenched. The
exact prediction using the A-matrix in (36) gives (recalling
that R ¼ −vw)

vc ¼ −
!
D2

D1
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vw¼vc

⇒ vc ¼ 1; ð45Þ

whereas the approximate FH06-condition gives a different
velocity

v0c ¼
####
KFH

4

KFH
1

####
1=2

vw¼0

: ð46Þ

The dependence of v0c on m=T as obtained in the FH06-
case (46) is shown in Fig. 2 for a Fermi-Dirac distribution.
(The corresponding curves for bosons look similar.) For
light particles the quench limit is maximal and very close to
the sound speed, but this is a mere coincidence due to
inappropriate use of the small vw-approximation. Indeed,
from (45), employing full vw-dependent function, we
find that vc ¼ 1, in accordance with the arguments given
in Sec. II. Thus diffusion efficiency should go to zero

smoothly as vw → 1, with no particular features at the
sound speed, vw ¼ vs. We will show that this indeed is
the case.

IV. PHENOMENOLOGICAL MODEL

To illustrate the consequences of our improved transport
equations, we will compute the baryon asymmetry that they
predict in a prototypical model that gives rise to EWBG,
where the top quark mass has a z-dependent CP-violating
phase in the bubble wall. The mass term can be written as

mtðzÞðt̄LeiθðzÞtR þ t̄Re−iθðzÞtLÞ ð47Þ

in terms of the chiral components, where mt ¼ ytvðzÞ and
vðzÞ is the Higgs VEV that varies spatially within the wall.
It can occur in two-Higgs-doublet models or in singlet-
plus-doublet models where a dimension-5 operator such as
iðs=ΛÞQ̄3HtR contributes a phase to the top mass, if s also
gets a VEV in the bubble wall. In such a model, the
effective top quark mass term takes the form

ythðzÞt̄L
!
1þ i

sðzÞ
Λ

"
tR þ H:c:; ð48Þ

which implies

mtðzÞ ¼ ythðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2ðzÞ=Λ2

q
;

θðzÞ ¼ tan−1
sðzÞ
Λ

: ð49Þ

Here we will not consider the CP-even equations, which
would be relevant for computing the wall speed and shape.
Instead, we concentrate on the CP-odd sector and take a
phenomenological approach, where vw is treated as a free
parameter, and the VEVs hðzÞ and sðzÞ are modeled as

hðzÞ ¼ vn
2

!
1 − tanh

z
Lw

"
;

sðzÞ ¼ wn

2

!
1þ tanh

ðz − δwÞ
Ls

"
: ð50Þ

We are primarily interested in the vw-dependence of the
results and therefore choose fiducial values for the other
parameters,

vn ¼
1

2
wn ¼ Tn; Λ ¼ 1 TeV;

Lw ¼ Ls ¼
5

Tn
; δw ¼ 0; ð51Þ

in terms of the nucleation temperature, taken to be
Tn ¼ 100 GeV.
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FIG. 2. Naive prediction for the critical wall velocity from
FH06 equations, as a function of m=T. The correct value, using
the full vw-dependence of the Dl functions, is vc ¼ 1.
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T e−40hðzÞ=TÞ is designed
to smoothly interpolate between the sphaleron rates in
the broken and unbroken phases. g% is the number of
degrees of freedom in the heat bath; in the standard
model g% ¼ 106.75.

V. COMPARISON TO FH06

We can now compare our improved fluid equations (52)
and (53) to those of FH06. The only difference between the
two lies in the definition of the various coefficient func-
tions, which we have renamed at the same time correcting
and generalizing them to arbitrary wall velocities. To
facilitate the comparison the results are collected in a
dictionary translating between the two naming schemes in
Table I. Our equations agree with those of FH06, when one
assumes h → −1 and sp → signðpzÞ in the sources and
replaces the coefficent functions according to Table I.
For the interaction rates we use the values given in [47]:

Γsph ¼ 1.0× 10−6 T, ΓSS ¼ 4.9× 10−4 T, Γy ¼ 4.2×10−3 T,
Γm ¼ m2

t =ð63 TÞ, and Γh ¼ m2
W=ð50 TÞ, where the top

mass is as given in (48) and m2
W ≡ g2hðzÞ2=4. Furthermore

the total interaction rates were defined as Γi
tot ¼ KFH

4;i =
ðDiKFH

1;i Þ with a quark diffusion constant Dq ¼ 6=T and a
Higgs diffusion constant Dh ¼ 20=T. The numerical
impact of the Higgs and bottom masses is found to be
quite small, and following FH06 we take them to be

massless. Many of these rates have been quite roughly
estimated, in some cases going back to the early refer-
ence [49], and deserve to be updated. We hope to make
better determinations in an upcoming paper.
We display dependences of the predicted baryon asym-

metry of the universe (BAU) normalized to the observed
value, BAU≡ ηB=ηB;obs, in Fig. 3. In both panels the thick
red solid lines labeled “CK-s” correspond to the improved
fluid equations with the spin-s source, where we set sp →
signðpzÞ and h ¼ −1 in Eqs. (39)–(41). The thick dash-
dotted blue lines labeled “FH-s” correspond to the same
spin-s source, but using the FH06 equations.9 Thin dashed

TABLE I. A dictionary between the CK (this work) and the
FH06 functions, depending upon x ¼ m=T and wall velocity vw.
They generally differ from each other at large vw. Functions that
are equivalent are marked by an equality sign in the middle
column. The double exclamation mark indicates functions that do
not agree even for small vw, and single exclamation marks signal
the source terms omitted in FH06.

CK FH06

D0ðxÞ = KFH
1 ðxÞ

D1ðx; vwÞ = −vwKFH
1 ðxÞ

D2ðx; vwÞ KFH
4 ðxÞ

Q1ðx; vwÞ KFH
2 ðxÞ

Q2ðx; vwÞ ! 0
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5
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3 ðxÞ
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FIG. 3. Predicted baryon asymmetry in units of observed
asymmetry for the fiducial profile as a function of the wall
velocity vw. From the logarithmic scale plot (upper panel) one can
appreciate the good agreement at small vw. Note the vanishing of
BAU for vw ≲ 10−5 due to the onset of thermal equilibrium. The
linear scale (lower panel) expands the large vw region more
relevant for strong transitions. The thin vertical line shows the
sound speed vs ¼ 1=

ffiffiffi
3

p
.

9We switched for the sign of the source in FH06, however, so
that the sign of the BAU matches in both cases.
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FIG. 3. Predicted baryon asymmetry in units of observed
asymmetry for the fiducial profile as a function of the wall
velocity vw. From the logarithmic scale plot (upper panel) one can
appreciate the good agreement at small vw. Note the vanishing of
BAU for vw ≲ 10−5 due to the onset of thermal equilibrium. The
linear scale (lower panel) expands the large vw region more
relevant for strong transitions. The thin vertical line shows the
sound speed vs ¼ 1=
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p
.

9We switched for the sign of the source in FH06, however, so
that the sign of the BAU matches in both cases.
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FIG. 3. Predicted baryon asymmetry in units of observed
asymmetry for the fiducial profile as a function of the wall
velocity vw. From the logarithmic scale plot (upper panel) one can
appreciate the good agreement at small vw. Note the vanishing of
BAU for vw ≲ 10−5 due to the onset of thermal equilibrium. The
linear scale (lower panel) expands the large vw region more
relevant for strong transitions. The thin vertical line shows the
sound speed vs ¼ 1=
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9We switched for the sign of the source in FH06, however, so
that the sign of the BAU matches in both cases.
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FIG. 3. Predicted baryon asymmetry in units of observed
asymmetry for the fiducial profile as a function of the wall
velocity vw. From the logarithmic scale plot (upper panel) one can
appreciate the good agreement at small vw. Note the vanishing of
BAU for vw ≲ 10−5 due to the onset of thermal equilibrium. The
linear scale (lower panel) expands the large vw region more
relevant for strong transitions. The thin vertical line shows the
sound speed vs ¼ 1=
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9We switched for the sign of the source in FH06, however, so
that the sign of the BAU matches in both cases.
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FIG. 3. Predicted baryon asymmetry in units of observed
asymmetry for the fiducial profile as a function of the wall
velocity vw. From the logarithmic scale plot (upper panel) one can
appreciate the good agreement at small vw. Note the vanishing of
BAU for vw ≲ 10−5 due to the onset of thermal equilibrium. The
linear scale (lower panel) expands the large vw region more
relevant for strong transitions. The thin vertical line shows the
sound speed vs ¼ 1=

ffiffiffi
3

p
.

9We switched for the sign of the source in FH06, however, so
that the sign of the BAU matches in both cases.
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3.3 Higher moments
Examples of solutions for the bechmark model
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Figure 2. Chemical potentials for t� (left panel) and for b� (right panel) for the benchmark model
with vw = 0.1, obtained with different number of moments as shown in the legends.
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Figure 3. The 20’th moments uq,20 for t� (left panel) and b� (right panel) for the same parameters
as in figure 2.

Extending the evolution equations to include higher moments clearly changes the results
for chemical potentials: the distributions tend to become less sharply varying near the wall
and solutions develop oscillatory behaviour at large distances from the wall. The clustering of
higher moment curves shows that the solutions converge as number of moments. Oscillations
more clearly visible in the bottom case and in both cases they extend rather far in front of the
wall. This behaviour is masked in figure 2 due to their very small amplitude. The oscillations
appear more prominently in solutions for higher moments, of which we show an example in
figure 3, where we show the 30’th moment of the t� and b� distributions. Here of course,
the moment is available only in networks with n � 30, which explains the smaller number of
curves in plots. Again the convergence of the solutions for higher moments is evident.
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zT = zT(u) =
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One can further simplify this equation by using the following identity:
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Next we define the dimensionless `’th velocity moment of the distribution �f along with a
dimensionless chemical potential and dimensionless mass variable as follows:
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We further divide equation (3.5) by T , after which we can write the `’th moment equation in
a dimensionless form where all dimensionful quantities are measured in units of temperature:
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Here the prime denotes the dimensionless spatial derivative 0 ⌘ @/@(zT ) and ` runs from 0 to
some maximum number n. The dimensionless coefficient functions D` and Q
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and the thermally corrected dimensionless source function in the wall frame is
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Finally, the temperature-scaled, dimensionless collision term is given by
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The reduction of the collision term will require a more detailed discussion and further ap-
proximations. We shall return to this question in section 4 below.

3.1 Factorization and truncation

We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
in [28] and define the following factorization rule:
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vw = 0.1

with tL, bL, tR and h0
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Examples of solutions for the bechmark model
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Figure 2. Chemical potentials for t� (left panel) and for b� (right panel) for the benchmark model
with vw = 0.1, obtained with different number of moments as shown in the legends.
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Figure 3. The 20’th moments uq,20 for t� (left panel) and b� (right panel) for the same parameters
as in figure 2.

Extending the evolution equations to include higher moments clearly changes the results
for chemical potentials: the distributions tend to become less sharply varying near the wall
and solutions develop oscillatory behaviour at large distances from the wall. The clustering of
higher moment curves shows that the solutions converge as number of moments. Oscillations
more clearly visible in the bottom case and in both cases they extend rather far in front of the
wall. This behaviour is masked in figure 2 due to their very small amplitude. The oscillations
appear more prominently in solutions for higher moments, of which we show an example in
figure 3, where we show the 30’th moment of the t� and b� distributions. Here of course,
the moment is available only in networks with n � 30, which explains the smaller number of
curves in plots. Again the convergence of the solutions for higher moments is evident.
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The reduction of the collision term will require a more detailed discussion and further ap-
proximations. We shall return to this question in section 4 below.

3.1 Factorization and truncation

We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
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Figure 4. The seed asymmetry ⇠BL (left panel) and the differential d⌘B/du (right panel) for the
same parameters as in figure 2.

The higher moment functions or even the individual chemical potential distributions are
of course not of a direct interest for us. The relevant quantity is the chemical potential ⇠BL

given in (7.9), which biases the baryon number violating sphaleron processes. We show ⇠BL

in the left panel of figure 4 for our test case. This plot is not too dissimilar from the t�
chemical potential shown in 2, except for slightly more flattening of the solution near wall
and a more extended oscillatory reach away from the wall. Oscillations are still somewhat
masked by their quickly decaying amplitude however. Their true extent becomes evident in
the right plot in 4, where we show the integrand d⌘B/du of the expression (6.1). Here the
magnitude of the oscillations is conveniently amplified by their spatial extent encoded in the
scaling function d(zT )/du. We point out that the decay of the oscillatory tail is not due to the
exponential suppression factor in d⌘B/du, but due to a slow decay of ⇠BL at large distances.

Even though oscillations show up quite prominently in the plot for d⌘B/du, they do
not affect the final baryon asymmetry significantly. We show this by plotting the cumulative
asymmetry

R u
�1(d⌘B/dv)dv as a function of u in left panel of figure 5. As we see, only the

first few oscillations affect the cumulative asymmetry noticeably, and the contributions from
adjacent oscillations tend to cancel out. While both number of oscillations and their amplitude
and extent tend to increase with n, the final asymmetry flattens out at around few hundred
wall widths. The extent of the oscillations is still somewhat surprisingly large, given that the
largest naive diffusion length in this problem is `Dh ⇠ Dh/vw ⇡ 40Lw. The reason for the
phenomenon is that the higher energy modes tend to diffuse over longer distances than the
lower energy modes. Increasing the number of moments probes the high-energy part of the
perturbation �f(p) more accurately, which then shows up in slowly decaying eigensolutions to
the asymptotic equations, as we shall see shortly below. At any rate, we capture the physics
sell, because the maximum physical distance in this calculation was set to a much larger
|zmax| = 104Lw.

In the right panel of figure 5 we finally show the total baryon asymmetry ⌘B as a function
of moments used in the calculation. The results depend smoothly on n and the asymmetry
appears to converge, although to reach the asymptotic region would require very large number
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6 Baryon asymmetry

The goal of this paper is to compute the baryon number produced locally at a space-time
position where wall passes at velocity vw. This assumption was integrated in our equations
from the beginning, so all our chemical potentials are functions of vw. The fundamental
quantity of interest for this process is the left-chiral baryon chemical potential: ⇠BL =

P
q ⇠qL.

Given this seed asymmetry, the ensuing local baryon asymmetry follows from [45]:

⌘B(vw) =
405 �̂sph

4⇡2vw�wg⇤

Z
dẑ ⇠BLfsph e

�45�sph|z|/4vw�w , (6.1)

where �̂sph = (18±3)↵5
W ⇡ 8⇥10�7 [46] and the function fsph(z) = min(1, 2.4

�sph

T e
�40h(z)/T )

is designed to smoothly interpolate between the sphaleron rates in the broken and unbroken
phases and ẑ ⌘ zT . Finally g⇤ is the number of degrees of freedom in the heat bath. We use
the standard model value at very high temperatures: g⇤ = 106.75.

We wish to emphasize that the true baryon asymmetry may not be represented well by
⌘B(vw) evaluated with a fixed vw, because the for example the shock reheating may change
the terminal wall velocities in an inhomogeneous way [47–49]. Because the baryon number
can depend quite strongly on vw it would be desirable to compute the total baryon number
as a weighted integral

⌘B =

Z 1

0
dvwP (vw)⌘B(vw), (6.2)

where P (vw)dvw is the fraction of the spatial volume swept by a phase transition wall moving
with the velocity vw, such that

R 1
0 dvwP (vw) = 1. It is in fact quite possible that uncertainty

about wall dynamics, formally quantified by P (vw) in (6.2), actually dominates the error
budget in the BAU prediction.

Apart from the uncertainty in the total baryon number, the macroscopic spatial depen-
dence of the wall velocity vw(x) could lead to a spatially varying baryon density ⌘B(x), where
the amplitude of the spatial variation could be quite large. The size of the inhomogeneities
would be restricted to a fraction of the causal horizon during the electroweak phase transition
however. Determining either P (vw) or ⌘B(x) is beyond the scope of this paper, but they
could be easily measured from a detailed simulation of the bubble growth and coalescence.

7 The benchmark model

We now want to study how the baryon asymmetry depends on the number of moments and
the truncation and factorization assumptions. To this end we need to define a specific model.
We choose the model defined in [30], whose main ingredients we now review for completeness.

The model includes a heavy top quark, a massless left-chiral bottom quark and a massless
higgs boson, coupled via gauge and Yukawa interactions. The source for the CP-violation
comes from the complex mass of the top-quarks, which is assumed to have the usual coupling
to the higgs field h and a dimension-5 operator i(s/⇤)Q̄3HtR, where s is another scalar
field. When both fields vary across the wall, the top quark gets an effective spatially varying
complex mass term:

mt(z) = yth(z)

✓
1 + i

s(z)

⇤

◆
, (7.1)
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Clearly this expression is dependent on the assumptions we made and indeed, a different
result is obtained for example when one assumes that b-quark mass does not vanish and b+

is taken to be a part of the reaction network [40].
As emphasized above, the essential physical quantity coming from solving the moment

equations, is the left handed baryon chemical potential: ⇠BL =
P

q ⇠qL , which drives the weak
anomaly to create the baryon asymmetry. In the current setup this quantity can be written
in terms of ⇠t± and ⇠b� as follows:

⇠BL =
1

2

�
1 + 4Dt

0)⇠t� + 2Dt
0⇠t+ +

5

2
⇠b� . (7.9)

where we again used D
b
0 = 1, assuming massless bottom quark.

Finally note that as no interaction in our equation network breaks the baryon number, we
must have B =

P
q(nq � nq̄) = 0 at all times. This implies a constraint Ĉt� + Ĉt+ + Ĉb� = 0,

which is indeed satisfied by collision terms (7.5). Equation (5.2) clearly is an easily adaptable
system to any physical problem and for any number or moments. The only model dependent
parts are related to the collision equation networks and the precise expressions for the reduced
sphaleron rate (7.8) and the final expression for the seed asymmetry (7.9).

Benchmark rate coefficients We now define the various rate coefficients appearing in (7.5)
and (7.6). For the strong sphaleron rate we use the value given in [43, 44]: �̂SS = 2.7⇥ 10�4.
For the other interaction rates only crude estimates exist, some made already decades ago [50]:
�̂y = 4.2 ⇥ 10�3, �̂m = x

2
t /63 and �h = x

2
W /50, where xt = mt/T is the scaled top mass

with mt given in (7.1) and xW ⌘ gh(z)/2T . Furthermore, for the total interaction rates we
use [51]: �̂i

tot = �(D2,i/D1,i)vw/D̂i where D`,i are the moment functions defined in (3.9) and
in (A.4), and the dimensionless quark and higgs diffusion constants are D̂q = 6 and D̂h = 20,
respectively. We will evaluate all these cross sections more carefully in [40], but since we
are mainly interested in the convergence of the moment expansion and on its truncation
and factorization rule dependencies here, we shall use the above rates as another benchmark
definition. This also helps comparing our results to the existing literature [30].

8 Numerical results

In this section we present our numerical results. We study the dependence of baryon asym-
metry and chemical potentials on number of moments as well as the wall velocity and wall
width, and how the results depend on the factorization and truncation schemes defined in
section 3. We start by solving (5.2) for the benchmark model for vw = 0.1 using the trun-
cation R = �vw and the factorization rule (3.16) for R̄. In figure 2 we show the t� and b�
chemical potentials as a function of the scaled variable4

v from calculations with different
maximum number of moments: n = 2, 6, 10, ..., 62. The solid red curves correspond to a case
with the lowest nontrivial number of moments n = 2 and black solid curves to a case with
highest number of moments n = 62. The number of moments for n > 2 were chosen with
the interval �n = 4 due to reasons explained in section 8.1. The thin dotted vertical lines
display the value of zT in units of wall width LwT .

4We have re-scaled the dimensionless spatial coordinate zT into a new coordinate u 2 [�1, 1]. The re-scaling
is designed to put more grid-points near the wall and progressively less points to far from the wall, where
solutions are decaying exponentially. The precise form of the scaling function is explained in the numerical
code package distributed in put in the git-repository link of equivalent here.

– 13 –

seed asymmetry

≡ ∫ du
dηB

du

vw = 0.1

with tL, bL, tR and h0
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Figure 2. Chemical potentials for t� (left panel) and for b� (right panel) for the benchmark model
with vw = 0.1, obtained with different number of moments as shown in the legends.

-0.5 0 0.5

0

1

2

3

10
-7

-0.5 0 0.5

-8

-6

-4

-2

0

2
10

-8

Figure 3. The 20’th moments uq,20 for t� (left panel) and b� (right panel) for the same parameters
as in figure 2.

Extending the evolution equations to include higher moments clearly changes the results
for chemical potentials: the distributions tend to become less sharply varying near the wall
and solutions develop oscillatory behaviour at large distances from the wall. The clustering of
higher moment curves shows that the solutions converge as number of moments. Oscillations
more clearly visible in the bottom case and in both cases they extend rather far in front of the
wall. This behaviour is masked in figure 2 due to their very small amplitude. The oscillations
appear more prominently in solutions for higher moments, of which we show an example in
figure 3, where we show the 30’th moment of the t� and b� distributions. Here of course,
the moment is available only in networks with n � 30, which explains the smaller number of
curves in plots. Again the convergence of the solutions for higher moments is evident.
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Next we define the dimensionless `’th velocity moment of the distribution �f along with a
dimensionless chemical potential and dimensionless mass variable as follows:
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We further divide equation (3.5) by T , after which we can write the `’th moment equation in
a dimensionless form where all dimensionful quantities are measured in units of temperature:
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and the thermally corrected dimensionless source function in the wall frame is
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Finally, the temperature-scaled, dimensionless collision term is given by
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The reduction of the collision term will require a more detailed discussion and further ap-
proximations. We shall return to this question in section 4 below.

3.1 Factorization and truncation

We have not yet defined the R̄-term in (3.8), which does not automatically correspond to
any velocity moment function. To do this we slightly generalize the approach first suggested
in [28] and define the following factorization rule:
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Figure 4. The seed asymmetry ⇠BL (left panel) and the differential d⌘B/du (right panel) for the
same parameters as in figure 2.

The higher moment functions or even the individual chemical potential distributions are
of course not of a direct interest for us. The relevant quantity is the chemical potential ⇠BL

given in (7.9), which biases the baryon number violating sphaleron processes. We show ⇠BL

in the left panel of figure 4 for our test case. This plot is not too dissimilar from the t�
chemical potential shown in 2, except for slightly more flattening of the solution near wall
and a more extended oscillatory reach away from the wall. Oscillations are still somewhat
masked by their quickly decaying amplitude however. Their true extent becomes evident in
the right plot in 4, where we show the integrand d⌘B/du of the expression (6.1). Here the
magnitude of the oscillations is conveniently amplified by their spatial extent encoded in the
scaling function d(zT )/du. We point out that the decay of the oscillatory tail is not due to the
exponential suppression factor in d⌘B/du, but due to a slow decay of ⇠BL at large distances.

Even though oscillations show up quite prominently in the plot for d⌘B/du, they do
not affect the final baryon asymmetry significantly. We show this by plotting the cumulative
asymmetry

R u
�1(d⌘B/dv)dv as a function of u in left panel of figure 5. As we see, only the

first few oscillations affect the cumulative asymmetry noticeably, and the contributions from
adjacent oscillations tend to cancel out. While both number of oscillations and their amplitude
and extent tend to increase with n, the final asymmetry flattens out at around few hundred
wall widths. The extent of the oscillations is still somewhat surprisingly large, given that the
largest naive diffusion length in this problem is `Dh ⇠ Dh/vw ⇡ 40Lw. The reason for the
phenomenon is that the higher energy modes tend to diffuse over longer distances than the
lower energy modes. Increasing the number of moments probes the high-energy part of the
perturbation �f(p) more accurately, which then shows up in slowly decaying eigensolutions to
the asymptotic equations, as we shall see shortly below. At any rate, we capture the physics
sell, because the maximum physical distance in this calculation was set to a much larger
|zmax| = 104Lw.

In the right panel of figure 5 we finally show the total baryon asymmetry ⌘B as a function
of moments used in the calculation. The results depend smoothly on n and the asymmetry
appears to converge, although to reach the asymptotic region would require very large number
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6 Baryon asymmetry
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position where wall passes at velocity vw. This assumption was integrated in our equations
from the beginning, so all our chemical potentials are functions of vw. The fundamental
quantity of interest for this process is the left-chiral baryon chemical potential: ⇠BL =

P
q ⇠qL.

Given this seed asymmetry, the ensuing local baryon asymmetry follows from [45]:

⌘B(vw) =
405 �̂sph

4⇡2vw�wg⇤

Z
dẑ ⇠BLfsph e

�45�sph|z|/4vw�w , (6.1)

where �̂sph = (18±3)↵5
W ⇡ 8⇥10�7 [46] and the function fsph(z) = min(1, 2.4

�sph

T e
�40h(z)/T )

is designed to smoothly interpolate between the sphaleron rates in the broken and unbroken
phases and ẑ ⌘ zT . Finally g⇤ is the number of degrees of freedom in the heat bath. We use
the standard model value at very high temperatures: g⇤ = 106.75.

We wish to emphasize that the true baryon asymmetry may not be represented well by
⌘B(vw) evaluated with a fixed vw, because the for example the shock reheating may change
the terminal wall velocities in an inhomogeneous way [47–49]. Because the baryon number
can depend quite strongly on vw it would be desirable to compute the total baryon number
as a weighted integral

⌘B =

Z 1

0
dvwP (vw)⌘B(vw), (6.2)

where P (vw)dvw is the fraction of the spatial volume swept by a phase transition wall moving
with the velocity vw, such that

R 1
0 dvwP (vw) = 1. It is in fact quite possible that uncertainty

about wall dynamics, formally quantified by P (vw) in (6.2), actually dominates the error
budget in the BAU prediction.

Apart from the uncertainty in the total baryon number, the macroscopic spatial depen-
dence of the wall velocity vw(x) could lead to a spatially varying baryon density ⌘B(x), where
the amplitude of the spatial variation could be quite large. The size of the inhomogeneities
would be restricted to a fraction of the causal horizon during the electroweak phase transition
however. Determining either P (vw) or ⌘B(x) is beyond the scope of this paper, but they
could be easily measured from a detailed simulation of the bubble growth and coalescence.

7 The benchmark model

We now want to study how the baryon asymmetry depends on the number of moments and
the truncation and factorization assumptions. To this end we need to define a specific model.
We choose the model defined in [30], whose main ingredients we now review for completeness.

The model includes a heavy top quark, a massless left-chiral bottom quark and a massless
higgs boson, coupled via gauge and Yukawa interactions. The source for the CP-violation
comes from the complex mass of the top-quarks, which is assumed to have the usual coupling
to the higgs field h and a dimension-5 operator i(s/⇤)Q̄3HtR, where s is another scalar
field. When both fields vary across the wall, the top quark gets an effective spatially varying
complex mass term:

mt(z) = yth(z)

✓
1 + i

s(z)

⇤

◆
, (7.1)
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Clearly this expression is dependent on the assumptions we made and indeed, a different
result is obtained for example when one assumes that b-quark mass does not vanish and b+

is taken to be a part of the reaction network [40].
As emphasized above, the essential physical quantity coming from solving the moment

equations, is the left handed baryon chemical potential: ⇠BL =
P

q ⇠qL , which drives the weak
anomaly to create the baryon asymmetry. In the current setup this quantity can be written
in terms of ⇠t± and ⇠b� as follows:

⇠BL =
1

2

�
1 + 4Dt

0)⇠t� + 2Dt
0⇠t+ +

5

2
⇠b� . (7.9)

where we again used D
b
0 = 1, assuming massless bottom quark.

Finally note that as no interaction in our equation network breaks the baryon number, we
must have B =

P
q(nq � nq̄) = 0 at all times. This implies a constraint Ĉt� + Ĉt+ + Ĉb� = 0,

which is indeed satisfied by collision terms (7.5). Equation (5.2) clearly is an easily adaptable
system to any physical problem and for any number or moments. The only model dependent
parts are related to the collision equation networks and the precise expressions for the reduced
sphaleron rate (7.8) and the final expression for the seed asymmetry (7.9).

Benchmark rate coefficients We now define the various rate coefficients appearing in (7.5)
and (7.6). For the strong sphaleron rate we use the value given in [43, 44]: �̂SS = 2.7⇥ 10�4.
For the other interaction rates only crude estimates exist, some made already decades ago [50]:
�̂y = 4.2 ⇥ 10�3, �̂m = x

2
t /63 and �h = x

2
W /50, where xt = mt/T is the scaled top mass

with mt given in (7.1) and xW ⌘ gh(z)/2T . Furthermore, for the total interaction rates we
use [51]: �̂i

tot = �(D2,i/D1,i)vw/D̂i where D`,i are the moment functions defined in (3.9) and
in (A.4), and the dimensionless quark and higgs diffusion constants are D̂q = 6 and D̂h = 20,
respectively. We will evaluate all these cross sections more carefully in [40], but since we
are mainly interested in the convergence of the moment expansion and on its truncation
and factorization rule dependencies here, we shall use the above rates as another benchmark
definition. This also helps comparing our results to the existing literature [30].

8 Numerical results

In this section we present our numerical results. We study the dependence of baryon asym-
metry and chemical potentials on number of moments as well as the wall velocity and wall
width, and how the results depend on the factorization and truncation schemes defined in
section 3. We start by solving (5.2) for the benchmark model for vw = 0.1 using the trun-
cation R = �vw and the factorization rule (3.16) for R̄. In figure 2 we show the t� and b�
chemical potentials as a function of the scaled variable4

v from calculations with different
maximum number of moments: n = 2, 6, 10, ..., 62. The solid red curves correspond to a case
with the lowest nontrivial number of moments n = 2 and black solid curves to a case with
highest number of moments n = 62. The number of moments for n > 2 were chosen with
the interval �n = 4 due to reasons explained in section 8.1. The thin dotted vertical lines
display the value of zT in units of wall width LwT .

4We have re-scaled the dimensionless spatial coordinate zT into a new coordinate u 2 [�1, 1]. The re-scaling
is designed to put more grid-points near the wall and progressively less points to far from the wall, where
solutions are decaying exponentially. The precise form of the scaling function is explained in the numerical
code package distributed in put in the git-repository link of equivalent here.
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seed asymmetry
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dηB

du

vw = 0.1

Relatively nice convergence, but  shows 
weird oscillations for high moments

dηB/du

with tL, bL, tR and h0
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3.3.1 Cause of oscillations
is that the eigenfunctions of the inverse differential operator are oscillatory

In particular then K
a
0 = 1 and K

a
1 = �vw for all species. Moving from species a to the

equation for another species b, one has to replace K
a
` ! K

b
` and switch the sign in chemical

potential terms appropriately, and compute the elastic collision term b�̄b
tot. Finally, for all

quarks in the network one should add the strong-sphaleron contribution C
a
SS` = ⌥�SS[⇠], to

the lowest moment equation, where +1 corresponds to left- and �1 to right chiral fields.

5 Moment equation network coupling different species

So far we have only written the moment equations for a single species, but extension to an
arbitrary number of species N is straightforward. As explained in section 3.2, each particle
species is described by an n-vector wa = (⇠a, ua1, ..., ua(n�1))

T in the moment expansion. For
a system of equations containing N interacting species, these vectors can be combined into
an Nn-vector WT = (wT

1 , w
T
2 , , ..., w

T
N ), which obeys an equation of the form

ÂW 0 = Ŝ + Ĉ[W]� B̂[W], (5.1)

where Â = diag(Â1, Â2, ..., ÂN ) is a block-diagonal matrix with n-dimensional blocks defined
in (3.19). The source term Ŝ = diag(Ŝ1, Ŝ2, ..., ŜN ), is obviously an Nn-vector, whose elements
are given by (3.10) and while interactions terms in the collision integrals mix different particle
species, and individual elements in B̂i mix moments within a given species, both Ĉ[W] and
Ĉ[W] can still be written as Nn-vectors. Equation (5.1) then has a block-diagonal structure
and it can be easily inverted to yield

W 0 = Â�1
�
Ŝ + Ĉ[W]� B̂[W]

�
, (5.2)

where Â�1 = diag(Â�1
1 , Â�1

1 , ..., Â�1
N ), with the individual terms A

�1
a as defined in (3.21).

This system is easily solved using relaxation methods for any system of interest. Of course,
both B̂[W] and Ĉ[W] could be written as matrices acting on W , but is easier to treat them
numerically as functions of W that return Nn-vectors as was assumed above3.

Based on our results in the previous section, the generic element in the Ĉ[W]-vector, the
`’th moment of the collision integral in the equation for the species a, can be written as

Ĉ[W]a` = ĈaK
a
` � ua`a�̂

a
tot ⌥ �0,`�̂

a
SS[⇠], (5.3)

where Ĉa contains the decay and scattering contributions which, along with the �̂a
tot = �̄a

tot/T ,
are the only model dependent quantities on the problem. In our benchmark model we will
account for the top and bottom Yukawa interactions, the W boson interactions that tend to
equalize µi’s within doublets and the helicity flip interactions that damp the helicity asymme-
try µt��µt+ . In addition, the gauge interactions generate a Higgs chemical potential damping
term in the broken phase.

This completes our formal derivation of the moment equations for a generic system.
Before moving to the explicit calculations in the benchmark model, we shall discuss the
derivation of baryon asymmetry.

3In section 8.1 below, where we discuss the convergence of the solutions at boundaries, we will take the
different point of view and write Ĉ[W] = �̂W, where �̂ = �/T is an (Nn)⇥ (Nn) matrix.
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Figure 1. Shown are few first source functions S
w
h,`, defined in (3.10). Left panel shows the sources

for even moments ` = 0, 2, 4, 6, 8 and right panel the odd moments ` = 1, 3, 5, 7, 9. The mass function
is defined below in equation (7.1) and we used vw = 0.1 and the benchmark parameters given in
equation (7.4).

and Ŝw
h = (Ŝw

h1, ..., Ŝw
h,n)

T and similarly for the Ĉw
h vector. This form of moment equations

is generic to both CP-even and CP-odd sectors, which only differ by the form of the source
terms. Matrix A is easily inverted, giving the equations in the simple form:

w
0
h = Â�1(Ŝw

h + Ĉw
h � B̂[wh]), Â�1 =

1

Dn

0

BBBBBBBBB@

0 0 · · · · · · �R 1
Dn 0 · · · · · · �RD1 D1

0 Dn
. . .

. . .
.
.
.

.

.

.

0 0
. . . 0 �RDn�3 Dn�3

.

.

.
.
.
. · · · Dn �RDn�2 Dn�2

0 0 · · · 0 �Dn Dn�1

1

CCCCCCCCCA

(3.21)

where the determinant factor Dn is given by

Dn ⌘ (�1)n det(Â) = Dn�1R�Dn. (3.22)

From the expression (3.9) for D`, we see that the ratio Dn/Dn�1 is a statistical measure for
the plasma velocity orthogonal to the wall in the wall frame, computed from the equilibrium
distribution. It is a function of the wall-velocity so that the determinant can be computed
as a function of vw for arbitrary n. It is important that detA is always nonzero so that the
inverse Â�1 exists. This is indeed always the case. Should make a comment on large wall
velo paper here.

Equations (3.21) depend on a large number of external functions: D`, Q`, R, R̄, Qe
` , Q

8o
`

and Q
9o
` , which in general depend on two variables, the wall velocity vw and the dimensionless

ratio x = |m|/T , and most of which can only be evaluated numerically. However, all these
functions are universal and we have evaluated them for a large number of n (up to n = 100) in
a grid in x and vw. Our numerical package automatically loads the data and creates spline-fits
for all external functions needed, which can then be used as regular functions. We give explicit
forms for all external functions in terms of a generic integral function in the Appendix A.
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w
h,`, defined in (3.10). Left panel shows the sources

for even moments ` = 0, 2, 4, 6, 8 and right panel the odd moments ` = 1, 3, 5, 7, 9. The mass function
is defined below in equation (7.1) and we used vw = 0.1 and the benchmark parameters given in
equation (7.4).
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inverse Â�1 exists. This is indeed always the case. Should make a comment on large wall
velo paper here.

Equations (3.21) depend on a large number of external functions: D`, Q`, R, R̄, Qe
` , Q

8o
`

and Q
9o
` , which in general depend on two variables, the wall velocity vw and the dimensionless

ratio x = |m|/T , and most of which can only be evaluated numerically. However, all these
functions are universal and we have evaluated them for a large number of n (up to n = 100) in
a grid in x and vw. Our numerical package automatically loads the data and creates spline-fits
for all external functions needed, which can then be used as regular functions. We give explicit
forms for all external functions in terms of a generic integral function in the Appendix A.

– 7 –

→ 𝒜−1Γ𝒲

large,  constant real matrix(nNs)2



11

3.3.1 Cause of oscillations
is that the eigenfunctions of the inverse differential operator are oscillatory

In particular then K
a
0 = 1 and K

a
1 = �vw for all species. Moving from species a to the

equation for another species b, one has to replace K
a
` ! K

b
` and switch the sign in chemical

potential terms appropriately, and compute the elastic collision term b�̄b
tot. Finally, for all

quarks in the network one should add the strong-sphaleron contribution C
a
SS` = ⌥�SS[⇠], to

the lowest moment equation, where +1 corresponds to left- and �1 to right chiral fields.

5 Moment equation network coupling different species

So far we have only written the moment equations for a single species, but extension to an
arbitrary number of species N is straightforward. As explained in section 3.2, each particle
species is described by an n-vector wa = (⇠a, ua1, ..., ua(n�1))

T in the moment expansion. For
a system of equations containing N interacting species, these vectors can be combined into
an Nn-vector WT = (wT

1 , w
T
2 , , ..., w

T
N ), which obeys an equation of the form

ÂW 0 = Ŝ + Ĉ[W]� B̂[W], (5.1)

where Â = diag(Â1, Â2, ..., ÂN ) is a block-diagonal matrix with n-dimensional blocks defined
in (3.19). The source term Ŝ = diag(Ŝ1, Ŝ2, ..., ŜN ), is obviously an Nn-vector, whose elements
are given by (3.10) and while interactions terms in the collision integrals mix different particle
species, and individual elements in B̂i mix moments within a given species, both Ĉ[W] and
Ĉ[W] can still be written as Nn-vectors. Equation (5.1) then has a block-diagonal structure
and it can be easily inverted to yield

W 0 = Â�1
�
Ŝ + Ĉ[W]� B̂[W]

�
, (5.2)

where Â�1 = diag(Â�1
1 , Â�1

1 , ..., Â�1
N ), with the individual terms A

�1
a as defined in (3.21).

This system is easily solved using relaxation methods for any system of interest. Of course,
both B̂[W] and Ĉ[W] could be written as matrices acting on W , but is easier to treat them
numerically as functions of W that return Nn-vectors as was assumed above3.

Based on our results in the previous section, the generic element in the Ĉ[W]-vector, the
`’th moment of the collision integral in the equation for the species a, can be written as

Ĉ[W]a` = ĈaK
a
` � ua`a�̂

a
tot ⌥ �0,`�̂

a
SS[⇠], (5.3)

where Ĉa contains the decay and scattering contributions which, along with the �̂a
tot = �̄a

tot/T ,
are the only model dependent quantities on the problem. In our benchmark model we will
account for the top and bottom Yukawa interactions, the W boson interactions that tend to
equalize µi’s within doublets and the helicity flip interactions that damp the helicity asymme-
try µt��µt+ . In addition, the gauge interactions generate a Higgs chemical potential damping
term in the broken phase.

This completes our formal derivation of the moment equations for a generic system.
Before moving to the explicit calculations in the benchmark model, we shall discuss the
derivation of baryon asymmetry.

3In section 8.1 below, where we discuss the convergence of the solutions at boundaries, we will take the
different point of view and write Ĉ[W] = �̂W, where �̂ = �/T is an (Nn)⇥ (Nn) matrix.
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both B̂[W] and Ĉ[W] could be written as matrices acting on W , but is easier to treat them
numerically as functions of W that return Nn-vectors as was assumed above3.

Based on our results in the previous section, the generic element in the Ĉ[W]-vector, the
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w
h,`, defined in (3.10). Left panel shows the sources

for even moments ` = 0, 2, 4, 6, 8 and right panel the odd moments ` = 1, 3, 5, 7, 9. The mass function
is defined below in equation (7.1) and we used vw = 0.1 and the benchmark parameters given in
equation (7.4).
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h = (Ŝw
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where the determinant factor Dn is given by

Dn ⌘ (�1)n det(Â) = Dn�1R�Dn. (3.22)

From the expression (3.9) for D`, we see that the ratio Dn/Dn�1 is a statistical measure for
the plasma velocity orthogonal to the wall in the wall frame, computed from the equilibrium
distribution. It is a function of the wall-velocity so that the determinant can be computed
as a function of vw for arbitrary n. It is important that detA is always nonzero so that the
inverse Â�1 exists. This is indeed always the case. Should make a comment on large wall
velo paper here.

Equations (3.21) depend on a large number of external functions: D`, Q`, R, R̄, Qe
` , Q

8o
`

and Q
9o
` , which in general depend on two variables, the wall velocity vw and the dimensionless

ratio x = |m|/T , and most of which can only be evaluated numerically. However, all these
functions are universal and we have evaluated them for a large number of n (up to n = 100) in
a grid in x and vw. Our numerical package automatically loads the data and creates spline-fits
for all external functions needed, which can then be used as regular functions. We give explicit
forms for all external functions in terms of a generic integral function in the Appendix A.
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h,`, defined in (3.10). Left panel shows the sources
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is defined below in equation (7.1) and we used vw = 0.1 and the benchmark parameters given in
equation (7.4).
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3.3.1 Cause of oscillations
is that the eigenfunctions of the inverse differential operator are oscillatory

In particular then K
a
0 = 1 and K

a
1 = �vw for all species. Moving from species a to the

equation for another species b, one has to replace K
a
` ! K

b
` and switch the sign in chemical

potential terms appropriately, and compute the elastic collision term b�̄b
tot. Finally, for all

quarks in the network one should add the strong-sphaleron contribution C
a
SS` = ⌥�SS[⇠], to

the lowest moment equation, where +1 corresponds to left- and �1 to right chiral fields.

5 Moment equation network coupling different species

So far we have only written the moment equations for a single species, but extension to an
arbitrary number of species N is straightforward. As explained in section 3.2, each particle
species is described by an n-vector wa = (⇠a, ua1, ..., ua(n�1))

T in the moment expansion. For
a system of equations containing N interacting species, these vectors can be combined into
an Nn-vector WT = (wT

1 , w
T
2 , , ..., w

T
N ), which obeys an equation of the form

ÂW 0 = Ŝ + Ĉ[W]� B̂[W], (5.1)

where Â = diag(Â1, Â2, ..., ÂN ) is a block-diagonal matrix with n-dimensional blocks defined
in (3.19). The source term Ŝ = diag(Ŝ1, Ŝ2, ..., ŜN ), is obviously an Nn-vector, whose elements
are given by (3.10) and while interactions terms in the collision integrals mix different particle
species, and individual elements in B̂i mix moments within a given species, both Ĉ[W] and
Ĉ[W] can still be written as Nn-vectors. Equation (5.1) then has a block-diagonal structure
and it can be easily inverted to yield

W 0 = Â�1
�
Ŝ + Ĉ[W]� B̂[W]

�
, (5.2)

where Â�1 = diag(Â�1
1 , Â�1

1 , ..., Â�1
N ), with the individual terms A

�1
a as defined in (3.21).

This system is easily solved using relaxation methods for any system of interest. Of course,
both B̂[W] and Ĉ[W] could be written as matrices acting on W , but is easier to treat them
numerically as functions of W that return Nn-vectors as was assumed above3.

Based on our results in the previous section, the generic element in the Ĉ[W]-vector, the
`’th moment of the collision integral in the equation for the species a, can be written as

Ĉ[W]a` = ĈaK
a
` � ua`a�̂

a
tot ⌥ �0,`�̂

a
SS[⇠], (5.3)

where Ĉa contains the decay and scattering contributions which, along with the �̂a
tot = �̄a

tot/T ,
are the only model dependent quantities on the problem. In our benchmark model we will
account for the top and bottom Yukawa interactions, the W boson interactions that tend to
equalize µi’s within doublets and the helicity flip interactions that damp the helicity asymme-
try µt��µt+ . In addition, the gauge interactions generate a Higgs chemical potential damping
term in the broken phase.

This completes our formal derivation of the moment equations for a generic system.
Before moving to the explicit calculations in the benchmark model, we shall discuss the
derivation of baryon asymmetry.

3In section 8.1 below, where we discuss the convergence of the solutions at boundaries, we will take the
different point of view and write Ĉ[W] = �̂W, where �̂ = �/T is an (Nn)⇥ (Nn) matrix.
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in (3.19). The source term Ŝ = diag(Ŝ1, Ŝ2, ..., ŜN ), is obviously an Nn-vector, whose elements
are given by (3.10) and while interactions terms in the collision integrals mix different particle
species, and individual elements in B̂i mix moments within a given species, both Ĉ[W] and
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Figure 1. Shown are few first source functions S
w
h,`, defined in (3.10). Left panel shows the sources

for even moments ` = 0, 2, 4, 6, 8 and right panel the odd moments ` = 1, 3, 5, 7, 9. The mass function
is defined below in equation (7.1) and we used vw = 0.1 and the benchmark parameters given in
equation (7.4).

and Ŝw
h = (Ŝw

h1, ..., Ŝw
h,n)

T and similarly for the Ĉw
h vector. This form of moment equations

is generic to both CP-even and CP-odd sectors, which only differ by the form of the source
terms. Matrix A is easily inverted, giving the equations in the simple form:

w
0
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where the determinant factor Dn is given by

Dn ⌘ (�1)n det(Â) = Dn�1R�Dn. (3.22)

From the expression (3.9) for D`, we see that the ratio Dn/Dn�1 is a statistical measure for
the plasma velocity orthogonal to the wall in the wall frame, computed from the equilibrium
distribution. It is a function of the wall-velocity so that the determinant can be computed
as a function of vw for arbitrary n. It is important that detA is always nonzero so that the
inverse Â�1 exists. This is indeed always the case. Should make a comment on large wall
velo paper here.

Equations (3.21) depend on a large number of external functions: D`, Q`, R, R̄, Qe
` , Q

8o
`

and Q
9o
` , which in general depend on two variables, the wall velocity vw and the dimensionless

ratio x = |m|/T , and most of which can only be evaluated numerically. However, all these
functions are universal and we have evaluated them for a large number of n (up to n = 100) in
a grid in x and vw. Our numerical package automatically loads the data and creates spline-fits
for all external functions needed, which can then be used as regular functions. We give explicit
forms for all external functions in terms of a generic integral function in the Appendix A.
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3.3.2 Higher moments, convergence

Oscillations do not affect the integrated baryon asymmetry very much however 
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3.3.2 Higher moments, convergence

Oscillations do not affect the integrated baryon asymmetry very much however 

For reasonably large vw the convergence is good and does not 
seem to depend on the truncation method.

Difference to 2-moment result is large however, and  
convergence requires a large number of momenta n ~ 50.
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3.3.2 Higher moments, convergence

For smaller vw the convergence gets worse and results become more  truncation dependent. 
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Perhaps, with some dose of optimistm, one could claim that results with n = 20 or so, are representative of the true BAU?
Or perhaps, not.

At any rate, low moment expansion results may not give a good estimate and tend to overestimate |BAU|
For precision calculation more advanced (tedious) methods (direct solution of SC-BE) are needed. 
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4. Beyond SC-limit
SC-BE’s are based on gradient expansion of the full KB-equations.     Formally  valid for  LW  >> 1/T. 

                                                                                                                             They seem to remain quite accurate down to LW ~ (2-3)/T 
Very strong transitions, that could also source GW’s,  
typically lead to very sharp walls:  LW ~ 1/T

H.Jukkala, K.K, O.Koskivaara, JHEP01(2020)012
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Figure 7. The helicity summed axial charge density j5,k from the exact solutions (red dashed
line), and from the semiclassical approximation (black line). Blue solid line (exactly matching the
red dashed line) is the full cQPA solution and the green line is cQPA solution restricted to the
mass shells. In each figure we have m1R = 0.1, m2R = 1, mI = 0.1, τw = 5 and Γ = 0.2, while
|k| = 0.1, 0.4, 0.8 and 1.5 in different panels as indicated.
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Figure 8. Shown is the integrated number density n+
1 of positive helicity particles (left graph)

and the integrated axial charge density j5 (right graph) for a vacuum initial condition in the non-
interacting case. We used the same set of mass parameters as in figure 7.

In the right panel of figure 8 we show the result of the calculation of j5(t) for the same set

of parameters as considered in figure 7. Apart from the oscillations right after the mass

change, the semiclassical solution follows the full solution quite well. In the left panel we

show the behaviour of the integrated number density n+
1 of positive helicity particles. (The

individual number densities are defined below in section 6.) Indeed, oscillations tend to

be much larger in the individual components, but they mostly cancel out at the level of

currents.
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LwT = 0.5

LwT = 2

LwT = 4 LwT = 7.5

In this regime quantum reflection becomes imporant  
and fully QM-treatment becomes necessary

Problem was studied in the 90’s in the collisionless limit,  
and with phenomenological introduction of decoherence.

G.R.Farrar and M.Shaposhnikov, PRD50 (1994) 774,
PRL70 (1993) 2833-2836, PRL71 (1993) 210 (erratum)
B.Gavela etal, Mod.Phys.Lett.A 9 (1994) 795-810,
NPB 430 (1994) 382-426, NPB 430 (1994) 345-381 
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Very strong transitions, that could also source GW’s,  
typically lead to very sharp walls:  LW ~ 1/T

H.Jukkala, K.K, O.Koskivaara, JHEP01(2020)012
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Figure 7. The helicity summed axial charge density j5,k from the exact solutions (red dashed
line), and from the semiclassical approximation (black line). Blue solid line (exactly matching the
red dashed line) is the full cQPA solution and the green line is cQPA solution restricted to the
mass shells. In each figure we have m1R = 0.1, m2R = 1, mI = 0.1, τw = 5 and Γ = 0.2, while
|k| = 0.1, 0.4, 0.8 and 1.5 in different panels as indicated.

-20 0 20 40 60 80 100

t

-0.1

0

0.1

0.2

n
+ 1

-20 0 20 40 60 80 100

t

-2.5

-2

-1.5

-1

-0.5

0

j 5

10
-3

cQPA

cQPA-ms

SC

Figure 8. Shown is the integrated number density n+
1 of positive helicity particles (left graph)

and the integrated axial charge density j5 (right graph) for a vacuum initial condition in the non-
interacting case. We used the same set of mass parameters as in figure 7.

In the right panel of figure 8 we show the result of the calculation of j5(t) for the same set

of parameters as considered in figure 7. Apart from the oscillations right after the mass

change, the semiclassical solution follows the full solution quite well. In the left panel we

show the behaviour of the integrated number density n+
1 of positive helicity particles. (The

individual number densities are defined below in section 6.) Indeed, oscillations tend to

be much larger in the individual components, but they mostly cancel out at the level of

currents.
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The main issue is how to treat collisions of (with) particles that are coherent mixtures of left- and right going states?

The problem can be handled by the methods introduced in 

Tehcnically, the  (necessary) numerical solution of the momentum dependent QKE-equation netrowrks will be … tough.

(resonant leptogenesis)
(general neutrino QKE’s)

In this regime quantum reflection becomes imporant  
and fully QM-treatment becomes necessary

Problem was studied in the 90’s in the collisionless limit,  
and with phenomenological introduction of decoherence.

G.R.Farrar and M.Shaposhnikov, PRD50 (1994) 774,
PRL70 (1993) 2833-2836, PRL71 (1993) 210 (erratum)
B.Gavela etal, Mod.Phys.Lett.A 9 (1994) 795-810,
NPB 430 (1994) 382-426, NPB 430 (1994) 345-381 
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  The only one method in town to compute BAU in the EWBG is the semiclassical method.

  Extension of the SC-formalism to the quantum regime doable in the cQPA context

  EWBG still a viable solution in some setups involving Dark Sectors 

  Solving the SC-BE in the moment expansion straightforward, but convergence can be an issue

Direct solution to SC-BE to test the accuracy of moment and polynominal expansions?

The extension of SC-method to include thermal corrections to one-loop order.  
Basically:                                                         :  no VIA sources exist.

in the rate [61] � ⇡ (g2sT/(6⇡))(log(m
2
g/m

2
mag)+1.1), wherem2

g = (3/2)g2sT
2. The magnetic

scale m
2
mag cannot be computed perturbatively, but one expects that m

2
g/m

2
mag ⇠ 1/g2s .

Despite di↵erent physics causing this result, it is numerically not too dissimilar with (6.56).

However, we can keep using a formally excact damping rate here, even with k-dependence

and the gradient corrections:

a00s± =
1

2
Zws±Re

⇣
�i

k0 � sCP!s± � i�s±

⌘
. (6.57)

The Zws±-dependence of the damping term (6.55) is very important the hole states. Indeed,

for holes !s� ! |k| exponentially fast for large |k| [56]. However, Z� vanishes exponentially

at the same time, so that the hole spectral function approaches exponentially quickly a

delta-distribution. This ensures that the hole spectral function does not ”leak” below the

light-cone.

6.5 Thermal SC-source including finite width

We are now ready to compute the SC source for the thermal WKB states in the Boltzmann

equation including finite width on the spectral function. The matrix valued source term

SM in (6.7) again has to be run through the now familiar reduction process to get the scalar

valued source in the equation for the perturbation �g
s<
00
. In this process, it is su�cient to

use the simple first-order expanded form for SM , which makes calculation quite simple. The

final result for the source that appears in the non-integrated (over k0) for the perturbation

�g
s

00
is

S
�

00s
(k0) = vw�w(2a00s)

⇣
|m|

20

2q0
� sR�q||

(|m|
2
✓
0)0

2q2
0

⌘
(fFD)

0
, (6.58)

where we used @kzf
<
th

= vw�wf
0

FD
and prime again refers to @�w!. If we take the limit � ! 0

then a00s/Zws becomes a delta function at the quasiparticle shells. Then integrating (6.58)

over k0, dividing with the wave-function renormalization factors and finally taking the

di↵erence of positive and negative frequency sectors would give our old source term (6.42),

here written for spin s rather than for helicity. For a finite � the integral can be performed

by complex contour integration, which picks the poles of the spectral function (6.57). The

result is simple:

S
�

qs± = Re
⇥
Sqs±(!s± + i�s±)

⇤
, (6.59)

where Sqs± is the source function defined in (6.42). This is the only e↵ect that coherence

damping has on the semiclassical equations. It only modifies only the energy-dependence in

the source function, whose parametric dependence on gradients remains unchanged. Also,

the relevance of � here depends on how it numerically compares to the total energy instead

of the gradient corrections as in the VIA-case. In the limit where � < T one then finds

S
�

qs± ⇡ Sqs± +
1

2
[@2

k0
Sqs±]|k0|=!s±(z±�)

2 + · · · . (6.60)

That is, the damping correction to the SC-source term is suppressed by a factor ⇠ (�/T )2.

It does not give rise to a new source with the parametric dependence predicted by the

VIA-mechanism.
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  We’ve come a long way from first attempts in 90’s to the current consistent QKE’s for the EWBG-problem.
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where p = r, a and s =<,>. We continued to suppress the spin and flavour coordinates

and defined a shorthand notation for the convolution

(F ⇤G)(u, v) ⌘

Z
1

tin

dw0

Z
d3wF (u,w)G(w, v), (2.11)

where tin is the initial time of the closed time path. In equations (2.9) and (2.10) the free

inverse propagator S�1

0
is understood as a real-time operator with the usual delta function

instead of the contour delta function in equation (2.5).

2.2 Current divergences

Equations (2.10) can be expressed in several equivalent forms. For example, employing

the time-ordered and the anti time-ordered functions: St = S
r
� S

< = S
a + S

> and

St̄ = �S
a
�S

< = �S
r+S

> (and similarly for the self-energies) one can write the equation

for S< as follows

i@/
x
S

<(x, y) = (⌃t ⇤ S
<
� ⌃<

⇤ St̄)(x, y). (2.12)

Here i@/ is the free massless inverse propagator and the singular mass term was treated as

an interaction. Technically, it is hidden in the time-ordered self-energy function ⌃t:

⌃t(u, v) = �
(4)(u� v)m(u) + ✓(u0 � v0)⌃

>(u, v)� ✓(v0 � u0)⌃
<(u, v)

�
. (2.13)

Here we assume that m(u) was the only singular operator. Other singular terms could

arise from other classical fields and from tadpole diagrams.

Equation (2.12) serves as the starting point for the VEV-insertion formalism in the

CTP approach, where it is used to derive approximations for current divergence equations.

However, we can also use it to derive the following exact results for the vector and the axial

current divergences:

@µj
µ(x) = lim

y!x
Tr[(m(x)�m(y))S<(x, y)]

+ 2Re

Z
d3w

Z
x0

tin

dw0Tr
⇥
⌃>(x,w)S<(w, x)� ⌃<(x,w)S>(w, x)

⇤
(2.14)

@µj
µ

5
(x) = � lim

y!x
Tr[�5(m(x) +m(y))S<(x, y)]

+ 2Re

Z
d3w

Z
x0

tin

dw0Tr
⇥
�
5
�
⌃>(x,w)S<(w, x)� ⌃<(x,w)S>(w, x)

�⇤
. (2.15)

In practice one can set tin ! �1. The currents were defined as follows:

jO(x) = h ̄(x)O (x)i =

Z
d4k

(2⇡)4
Tr

⇥
OiS

<(k, x)
⇤
, (2.16)

where O = �
µ for vector current and O5 = �

µ
�
5 for the axial current. First lines in

expressions (2.14) and (2.15) completely account for the space-time dependent singular

mass operator, while subsequent memory integrals account for interactions with other

particles. Operators ⌃<,> are nonlocal and vanish when interaction strengths are zero.

– 5 –

Figure 1: The self-energy function with two mass insertions on a fermion line.

the derivation in detail. In the notation of [19] the right chiral current divergence equation

now becomes

@µj
µ

R
(x) ⌘ S

CP
R (x) + S

CP/

R
(x), (3.2)

were the source terms induced by the operator (3.1) are

S
CP
R (x) = 2

Z
d4w⇥xwRe(mxm

⇤

w)Tr
⇥
iS

>
L,xw

iS
<
R,wx

� iS
<
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R,wx
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(3.3)

S
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w)Im
⇥
iS

>
L,xw

iS
<
R,wx

� iS
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L,xw

iS
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R,wx

⇤
, (3.4)

with ⇥xw ⌘ ✓(x0�w
0) andmx ⌘ mR(x)+imI(x). Left current sources are just the negative

of these S
a

L
= �S

a

R
, so that @µj

µ

L
(x) = �@µj

µ

R
(x). Vector current is thus conserved and

both sources arise from the axial current (2.15). One evaluates these integrals by moving

to Wigner space (explicit Wigner transform is given by (4.1) below) and using massless

thermal propagators for S<,>
R,L :

iS
<,>
L,R (k) = 2⇡k/ sgn(u · k)f<,>

L,R (u · k + µL,R)�(k
2)PR,L. (3.5)

Here u
µ is the plasma 4-velocity, PR,L = 1

2
(1± �

5) and

f
<
th
(x) = f(x) and f

>
th
(x) = 1� f(x), with f(x) =

1

ex/T + 1
. (3.6)

After moving to a new integration variable r = x� w one finds:

S
CP
R (x) = 4

Z
d4r✓(r0)

Z

k1,k2

a
+

x,r k1 · k2 cR(k1, k2) cos((k1 � k2) · r) (3.7)

S
CP/

R
(x) = 4

Z
d4r✓(r0)

Z

k1,k2

b
�

x,r k1 · k2 cR(k1, k2) sin((k1 � k2) · r), (3.8)

where we defined
R
k
⌘

R
d
4
k

(2⇡)4
, and

cR(k1, k2) ⌘ 4⇡2sgn(u · k1)sgn(u · k2)
�
f(u · k1 + µR)� f(u · k2 + µL)

�
�(k21)�(k

2

2). (3.9)

Finally to leading order in gradients

a
+

x,r ⌘ mRxmIx+r +mIxmRx+r ⇡ |m
2

x|+ · · ·

b
�

x,r ⌘ mRxmIx+r �mIxmRx+r ⇡ |m
2

x|@µ✓ r
µ + · · · , (3.10)

where · · · refer to higher order gradient corrections. We assume that mR,I(x) are real func-

tions, which are time-independent in the wall frame: mR,I(x) = mR,I(zw) = mR,I(�w(zpl �

vwtpl)), where vw is the velocity of the phase transition front and �w = 1/
p
1� v2w.
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Mass is a singular self-energy function,  
which contributes to  and not to .   ΣH Σ<

true scattering terms = nonlocal memory integrals

the true singular mass correction  
to axial vector current divergence

Problem 1. Foundational error

⇒ Σ<(x, y)VIAVIA-method = nonlocal memory integral
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which contributes to  and not to .   ΣH Σ<
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the true singular mass correction  
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Problem 1. Foundational error

⇒ Σ<(x, y)VIAVIA-method = nonlocal memory integral

3.1 Pinch singularity

Equations (3.7-3.10) agree with [19], which is the latest VIA-calculation in this model.

We will continue the calculation di↵erently from [19] however, using the fact that the

integrands in both equations (3.7) and (3.8) are symmetric under r ! �r, so that the

integration range in r0 can be continued to positive infinity2:

S
CP
R (x) = 2|m2

x| Re

Z

k1,k2

k1 · k2 cR(k1, k2)

Z
d4r e�i(k1�k2)·r (3.11)

S
CP/

R
(x) = �2|m2

x|@µ✓ Im

Z

k1,k2

k1 · k2 cR(k1, k2)

Z
d4r rµ e�i(k1�k2)·r. (3.12)

These expressions are Lorenz-covariant and can be computed either in the plasma- or in the

wall frame with identical results. One can set rµ !
i

2
(@

k
µ
1
� @

k
µ
2
), after which performing

the r-integral gives in both cases a delta-function �
4(k1� k2). With no chemical potentials

S
CP
R

would vanish because of the antisymmetry of the integrand in k1 ! k2. Working to

first order in chemical potentials in S
CP
R

and to the lowest order in S
CP/

R
, one finds

S
CP
R = |m|

2
�(µR � µL)⇥ I� and S

CP/

R
= �vw�w|m|

2
✓
0
⇥ I� , (3.13)

where � = 1/T and

I� = 8⇡2

Z
d4k

(2⇡)4
k
2 [sgn(k0)��(k

2)]2f 0(k0). (3.14)

Note that in contrast with the standard VIA-literature, both CP-even and CP-odd sources

are proportional to the same integral factor.

The CP-even term S
CP
R

is not really a source, but rather a collision term that tends

to bring right and left chiralities to equilibrium, but the CP-odd term S
CP/

R
appears to

have the expected form ⇠ vw�w|m|
2
✓
0. However, both terms are ill defined because of the

overlapping delta functions in I� . Such pinch singularities often appear when a calculation

does not contain all relevant terms to the order one is working. Indeed, the devastating

appearance of pinch singularities in the early formulations of finite temperature field theory

was instrumental to the development of the CTP formalism. Here the singularity arises

from an attempt to approximate the singular forward scattering term by a nonlocal collision

integral, which is but one in the infinite series of relevant terms. Technically it arises

because the mass insertions carry no momenta. As emphasised earlier, the problem would

disappear if one summed over all mass insertion diagrams including those with odd number

of insertions. But this is not the way chosen in the VIA-literature. Instead, the singularity

is hidden by a di↵erent order of integrations and regulated by a finite width and thermal

masses.
2This is actually more consistent to begin with. When calculating the self-energy (3.1) and the ensuing

memory integrals one is using thermal equilibrium propagators, which means that terms involving the self-

energy ⌃H and the pole function SH are implicitly absorbed to the definition of thermal quasiparticles and

should be dropped in (2.17). This reduces the memory integral in (2.14) to the last line of (2.17), which is

just what we are using here based on symmetry.
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Using symmetries of the integrals one can show that the CP-odd VIA-source is

where
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first order in chemical potentials in S
CP
R

and to the lowest order in S
CP/

R
, one finds

S
CP
R = |m|

2
�(µR � µL)⇥ I� and S

CP/

R
= �vw�w|m|

2
✓
0
⇥ I� , (3.13)

where � = 1/T and

I� = 8⇡2

Z
d4k

(2⇡)4
k
2 [sgn(k0)��(k

2)]2f 0(k0). (3.14)

Note that in contrast with the standard VIA-literature, both CP-even and CP-odd sources

are proportional to the same integral factor.

The CP-even term S
CP
R

is not really a source, but rather a collision term that tends

to bring right and left chiralities to equilibrium, but the CP-odd term S
CP/

R
appears to

have the expected form ⇠ vw�w|m|
2
✓
0. However, both terms are ill defined because of the

overlapping delta functions in I� . Such pinch singularities often appear when a calculation

does not contain all relevant terms to the order one is working. Indeed, the devastating

appearance of pinch singularities in the early formulations of finite temperature field theory

was instrumental to the development of the CTP formalism. Here the singularity arises

from an attempt to approximate the singular forward scattering term by a nonlocal collision

integral, which is but one in the infinite series of relevant terms. Technically it arises

because the mass insertions carry no momenta. As emphasised earlier, the problem would

disappear if one summed over all mass insertion diagrams including those with odd number

of insertions. But this is not the way chosen in the VIA-literature. Instead, the singularity

is hidden by a di↵erent order of integrations and regulated by a finite width and thermal

masses.
2This is actually more consistent to begin with. When calculating the self-energy (3.1) and the ensuing

memory integrals one is using thermal equilibrium propagators, which means that terms involving the self-

energy ⌃H and the pole function SH are implicitly absorbed to the definition of thermal quasiparticles and

should be dropped in (2.17). This reduces the memory integral in (2.14) to the last line of (2.17), which is

just what we are using here based on symmetry.
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is ill-defined

Problem 2. Pinch singularity

⇓



where p = r, a and s =<,>. We continued to suppress the spin and flavour coordinates

and defined a shorthand notation for the convolution

(F ⇤G)(u, v) ⌘

Z
1

tin

dw0

Z
d3wF (u,w)G(w, v), (2.11)

where tin is the initial time of the closed time path. In equations (2.9) and (2.10) the free

inverse propagator S�1

0
is understood as a real-time operator with the usual delta function

instead of the contour delta function in equation (2.5).

2.2 Current divergences

Equations (2.10) can be expressed in several equivalent forms. For example, employing

the time-ordered and the anti time-ordered functions: St = S
r
� S

< = S
a + S

> and

St̄ = �S
a
�S

< = �S
r+S

> (and similarly for the self-energies) one can write the equation

for S< as follows

i@/
x
S

<(x, y) = (⌃t ⇤ S
<
� ⌃<

⇤ St̄)(x, y). (2.12)

Here i@/ is the free massless inverse propagator and the singular mass term was treated as

an interaction. Technically, it is hidden in the time-ordered self-energy function ⌃t:

⌃t(u, v) = �
(4)(u� v)m(u) + ✓(u0 � v0)⌃

>(u, v)� ✓(v0 � u0)⌃
<(u, v)

�
. (2.13)

Here we assume that m(u) was the only singular operator. Other singular terms could

arise from other classical fields and from tadpole diagrams.

Equation (2.12) serves as the starting point for the VEV-insertion formalism in the

CTP approach, where it is used to derive approximations for current divergence equations.

However, we can also use it to derive the following exact results for the vector and the axial

current divergences:

@µj
µ(x) = lim

y!x
Tr[(m(x)�m(y))S<(x, y)]

+ 2Re

Z
d3w

Z
x0

tin

dw0Tr
⇥
⌃>(x,w)S<(w, x)� ⌃<(x,w)S>(w, x)

⇤
(2.14)

@µj
µ

5
(x) = � lim

y!x
Tr[�5(m(x) +m(y))S<(x, y)]

+ 2Re

Z
d3w

Z
x0

tin

dw0Tr
⇥
�
5
�
⌃>(x,w)S<(w, x)� ⌃<(x,w)S>(w, x)

�⇤
. (2.15)

In practice one can set tin ! �1. The currents were defined as follows:

jO(x) = h ̄(x)O (x)i =

Z
d4k

(2⇡)4
Tr

⇥
OiS

<(k, x)
⇤
, (2.16)

where O = �
µ for vector current and O5 = �

µ
�
5 for the axial current. First lines in

expressions (2.14) and (2.15) completely account for the space-time dependent singular

mass operator, while subsequent memory integrals account for interactions with other

particles. Operators ⌃<,> are nonlocal and vanish when interaction strengths are zero.
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Figure 1: The self-energy function with two mass insertions on a fermion line.

the derivation in detail. In the notation of [19] the right chiral current divergence equation

now becomes

@µj
µ

R
(x) ⌘ S

CP
R (x) + S

CP/

R
(x), (3.2)

were the source terms induced by the operator (3.1) are

S
CP
R (x) = 2

Z
d4w⇥xwRe(mxm

⇤

w)Tr
⇥
iS

>
L,xw

iS
<
R,wx

� iS
<
L,xw

iS
>
R,wx

⇤
(3.3)

S
CP/

R
(x) = �2

Z
d4w⇥xwIm(mxm

⇤

w)Im
⇥
iS

>
L,xw

iS
<
R,wx

� iS
<
L,xw

iS
>
R,wx

⇤
, (3.4)

with ⇥xw ⌘ ✓(x0�w
0) andmx ⌘ mR(x)+imI(x). Left current sources are just the negative

of these S
a

L
= �S

a

R
, so that @µj

µ

L
(x) = �@µj

µ

R
(x). Vector current is thus conserved and

both sources arise from the axial current (2.15). One evaluates these integrals by moving

to Wigner space (explicit Wigner transform is given by (4.1) below) and using massless

thermal propagators for S<,>
R,L :

iS
<,>
L,R (k) = 2⇡k/ sgn(u · k)f<,>

L,R (u · k + µL,R)�(k
2)PR,L. (3.5)

Here u
µ is the plasma 4-velocity, PR,L = 1

2
(1± �

5) and

f
<
th
(x) = f(x) and f

>
th
(x) = 1� f(x), with f(x) =

1

ex/T + 1
. (3.6)

After moving to a new integration variable r = x� w one finds:

S
CP
R (x) = 4

Z
d4r✓(r0)

Z

k1,k2

a
+

x,r k1 · k2 cR(k1, k2) cos((k1 � k2) · r) (3.7)

S
CP/

R
(x) = 4

Z
d4r✓(r0)

Z

k1,k2

b
�

x,r k1 · k2 cR(k1, k2) sin((k1 � k2) · r), (3.8)

where we defined
R
k
⌘

R
d
4
k

(2⇡)4
, and

cR(k1, k2) ⌘ 4⇡2sgn(u · k1)sgn(u · k2)
�
f(u · k1 + µR)� f(u · k2 + µL)

�
�(k21)�(k

2

2). (3.9)

Finally to leading order in gradients

a
+

x,r ⌘ mRxmIx+r +mIxmRx+r ⇡ |m
2

x|+ · · ·

b
�

x,r ⌘ mRxmIx+r �mIxmRx+r ⇡ |m
2

x|@µ✓ r
µ + · · · , (3.10)

where · · · refer to higher order gradient corrections. We assume that mR,I(x) are real func-

tions, which are time-independent in the wall frame: mR,I(x) = mR,I(zw) = mR,I(�w(zpl �

vwtpl)), where vw is the velocity of the phase transition front and �w = 1/
p
1� v2w.
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Mass is a singular self-energy function,  
which contributes to  and not to .   ΣH Σ<

true scattering terms = nonlocal memory integrals

the true singular mass correction  
to axial vector current divergence

Problem 1. Foundational error

⇒ Σ<(x, y)VIAVIA-method = nonlocal memory integral

3.1 Pinch singularity

Equations (3.7-3.10) agree with [19], which is the latest VIA-calculation in this model.

We will continue the calculation di↵erently from [19] however, using the fact that the

integrands in both equations (3.7) and (3.8) are symmetric under r ! �r, so that the

integration range in r0 can be continued to positive infinity2:

S
CP
R (x) = 2|m2

x| Re

Z

k1,k2

k1 · k2 cR(k1, k2)

Z
d4r e�i(k1�k2)·r (3.11)

S
CP/

R
(x) = �2|m2

x|@µ✓ Im

Z

k1,k2

k1 · k2 cR(k1, k2)

Z
d4r rµ e�i(k1�k2)·r. (3.12)

These expressions are Lorenz-covariant and can be computed either in the plasma- or in the

wall frame with identical results. One can set rµ !
i

2
(@

k
µ
1
� @

k
µ
2
), after which performing

the r-integral gives in both cases a delta-function �
4(k1� k2). With no chemical potentials

S
CP
R

would vanish because of the antisymmetry of the integrand in k1 ! k2. Working to

first order in chemical potentials in S
CP
R

and to the lowest order in S
CP/

R
, one finds

S
CP
R = |m|

2
�(µR � µL)⇥ I� and S

CP/

R
= �vw�w|m|

2
✓
0
⇥ I� , (3.13)

where � = 1/T and

I� = 8⇡2

Z
d4k

(2⇡)4
k
2 [sgn(k0)��(k

2)]2f 0(k0). (3.14)

Note that in contrast with the standard VIA-literature, both CP-even and CP-odd sources

are proportional to the same integral factor.

The CP-even term S
CP
R

is not really a source, but rather a collision term that tends

to bring right and left chiralities to equilibrium, but the CP-odd term S
CP/

R
appears to

have the expected form ⇠ vw�w|m|
2
✓
0. However, both terms are ill defined because of the

overlapping delta functions in I� . Such pinch singularities often appear when a calculation

does not contain all relevant terms to the order one is working. Indeed, the devastating

appearance of pinch singularities in the early formulations of finite temperature field theory

was instrumental to the development of the CTP formalism. Here the singularity arises

from an attempt to approximate the singular forward scattering term by a nonlocal collision

integral, which is but one in the infinite series of relevant terms. Technically it arises

because the mass insertions carry no momenta. As emphasised earlier, the problem would

disappear if one summed over all mass insertion diagrams including those with odd number

of insertions. But this is not the way chosen in the VIA-literature. Instead, the singularity

is hidden by a di↵erent order of integrations and regulated by a finite width and thermal

masses.
2This is actually more consistent to begin with. When calculating the self-energy (3.1) and the ensuing

memory integrals one is using thermal equilibrium propagators, which means that terms involving the self-

energy ⌃H and the pole function SH are implicitly absorbed to the definition of thermal quasiparticles and

should be dropped in (2.17). This reduces the memory integral in (2.14) to the last line of (2.17), which is

just what we are using here based on symmetry.
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Using symmetries of the integrals one can show that the CP-odd VIA-source is

where

3.1 Pinch singularity

Equations (3.7-3.10) agree with [19], which is the latest VIA-calculation in this model.

We will continue the calculation di↵erently from [19] however, using the fact that the

integrands in both equations (3.7) and (3.8) are symmetric under r ! �r, so that the

integration range in r0 can be continued to positive infinity2:

S
CP
R (x) = 2|m2

x| Re

Z

k1,k2

k1 · k2 cR(k1, k2)

Z
d4r e�i(k1�k2)·r (3.11)

S
CP/

R
(x) = �2|m2

x|@µ✓ Im

Z

k1,k2

k1 · k2 cR(k1, k2)

Z
d4r rµ e�i(k1�k2)·r. (3.12)

These expressions are Lorenz-covariant and can be computed either in the plasma- or in the

wall frame with identical results. One can set rµ !
i

2
(@

k
µ
1
� @

k
µ
2
), after which performing

the r-integral gives in both cases a delta-function �
4(k1� k2). With no chemical potentials

S
CP
R

would vanish because of the antisymmetry of the integrand in k1 ! k2. Working to

first order in chemical potentials in S
CP
R

and to the lowest order in S
CP/

R
, one finds

S
CP
R = |m|

2
�(µR � µL)⇥ I� and S

CP/

R
= �vw�w|m|

2
✓
0
⇥ I� , (3.13)

where � = 1/T and

I� = 8⇡2

Z
d4k

(2⇡)4
k
2 [sgn(k0)��(k

2)]2f 0(k0). (3.14)

Note that in contrast with the standard VIA-literature, both CP-even and CP-odd sources

are proportional to the same integral factor.

The CP-even term S
CP
R

is not really a source, but rather a collision term that tends

to bring right and left chiralities to equilibrium, but the CP-odd term S
CP/

R
appears to

have the expected form ⇠ vw�w|m|
2
✓
0. However, both terms are ill defined because of the

overlapping delta functions in I� . Such pinch singularities often appear when a calculation

does not contain all relevant terms to the order one is working. Indeed, the devastating

appearance of pinch singularities in the early formulations of finite temperature field theory

was instrumental to the development of the CTP formalism. Here the singularity arises

from an attempt to approximate the singular forward scattering term by a nonlocal collision

integral, which is but one in the infinite series of relevant terms. Technically it arises

because the mass insertions carry no momenta. As emphasised earlier, the problem would

disappear if one summed over all mass insertion diagrams including those with odd number

of insertions. But this is not the way chosen in the VIA-literature. Instead, the singularity

is hidden by a di↵erent order of integrations and regulated by a finite width and thermal

masses.
2This is actually more consistent to begin with. When calculating the self-energy (3.1) and the ensuing

memory integrals one is using thermal equilibrium propagators, which means that terms involving the self-

energy ⌃H and the pole function SH are implicitly absorbed to the definition of thermal quasiparticles and

should be dropped in (2.17). This reduces the memory integral in (2.14) to the last line of (2.17), which is

just what we are using here based on symmetry.

– 8 –

Pinch singularities are familiar in CTP-formalism and signal the need for resummation…

is ill-defined

Problem 2. Pinch singularity

⇓

Problem 3. further math issues
 may be, and was regulated eg by a finite width  and thermal masses  

(though, depending on the regulator, it can have an arbitrary value)
Iγ γ

Regularisation by damping The integral (3.14) is clearly ambiguous3. We anticipated

this by giving the delta-function an index �, which refers to a regulated quantity. We will

eventually follow the VIA literature and attempt to interpret � as a finite thermal width.

To this end we choose the following particular regularisation choice:

sgn(k0)��(k
2) !

1

2!a

X

±

±��(k0 ⌥ !a)

⌘
1

2⇡!a

X

±

±�a

(k0 ⌥ !a)2 + �2a

⌘
1

2⇡!a

X

±

g
±

ka(k0), (3.15)

with !
2
a = m

2
a(T ) + k2 and m

2
a is the thermal mass. We allow for di↵erent thermal masses

and widths for the left- and right chiral states with a = L,R, redefining:

I� ! I
P

� ⌘

X

±±0

Z
d4k

(2⇡)4
2

!L!R

(k20 � k2)f 0(k0)g
±

kL(k0)g
±

0

kR(k0). (3.16)

For left and right chiral quarks one finds m2

L
= (1

6
g
2
s +

3

32
g
2+ 1

16
y
2
t )T

2, m2

R
= (1

6
g
2
s +

1

8
y
2
t )T

2

and �L,R = � ⇡ 0.152g2sT [43, 44]. The integral (3.16) is easily evaluated numerically and

the k0-integral can also be performed analytically using contour integration, being careful

to include all residues, including the ones associated with the special points of the function

f
0(k0) along the imaginary axis. To be slightly more general we control the contribution

from the residues on the imaginary axes by a parameter r, making a further redefinition

I
P

�,r ⌘

X

±±0

Z

k

1

!L!R

n
Re

h
±A

±
0

kR(±!L � i�)±0
A

±

kL(±
0
!R + i�)

i

+ 2r Im
1X

n=0

@

@k0

h
(k20 � k2)g±k�L(k0)g

±
0

k�R(k0))
i

k0=i!n

o
, (3.17)

where
R
k =

R
d
3k

(2⇡)3
and A

s

ka(k0) ⌘ f
0(k0)(k20 �k2)gska(k0) and !n ⌘ (2n+1)⇡T . To get the

last term we used f
0(i!n + �z) = 1/�z2 + 1/12 + O(�z2). Obviously I

P
� = I

P

�,1
. One can

define entirely new functions by deforming the integration contour such that it avoids some

of the poles in the imaginary axis. Setting r = 0 would remove the second line in (3.17)

entirely, giving rise to a new regulated quantity I
P

�,0
, which keeps only the quasiparticle

pole contributions to the original integral.

3.2 VIA-literature regulators

The usual computation of SCP
R

and S
CP/

R
in the VIA-literature does not use the symmetry of

the r0-integral, but performs the k0i-integrations before the r0-integration in equations (3.7)

and (3.8). This hides the pinch singularity and apparently leads to di↵erent results. In

3One may think of (3.14) is a delta-function integral over a test function g ⇠ k2�(k2), so that the result

of the integral is g(0) ⇠ 0 · 1, which is arbitrary. The value of this integral thus entirely depends on the

regularisation. For example one could have used sgn(k0)
2 = 1 leaving out the sign-factors in (3.15). Also,

one could continue the k2-factor in the nominator by adding a contribution k2 ! k2 + ↵�2. This quantity,

with arbitrary ↵, would have the same (vanishing) � ! 0 limit as our choice for the regulated I� . However,

for a finite � this continuation could be used to give any desired value for I� by varying ↵.
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XX

±±

h ⇣ ⌘ ⇣ ⌘ io

where EL,R ⌘ !L,R + i� and trLO
1

= E
⇤

L
ER � k2 and trLO

2
= �ELER � k2. The first line

0 5 10
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Figure 2: (Left) shown are the distributions iA� (|k|) corresponding to the various contri-

butions to the CP-even function I
CP
� . The complete VIA-result (blue) including all residues

and the numerically integrated pinch distribution from (3.16) (green dashed) fall on top of

each others. (Right) same comparison corresponding to the contributions to the CP-odd

function I
CP/
� . Again the complete VIA-result (blue) agrees with the pinch distribution.

and (3.21) are equivalent: I
CP
�,1

= I
P

�,1
. We show this in the left panel of figure 2, at the

level of di↵erential distributions iA� (|k|) defined by

I
A

� ⌘
1

2⇡2

Z
1

0

d|k|iA� (|k|) (3.22)

for the various contributions to the even source function. The red dashed line in fig. 2

is the usual VIA-result that includes only the first line in (3.21) and black dash-dotted

lines is the contribution from the residues in the imaginary axis, and finally the blue line

is the sum of the two. The full result exactly coincides with the green dashed line that

corresponds to the integrand of the regulated pinch-term defined in (3.16).

CP-odd integral Similarly to the CP-even case, the CP-odd term (3.8) can be written

in the simple form of equation (3.13), in terms of a regulated integral ICP/
�,r . The calculation

is entirely analogous to the CP-even case and we only quote the final result:

I
CP/
�,r = 2

Z

k

1

!L!R

n
Im

h
f(E⇤

L
)� f(ER)

(E⇤

L
� ER)2

trLO
1 �

f(EL) + f(ER) + s

(EL + ER)2
trLO

2

i

+ rRe
1X

n=0

X

±±0

⇣
g
±

kL(�k0)B
(2)±

0

kR (�k0) + g
±

0

kR(k0)B
(2)±

kL (k0)
⌘

k0=i!n

o
, (3.23)

where s = �1 for fermions. The first line in (3.23) again coincides with the standard VIA

result [19], while the second line includes the residues coming from the previously neglected

poles of the f(k0)-function, found by using f(i!n + �z) = �1/�z + O(�z0). When all

contributions included, we find that the integrals are again the same: ICP/

�,1
= I

P

�,1
= I

CP
�,1

. We
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Familiar result in 
VIA-literature 

from missed poles  
of the f’-function



where p = r, a and s =<,>. We continued to suppress the spin and flavour coordinates

and defined a shorthand notation for the convolution

(F ⇤G)(u, v) ⌘

Z
1

tin

dw0

Z
d3wF (u,w)G(w, v), (2.11)

where tin is the initial time of the closed time path. In equations (2.9) and (2.10) the free

inverse propagator S�1

0
is understood as a real-time operator with the usual delta function

instead of the contour delta function in equation (2.5).

2.2 Current divergences

Equations (2.10) can be expressed in several equivalent forms. For example, employing

the time-ordered and the anti time-ordered functions: St = S
r
� S

< = S
a + S

> and

St̄ = �S
a
�S

< = �S
r+S

> (and similarly for the self-energies) one can write the equation

for S< as follows

i@/
x
S

<(x, y) = (⌃t ⇤ S
<
� ⌃<

⇤ St̄)(x, y). (2.12)

Here i@/ is the free massless inverse propagator and the singular mass term was treated as

an interaction. Technically, it is hidden in the time-ordered self-energy function ⌃t:

⌃t(u, v) = �
(4)(u� v)m(u) + ✓(u0 � v0)⌃

>(u, v)� ✓(v0 � u0)⌃
<(u, v)

�
. (2.13)

Here we assume that m(u) was the only singular operator. Other singular terms could

arise from other classical fields and from tadpole diagrams.

Equation (2.12) serves as the starting point for the VEV-insertion formalism in the

CTP approach, where it is used to derive approximations for current divergence equations.

However, we can also use it to derive the following exact results for the vector and the axial

current divergences:

@µj
µ(x) = lim

y!x
Tr[(m(x)�m(y))S<(x, y)]

+ 2Re

Z
d3w

Z
x0

tin

dw0Tr
⇥
⌃>(x,w)S<(w, x)� ⌃<(x,w)S>(w, x)

⇤
(2.14)

@µj
µ

5
(x) = � lim

y!x
Tr[�5(m(x) +m(y))S<(x, y)]

+ 2Re

Z
d3w

Z
x0

tin

dw0Tr
⇥
�
5
�
⌃>(x,w)S<(w, x)� ⌃<(x,w)S>(w, x)

�⇤
. (2.15)

In practice one can set tin ! �1. The currents were defined as follows:

jO(x) = h ̄(x)O (x)i =

Z
d4k

(2⇡)4
Tr

⇥
OiS

<(k, x)
⇤
, (2.16)

where O = �
µ for vector current and O5 = �

µ
�
5 for the axial current. First lines in

expressions (2.14) and (2.15) completely account for the space-time dependent singular

mass operator, while subsequent memory integrals account for interactions with other

particles. Operators ⌃<,> are nonlocal and vanish when interaction strengths are zero.
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Figure 1: The self-energy function with two mass insertions on a fermion line.

the derivation in detail. In the notation of [19] the right chiral current divergence equation

now becomes

@µj
µ

R
(x) ⌘ S

CP
R (x) + S

CP/

R
(x), (3.2)

were the source terms induced by the operator (3.1) are

S
CP
R (x) = 2

Z
d4w⇥xwRe(mxm

⇤

w)Tr
⇥
iS

>
L,xw

iS
<
R,wx

� iS
<
L,xw

iS
>
R,wx

⇤
(3.3)

S
CP/

R
(x) = �2

Z
d4w⇥xwIm(mxm

⇤

w)Im
⇥
iS

>
L,xw

iS
<
R,wx

� iS
<
L,xw

iS
>
R,wx

⇤
, (3.4)

with ⇥xw ⌘ ✓(x0�w
0) andmx ⌘ mR(x)+imI(x). Left current sources are just the negative

of these S
a

L
= �S

a

R
, so that @µj

µ

L
(x) = �@µj

µ

R
(x). Vector current is thus conserved and

both sources arise from the axial current (2.15). One evaluates these integrals by moving

to Wigner space (explicit Wigner transform is given by (4.1) below) and using massless

thermal propagators for S<,>
R,L :

iS
<,>
L,R (k) = 2⇡k/ sgn(u · k)f<,>

L,R (u · k + µL,R)�(k
2)PR,L. (3.5)

Here u
µ is the plasma 4-velocity, PR,L = 1

2
(1± �

5) and

f
<
th
(x) = f(x) and f

>
th
(x) = 1� f(x), with f(x) =

1

ex/T + 1
. (3.6)

After moving to a new integration variable r = x� w one finds:

S
CP
R (x) = 4

Z
d4r✓(r0)

Z

k1,k2

a
+

x,r k1 · k2 cR(k1, k2) cos((k1 � k2) · r) (3.7)

S
CP/

R
(x) = 4

Z
d4r✓(r0)

Z

k1,k2

b
�

x,r k1 · k2 cR(k1, k2) sin((k1 � k2) · r), (3.8)

where we defined
R
k
⌘

R
d
4
k

(2⇡)4
, and

cR(k1, k2) ⌘ 4⇡2sgn(u · k1)sgn(u · k2)
�
f(u · k1 + µR)� f(u · k2 + µL)

�
�(k21)�(k

2

2). (3.9)

Finally to leading order in gradients

a
+

x,r ⌘ mRxmIx+r +mIxmRx+r ⇡ |m
2

x|+ · · ·

b
�

x,r ⌘ mRxmIx+r �mIxmRx+r ⇡ |m
2

x|@µ✓ r
µ + · · · , (3.10)

where · · · refer to higher order gradient corrections. We assume that mR,I(x) are real func-

tions, which are time-independent in the wall frame: mR,I(x) = mR,I(zw) = mR,I(�w(zpl �

vwtpl)), where vw is the velocity of the phase transition front and �w = 1/
p
1� v2w.

– 7 –

Mass is a singular self-energy function,  
which contributes to  and not to .   ΣH Σ<

true scattering terms = nonlocal memory integrals

the true singular mass correction  
to axial vector current divergence

Problem 1. Foundational error

⇒ Σ<(x, y)VIAVIA-method = nonlocal memory integral

3.1 Pinch singularity

Equations (3.7-3.10) agree with [19], which is the latest VIA-calculation in this model.

We will continue the calculation di↵erently from [19] however, using the fact that the

integrands in both equations (3.7) and (3.8) are symmetric under r ! �r, so that the

integration range in r0 can be continued to positive infinity2:

S
CP
R (x) = 2|m2

x| Re

Z

k1,k2

k1 · k2 cR(k1, k2)

Z
d4r e�i(k1�k2)·r (3.11)

S
CP/

R
(x) = �2|m2

x|@µ✓ Im

Z

k1,k2

k1 · k2 cR(k1, k2)

Z
d4r rµ e�i(k1�k2)·r. (3.12)

These expressions are Lorenz-covariant and can be computed either in the plasma- or in the

wall frame with identical results. One can set rµ !
i

2
(@

k
µ
1
� @

k
µ
2
), after which performing

the r-integral gives in both cases a delta-function �
4(k1� k2). With no chemical potentials

S
CP
R

would vanish because of the antisymmetry of the integrand in k1 ! k2. Working to

first order in chemical potentials in S
CP
R

and to the lowest order in S
CP/

R
, one finds

S
CP
R = |m|

2
�(µR � µL)⇥ I� and S

CP/

R
= �vw�w|m|

2
✓
0
⇥ I� , (3.13)

where � = 1/T and

I� = 8⇡2

Z
d4k

(2⇡)4
k
2 [sgn(k0)��(k

2)]2f 0(k0). (3.14)

Note that in contrast with the standard VIA-literature, both CP-even and CP-odd sources

are proportional to the same integral factor.

The CP-even term S
CP
R

is not really a source, but rather a collision term that tends

to bring right and left chiralities to equilibrium, but the CP-odd term S
CP/

R
appears to

have the expected form ⇠ vw�w|m|
2
✓
0. However, both terms are ill defined because of the

overlapping delta functions in I� . Such pinch singularities often appear when a calculation

does not contain all relevant terms to the order one is working. Indeed, the devastating

appearance of pinch singularities in the early formulations of finite temperature field theory

was instrumental to the development of the CTP formalism. Here the singularity arises

from an attempt to approximate the singular forward scattering term by a nonlocal collision

integral, which is but one in the infinite series of relevant terms. Technically it arises

because the mass insertions carry no momenta. As emphasised earlier, the problem would

disappear if one summed over all mass insertion diagrams including those with odd number

of insertions. But this is not the way chosen in the VIA-literature. Instead, the singularity

is hidden by a di↵erent order of integrations and regulated by a finite width and thermal

masses.
2This is actually more consistent to begin with. When calculating the self-energy (3.1) and the ensuing

memory integrals one is using thermal equilibrium propagators, which means that terms involving the self-

energy ⌃H and the pole function SH are implicitly absorbed to the definition of thermal quasiparticles and

should be dropped in (2.17). This reduces the memory integral in (2.14) to the last line of (2.17), which is

just what we are using here based on symmetry.
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Pinch singularities are familiar in CTP-formalism and signal the need for resummation…

is ill-defined

Problem 2. Pinch singularity

⇓

Problem 3. further math issues
 may be, and was regulated eg by a finite width  and thermal masses  

(though, depending on the regulator, it can have an arbitrary value)
Iγ γ

Regularisation by damping The integral (3.14) is clearly ambiguous3. We anticipated

this by giving the delta-function an index �, which refers to a regulated quantity. We will

eventually follow the VIA literature and attempt to interpret � as a finite thermal width.

To this end we choose the following particular regularisation choice:

sgn(k0)��(k
2) !

1

2!a

X

±

±��(k0 ⌥ !a)

⌘
1

2⇡!a

X

±

±�a

(k0 ⌥ !a)2 + �2a

⌘
1

2⇡!a

X

±

g
±

ka(k0), (3.15)

with !
2
a = m

2
a(T ) + k2 and m

2
a is the thermal mass. We allow for di↵erent thermal masses

and widths for the left- and right chiral states with a = L,R, redefining:

I� ! I
P

� ⌘

X

±±0

Z
d4k

(2⇡)4
2

!L!R

(k20 � k2)f 0(k0)g
±

kL(k0)g
±

0

kR(k0). (3.16)

For left and right chiral quarks one finds m2

L
= (1

6
g
2
s +

3

32
g
2+ 1

16
y
2
t )T

2, m2

R
= (1

6
g
2
s +

1

8
y
2
t )T

2

and �L,R = � ⇡ 0.152g2sT [43, 44]. The integral (3.16) is easily evaluated numerically and

the k0-integral can also be performed analytically using contour integration, being careful

to include all residues, including the ones associated with the special points of the function

f
0(k0) along the imaginary axis. To be slightly more general we control the contribution

from the residues on the imaginary axes by a parameter r, making a further redefinition

I
P

�,r ⌘

X

±±0

Z

k

1

!L!R

n
Re

h
±A

±
0

kR(±!L � i�)±0
A

±

kL(±
0
!R + i�)

i

+ 2r Im
1X

n=0

@

@k0

h
(k20 � k2)g±k�L(k0)g

±
0

k�R(k0))
i

k0=i!n

o
, (3.17)

where
R
k =

R
d
3k

(2⇡)3
and A

s

ka(k0) ⌘ f
0(k0)(k20 �k2)gska(k0) and !n ⌘ (2n+1)⇡T . To get the

last term we used f
0(i!n + �z) = 1/�z2 + 1/12 + O(�z2). Obviously I

P
� = I

P

�,1
. One can

define entirely new functions by deforming the integration contour such that it avoids some

of the poles in the imaginary axis. Setting r = 0 would remove the second line in (3.17)

entirely, giving rise to a new regulated quantity I
P

�,0
, which keeps only the quasiparticle

pole contributions to the original integral.

3.2 VIA-literature regulators

The usual computation of SCP
R

and S
CP/

R
in the VIA-literature does not use the symmetry of

the r0-integral, but performs the k0i-integrations before the r0-integration in equations (3.7)

and (3.8). This hides the pinch singularity and apparently leads to di↵erent results. In

3One may think of (3.14) is a delta-function integral over a test function g ⇠ k2�(k2), so that the result

of the integral is g(0) ⇠ 0 · 1, which is arbitrary. The value of this integral thus entirely depends on the

regularisation. For example one could have used sgn(k0)
2 = 1 leaving out the sign-factors in (3.15). Also,

one could continue the k2-factor in the nominator by adding a contribution k2 ! k2 + ↵�2. This quantity,

with arbitrary ↵, would have the same (vanishing) � ! 0 limit as our choice for the regulated I� . However,

for a finite � this continuation could be used to give any desired value for I� by varying ↵.
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XX

±±

h ⇣ ⌘ ⇣ ⌘ io

where EL,R ⌘ !L,R + i� and trLO
1

= E
⇤

L
ER � k2 and trLO

2
= �ELER � k2. The first line
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Figure 2: (Left) shown are the distributions iA� (|k|) corresponding to the various contri-

butions to the CP-even function I
CP
� . The complete VIA-result (blue) including all residues

and the numerically integrated pinch distribution from (3.16) (green dashed) fall on top of

each others. (Right) same comparison corresponding to the contributions to the CP-odd

function I
CP/
� . Again the complete VIA-result (blue) agrees with the pinch distribution.

and (3.21) are equivalent: I
CP
�,1

= I
P

�,1
. We show this in the left panel of figure 2, at the

level of di↵erential distributions iA� (|k|) defined by

I
A

� ⌘
1

2⇡2

Z
1

0

d|k|iA� (|k|) (3.22)

for the various contributions to the even source function. The red dashed line in fig. 2

is the usual VIA-result that includes only the first line in (3.21) and black dash-dotted

lines is the contribution from the residues in the imaginary axis, and finally the blue line

is the sum of the two. The full result exactly coincides with the green dashed line that

corresponds to the integrand of the regulated pinch-term defined in (3.16).

CP-odd integral Similarly to the CP-even case, the CP-odd term (3.8) can be written

in the simple form of equation (3.13), in terms of a regulated integral ICP/
�,r . The calculation

is entirely analogous to the CP-even case and we only quote the final result:

I
CP/
�,r = 2

Z

k

1

!L!R

n
Im

h
f(E⇤

L
)� f(ER)

(E⇤

L
� ER)2

trLO
1 �

f(EL) + f(ER) + s

(EL + ER)2
trLO

2

i

+ rRe
1X

n=0

X

±±0

⇣
g
±

kL(�k0)B
(2)±

0

kR (�k0) + g
±

0

kR(k0)B
(2)±

kL (k0)
⌘

k0=i!n

o
, (3.23)

where s = �1 for fermions. The first line in (3.23) again coincides with the standard VIA

result [19], while the second line includes the residues coming from the previously neglected

poles of the f(k0)-function, found by using f(i!n + �z) = �1/�z + O(�z0). When all

contributions included, we find that the integrals are again the same: ICP/

�,1
= I

P

�,1
= I

CP
�,1

. We
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Familiar result in 
VIA-literature 

from missed poles  
of the f’-function

Actually s=-1, but this  
contribution diverges.  

VIA: put s=0 by hand 
“renormalization” 

True solution:  
 a contribution from  
 f’-poles cancel this term.
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SC-method extended to thermal quasiparticles does not show VIA-term:   no VIA-source exists
KK, JCAP 11 (2021) 11, 042.

M.Postma, G.White, J.van de Vis, JHEP 12 (2022) 121.
This was later confirmed by Postma etal. (who found yet another problem within VIA, see Mariekes talk!) 
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This result was already pointed out in [27] in the collisionless limit, but it works out

consistently also when the collision integral is included. We give nontrivial details of the

reduction of the axial vector current with the collision term in appendix A.

We have shown that the current divergence equations are consistent with the semiclas-

sical equation of motion10, and exactly reproduce its two lowest moment equations given

in (4.40). So the only source terms in current equations are the semiclassical sources (4.41)

with ` = 1 for vector and ` = 2 in the axial current equation. We stress that both cur-

rent divergences contain non-vanishing semiclassical sources. Yet the vector current is

conserved, so using Fick’s law to turn the vector current divergence equation into an evo-

lution equation following the VIA-method, would yield no source term for vector current.

This contradiction suggests that there is a subtlety in the use of Fick’s law that has been

overlooked in the VIA literature.

5.1 Di↵usion equations and the Fick’s law

Fick’s law is a phenomenological relation, which connects the di↵usive flux to the rate

of change of the concentration: j = �Drn. In the VIA-formalism one associates the

current and the number density appearing in this formula with the components of the

total 4-currents11 j
µ

h
= (nh; jh). However, as pointed out above, when current is conserved

@µj
µ

h
= 0, employing Fick’s law naively gives a di↵usion equation with no source: ṅh +

Dr
2
nh = 0. The problem is that one is not correctly identifying the di↵usion current and

the associated out-of-equilibrium concentration. In reality the vector current jh± consists

of three distinct pieces: the di↵usion current, advective current and a drag term due to

the semiclassical force. In order to see this more clearly we rewrite the current divergence

using the ansatz (4.38):

@zj
z

h± = @z

Z
d3k

(2⇡)3
vh±

�
f
h±

FD � µhf
0

0w + �fh±

�
. (5.6)

The first term in equation (5.6) can be rewritten as an integral over the force term, and it

returns the SC source:

@zj
z

h±,force
⌘

Z
d3k

(2⇡)3
vw�wFh±f

0

0w = �S
n

h1±. (5.7)

The second term produces, up to negligible corrections of order (µ|m|
2
✓
0)0, the advection

current:

@zj
z

h±,adv
⇡ �vw@z�nh±. (5.8)

Finally, the third term in (5.6) is the true di↵usion current, related to the non-equilibrium

concentration �nh±, to which the Fick’s law can be consistently applied:

@zj
z

h±,di↵
⌘ @z

Z
d3k

(2⇡)3
vh±�fh±

FL
⌘ �D@

2

z�nh±. (5.9)

10The reduction of the axial current divergence holds at the level of unintegrated functions, and hence it

in fact merely proves that the equations appearing as integrands in equations (5.3) and (5.4) are equivalent.
11In VIA-method one considers chirality instead of helicity, which obscures the treatment further, but

the main idea is the same.
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Fick's law is a phenomenological relation, which  connects the diffusive flux to the rate of change of the concentration. 
One must be careful to correctly identify the quantities to which it is applied. Consider the vector current divergence equation (VCDE):

first velocity moment

=   Ch1

fh±

{≈ f0w − μh f′ 0w + δfh±

Problem 4. Naive use of Fick’s law

kinetic perturbation
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The first term in equation (5.6) can be rewritten as an integral over the force term, and it

returns the SC source:
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concentration �nh±, to which the Fick’s law can be consistently applied:

@zj
z

h±,di↵
⌘ @z

Z
d3k

(2⇡)3
vh±�fh±

FL
⌘ �D@

2

z�nh±. (5.9)

10The reduction of the axial current divergence holds at the level of unintegrated functions, and hence it

in fact merely proves that the equations appearing as integrands in equations (5.3) and (5.4) are equivalent.
11In VIA-method one considers chirality instead of helicity, which obscures the treatment further, but

the main idea is the same.
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kinetic perturbation
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consistently also when the collision integral is included. We give nontrivial details of the

reduction of the axial vector current with the collision term in appendix A.

We have shown that the current divergence equations are consistent with the semiclas-

sical equation of motion10, and exactly reproduce its two lowest moment equations given

in (4.40). So the only source terms in current equations are the semiclassical sources (4.41)

with ` = 1 for vector and ` = 2 in the axial current equation. We stress that both cur-

rent divergences contain non-vanishing semiclassical sources. Yet the vector current is

conserved, so using Fick’s law to turn the vector current divergence equation into an evo-

lution equation following the VIA-method, would yield no source term for vector current.

This contradiction suggests that there is a subtlety in the use of Fick’s law that has been

overlooked in the VIA literature.
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of change of the concentration: j = �Drn. In the VIA-formalism one associates the

current and the number density appearing in this formula with the components of the

total 4-currents11 j
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= (nh; jh). However, as pointed out above, when current is conserved
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= 0, employing Fick’s law naively gives a di↵usion equation with no source: ṅh +
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nh = 0. The problem is that one is not correctly identifying the di↵usion current and
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The first term in equation (5.6) can be rewritten as an integral over the force term, and it
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Finally, the third term in (5.6) is the true di↵usion current, related to the non-equilibrium
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10The reduction of the axial current divergence holds at the level of unintegrated functions, and hence it

in fact merely proves that the equations appearing as integrands in equations (5.3) and (5.4) are equivalent.
11In VIA-method one considers chirality instead of helicity, which obscures the treatment further, but

the main idea is the same.
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Note that the di↵usion current coincides up to a normalisation factor with the first velocity

moment in the moment expansion: jz
h±,di↵

= N1uh±. Taking the di↵erence of the particle

and antiparticle equations, we get a di↵usion equation for the CP-violating perturbation:
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where 0 = @z. Here S
n

h1
= N1Sh1 and �nh = �N1D0µh, and we finally added the collision

term to the current divergence equation, given by �C
n

h1
= �N1�Ch1. This shows that the

current conservation equation is fully consistent with the SC-equations, with a non-trivial

di↵usion current and a non-vanishing source in the di↵usion equation. Note however, that

our phenomenological use of the Fick’s law left the di↵usion constant D still unspecified.

Improved Fick’s law Equation (5.10) is actually a poor approximation to the under-

lying SC Boltzmann equation, in particular for small wall velocities, where S
n

h1
is strongly

suppressed (this is due to antisymmetry of Fs± in reflection kz ! �kz for vw = 0, whereby

S
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h1
/ v

2
w). The problem is in the Fick’s law itself and a better di↵usion approximation can

be derived from the moment equations (4.40). First, neglecting the |m|
20-dependent terms

one can write the first moment equation as
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In the same approximation the second moment equation can be shown to give a corrected

Fick’s law12:
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In addition to giving explicitly the di↵usion coe�cient appearing in the Fick’s law: De↵ =

(D2 + vwD1)/D0�TOT, this equation has a source S
n

h2
which is less strongly suppressed by

the wall velocity. Di↵erentiating and inserting (5.12) back to (5.11) one gets an improved

di↵usion approximation to the semiclassical Boltzmann equation:
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Despite the additional suppression by an extra derivative, the Sn0

h2
-source is by far dominant

for non-relativistic wall velocities and it used to be the only one accounted for by the SC-

method, before the more complete calculation was introduced in ref. [31]. We wish to

stress that solving the moment equations (4.40) directly is much more accurate than using

the di↵usion approximation, in particular for large wall velocities [31]. We went through

the exercises in this section just to show the intricacies of the use of Fick’s law, and its

consistency with the SC-equations.

12One should not confuse the kinematic D`-functions in the moment equations with the di↵usion coef-

ficient De↵ . Note also the role of the axial current (first moment) equation is not to provide an evolution

equation, given the Fick’s law, but indeed to provide the definition for the (improved) Fick’s law itself.

– 23 –

Three distinct parts can be identified:

Source (drag):

Advection:

Diffusion:

source

=>

jdiff = − D∂zδn

KK, JCAP 11 (2021) 11, 042.

SC-method extended to thermal quasiparticles does not show VIA-term:   no VIA-source exists
KK, JCAP 11 (2021) 11, 042.

M.Postma, G.White, J.van de Vis, JHEP 12 (2022) 121.
This was later confirmed by Postma etal. (who found yet another problem within VIA, see Mariekes talk!) 
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This result was already pointed out in [27] in the collisionless limit, but it works out

consistently also when the collision integral is included. We give nontrivial details of the

reduction of the axial vector current with the collision term in appendix A.

We have shown that the current divergence equations are consistent with the semiclas-

sical equation of motion10, and exactly reproduce its two lowest moment equations given

in (4.40). So the only source terms in current equations are the semiclassical sources (4.41)

with ` = 1 for vector and ` = 2 in the axial current equation. We stress that both cur-

rent divergences contain non-vanishing semiclassical sources. Yet the vector current is

conserved, so using Fick’s law to turn the vector current divergence equation into an evo-

lution equation following the VIA-method, would yield no source term for vector current.

This contradiction suggests that there is a subtlety in the use of Fick’s law that has been

overlooked in the VIA literature.

5.1 Di↵usion equations and the Fick’s law

Fick’s law is a phenomenological relation, which connects the di↵usive flux to the rate

of change of the concentration: j = �Drn. In the VIA-formalism one associates the

current and the number density appearing in this formula with the components of the

total 4-currents11 j
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= (nh; jh). However, as pointed out above, when current is conserved
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= 0, employing Fick’s law naively gives a di↵usion equation with no source: ṅh +

Dr
2
nh = 0. The problem is that one is not correctly identifying the di↵usion current and

the associated out-of-equilibrium concentration. In reality the vector current jh± consists

of three distinct pieces: the di↵usion current, advective current and a drag term due to

the semiclassical force. In order to see this more clearly we rewrite the current divergence

using the ansatz (4.38):
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The first term in equation (5.6) can be rewritten as an integral over the force term, and it

returns the SC source:
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The second term produces, up to negligible corrections of order (µ|m|
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0)0, the advection

current:

@zj
z

h±,adv
⇡ �vw@z�nh±. (5.8)

Finally, the third term in (5.6) is the true di↵usion current, related to the non-equilibrium

concentration �nh±, to which the Fick’s law can be consistently applied:
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10The reduction of the axial current divergence holds at the level of unintegrated functions, and hence it

in fact merely proves that the equations appearing as integrands in equations (5.3) and (5.4) are equivalent.
11In VIA-method one considers chirality instead of helicity, which obscures the treatment further, but

the main idea is the same.
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11In VIA-method one considers chirality instead of helicity, which obscures the treatment further, but

the main idea is the same.
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Note that the di↵usion current coincides up to a normalisation factor with the first velocity

moment in the moment expansion: jz
h±,di↵

= N1uh±. Taking the di↵erence of the particle

and antiparticle equations, we get a di↵usion equation for the CP-violating perturbation:

� vw�n
0

h
�D�n

00

h
= S

n

h1
+ C

n

h1
, (5.10)

where 0 = @z. Here S
n

h1
= N1Sh1 and �nh = �N1D0µh, and we finally added the collision

term to the current divergence equation, given by �C
n

h1
= �N1�Ch1. This shows that the

current conservation equation is fully consistent with the SC-equations, with a non-trivial

di↵usion current and a non-vanishing source in the di↵usion equation. Note however, that

our phenomenological use of the Fick’s law left the di↵usion constant D still unspecified.

Improved Fick’s law Equation (5.10) is actually a poor approximation to the under-

lying SC Boltzmann equation, in particular for small wall velocities, where S
n

h1
is strongly

suppressed (this is due to antisymmetry of Fs± in reflection kz ! �kz for vw = 0, whereby

S
n

h1
/ v

2
w). The problem is in the Fick’s law itself and a better di↵usion approximation can

be derived from the moment equations (4.40). First, neglecting the |m|
20-dependent terms

one can write the first moment equation as

j
z0

h,di↵
= vw�n

0

h
+ S

n

h1
+ �C

n

h1
. (5.11)

In the same approximation the second moment equation can be shown to give a corrected

Fick’s law12:

j
z

h,di↵
= �

D2 + vwD1

D0�TOT

�n
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h
+

S
n

h2
+ vwS

n

h1
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. (5.12)

In addition to giving explicitly the di↵usion coe�cient appearing in the Fick’s law: De↵ =

(D2 + vwD1)/D0�TOT, this equation has a source S
n

h2
which is less strongly suppressed by

the wall velocity. Di↵erentiating and inserting (5.12) back to (5.11) one gets an improved

di↵usion approximation to the semiclassical Boltzmann equation:

�De↵�n
00

h
� vw�n

0

h
= S

n

h,e↵
+ �C

n

h1
, (5.13)

where

S
n

h,e↵
=

S
n

h1

D0

�
S
n0

h2
+ vwS

n0

h1

D0�TOT

. (5.14)

Despite the additional suppression by an extra derivative, the Sn0

h2
-source is by far dominant

for non-relativistic wall velocities and it used to be the only one accounted for by the SC-

method, before the more complete calculation was introduced in ref. [31]. We wish to

stress that solving the moment equations (4.40) directly is much more accurate than using

the di↵usion approximation, in particular for large wall velocities [31]. We went through

the exercises in this section just to show the intricacies of the use of Fick’s law, and its

consistency with the SC-equations.

12One should not confuse the kinematic D`-functions in the moment equations with the di↵usion coef-

ficient De↵ . Note also the role of the axial current (first moment) equation is not to provide an evolution

equation, given the Fick’s law, but indeed to provide the definition for the (improved) Fick’s law itself.
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Three distinct parts can be identified:

Source (drag):

Advection:

Diffusion:

source

=>

jdiff = − D∂zδn

KK, JCAP 11 (2021) 11, 042.

SC-method extended to thermal quasiparticles does not show VIA-term:   no VIA-source exists
KK, JCAP 11 (2021) 11, 042.

M.Postma, G.White, J.van de Vis, JHEP 12 (2022) 121.
This was later confirmed by Postma etal. (who found yet another problem within VIA, see Mariekes talk!) 

∂z jz
h± − Cn

h1 = 0 ⇔ ∫k
(vh±∂z fh± + Fh±∂kz

fh± − 𝒞h±[ f ]) = 0VCDE = 0th moment of the SC-equation:

∂z j5z
h± − Cn

5h1 = 0 ⇔ ∫k

kz

ω
(vh±∂z fh± + Fh±∂kz

fh± − 𝒞h±[ f ]) = 0AVCDE = 1st moment of the SC-equation:

DE can be derived 
from the (first 2) SC  
moment equations.
J.M.Cline, K.K. PRD 101 
2020) 6, 063525, 



Related: one can use zeroth order DR’s (in gradients)  
in SC collision integrals (to the order we computed the source). 
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No collisional sources

where ⌃̃A ⌘
1

2
(1 + e

�p0)⌃<, the equation for �S<, defined by the ansatz (6.5), becomes

(Ŝ�1

0
� ⌃̂H)�S

< = SM � i⌃A�S
<
� i�⌃AS

< + i�⌃<
A . (7.3)

The problematic term has now disappeared proving its association with a finite width of

the background solution. The price of this simplification is the implicit dependence of the

spectral function on the perturbation �S
< through the resummed collision term ⌃̃A.

How important are these �S-induced corrections to self-energies? They can be formally

expressed as shifts in thermal functions a, b, aI and bI , and hence as an eventual shift in the

complex momentum vector Q = q + iqI , introduced above equation (6.51). For complex

parts these shifts are proportional to g �Q ⇠ g
2
sµ where µ / vw(|m|

2
✓
0)0 and can be

neglected to the order we are working. Shifts �q coming from �⌃H are di↵erent, but again

controlled by an expansion in gradients, and we already have included these corrections

up to next-to-leading order in our analysis of thermal WKB-states. Similarly, a small shift

is induced to the width: ��s± ⇠ µ�s±, which again is negligible everywhere to the order

we are working. So, in the end we can use the ansatz (6.5) and the equation (7.3) with

thermal self-energy functions ⌃th

H
, ⌃th

A
and a corresponding solution to pole-equations: A.

That is, to the order we are working, one can just drop the �⌃<
S
th

H
-term in equation (7.1).

Let us clarify what we just proved. Ideally, one would like to solve equations (2.9)

and (2.10) exactly finding exact inhomogeneous solutions for the pole functions and cor-

respondingly S
< = S

r
⇤⌃<

⇤S
a. However, this is just a fancy way of rewriting the initial

problem as coupled integral equations and not useful in practice. Our solution is to in-

troduce an approximate known inhomogeneous background solution that tracks the true

solution for S< as well as possible and model the di↵erence by a dynamical perturbation,

whose source is defined by the chosen background solution. This procedure is not exact,

but we have proved that it is consistent and quantitatively correct to the order we are

working in the gradient expansion.

7.1 Vanishing of collisional sources

It is clear from above that the collision term in (7.3) is parametrically of order⇠ g
2
sµ and can

be computed working to zeroth order in gradients, just as the thermal term in section 6.3.

However, ref. [29] reported a new source arising from the self-energy diagram shown in

figure 7, that is of lower order in gradients: / vw�w|m|
2
✓
0
y
2, which is parametrically similar

to the VIA source (3.13) and does not vanish in equilibrium. Although this term eventually

does not source the divergence equation directly [29], its parametric form contradicts our

general argument. To resolve the issue we now compute the collision term explicitly for

the self-energy of figure 7.

To keep the argument simple, and at the level of [29], we drop the thermal corrections.

The interaction term L = �yq̄L�qR+h.c., gives a two-loop contribution to the 2PI e↵ective

action:

�2 = y
2

Z

C

d4ud4v
X

cd

Tr
⇥
S
cd
PRS

dc
PL

⇤
�cd

, (7.4)

where PL,R = 1

2
(1⌥�

5) and indices c, d = ± refer to the position of the time-components of

u and v on the complex time contour C, such that S< = S
+� and S

> = S
�+. Self-energies
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�

Figure 7: Leading contribution to the 2PI-action �2 (left) and to fermion self energy

(right) in the Yukawa model. u and b are space-time coordinates and a and b labels on the

complex time contour C (see section 2.

can be computed from �2 as variational derivatives: ⌃ab(u, v) = �iab��2/�S
ba(v, u). Going

directly to the Wigner representation after the di↵erentiation one finds
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k
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, (7.5)

where
R
k0 ⌘

R
d
4
k
0

(2⇡)4
and ⌃<,>

k
⌘ ⌃<,>

w (k) with similar notation for propagators. Note

that the projection operators PL,R eliminate the g10- and g20 terms from S
<,>

k0 and the

same happens with the other propagator in (4.27) when one inserts (7.5) into the trace.

Moreover, we assume that the scalar field is thermalised, so that � ! �th, which obeys

�<,>

th
(�k) = �>,<

th
(k). After these observations it is easy to see that the collision term (4.27)

for the spin s state becomes
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, (7.6)

where the index d refers to the ”diagonal” limit with g
<,>

10
= g

<,>

20
⌘ 0. Given the explicit

form for propagators (4.9) we can easily evaluate the traces:
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These results still agree with [29]. Let us now be very precise of the definition of the

thermal equilibrium values for various components gs<,>

ab
. Indeed, we have defined:

S
<
th

⌘ �2if<
th
A and S

>
th

⌘ �2if>
th
A, (7.8)

where f<

th
(k0) = fFD(p0) and f
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(k0) = 1�fFD(p0), where p0 = �w(k0+vwkz).

We then have i
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) = A and S
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= e
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as required by the KMS-condition.

It is essential to understand that (7.8) are matrix equations that apply component by

component, This implies for example that

g
s<
ab,th

(k)gs
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0)). (7.9)

Inserting this and similar expressions for other terms back to (7.7), we see that the equi-

librium part of the collision term vanishes identically as it should. Note in particular that

to first order in gradients equation (7.8) implies:

g
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Figure 7: Leading contribution to the 2PI-action �2 (left) and to fermion self energy

(right) in the Yukawa model. u and b are space-time coordinates and a and b labels on the

complex time contour C (see section 2.
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Inserting this and similar expressions for other terms back to (7.7), we see that the equi-

librium part of the collision term vanishes identically as it should. Note in particular that

to first order in gradients equation (7.8) implies:

g
s<,>

33,th
= �2if<,>

0w
a
s

33 = �2if<,>

0w

⇣
kz

k0
a
s

00 � s
|m|

2
✓
0

2k0k̃0
@kza

s

00

⌘
. (7.10)

– 40 –

The point where [29] di↵ers from our analysis is that instead of (7.10) they set (transferring

signs to our notation)

g
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and furthermore @kzg
>
00,th

! @kz(e
�p0g

<
00,th

). These choices are not consistent with the KMS

condition. The definition (7.11) also assumes that Ss<
th

is a solution to SC-equations, which

is not true: only the full Ss< and As solve the equations to the order we are working. It is

precisely this failure that gives rise to the semiclassical source as we have shown above. The

above rule for @kzg
>
00,th

then adds an extra term/ vw�w|m|
2
✓
0 to the r.h.s. of equation (7.10)

for g
s>
33,th

, which breaks the KMS-condition explicitly and creates the fictitious collisional

source reported in [29].

To continue the explicit evaluation of (7.7) we note that �S>+ �S
< = 0, which implies

�g
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= ��g
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. Then, using the explicit form (4.25) for g<

00
with the perturbations written

in a form equivalent to (4.38) and noting that in scalar particle decay channel kinematics

requires sgn(k0
0
) = �sgn(k0), one readily finds:
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Neglecting the back-reaction term proportional to the integral over �fs0k0 , one can write

the collision integral for the CP-odd part of the perturbations as

Cs[f ] ⇡ ��flipf
k

0w(µs � µ�s)� �fsk�TOT. (7.14)

If one approximates �flip and �TOT by constants, one can show that the two lowest moments

of (7.14) gives rise to collision terms of the form shown in (4.42) for moment equations. Of

course it is not necessary to use the slightly cumbersome s-base in practical calculations; as

stated several times before, one can easily move to helicity basis just by a simple redefinition

of the force term.

8 Conclusions

We have derived the CP-violating transport equations for the electroweak baryogenesis in

the limit of slowly varying background fields, including all thermal corrections to one loop

order. Historically the transport problem has been studied using two competing methods,

which have been shown [31] to give very di↵erent answers to same physical questions: the

VEV insertion approximation (VIA) and the semiclassical (SC) method.

In the first part of this paper we carefully reviewed the VIA formalism. We showed

that the method is based on an inconsistent representation of the singular mass operator

by a nonlocal self-energy term and a memory integral containing a pinch singularity. It was

shown that regulating the singularity by a finite width is an inherently ambiguous process,
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Neglecting the back-reaction term proportional to the integral over �fs0k0 , one can write

the collision integral for the CP-odd part of the perturbations as

Cs[f ] ⇡ ��flipf
k

0w(µs � µ�s)� �fsk�TOT. (7.14)

If one approximates �flip and �TOT by constants, one can show that the two lowest moments

of (7.14) gives rise to collision terms of the form shown in (4.42) for moment equations. Of

course it is not necessary to use the slightly cumbersome s-base in practical calculations; as

stated several times before, one can easily move to helicity basis just by a simple redefinition

of the force term.

8 Conclusions

We have derived the CP-violating transport equations for the electroweak baryogenesis in

the limit of slowly varying background fields, including all thermal corrections to one loop

order. Historically the transport problem has been studied using two competing methods,

which have been shown [31] to give very di↵erent answers to same physical questions: the

VEV insertion approximation (VIA) and the semiclassical (SC) method.

In the first part of this paper we carefully reviewed the VIA formalism. We showed

that the method is based on an inconsistent representation of the singular mass operator

by a nonlocal self-energy term and a memory integral containing a pinch singularity. It was

shown that regulating the singularity by a finite width is an inherently ambiguous process,
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An early claim in SC-literature was that WKB-corrections to collision 
terms cause additional sources, of similar structure to the VIA: 
  

(it enters diffusion equations differently from VIA, though).   
Troublingly, this source was created also by equilibrium distributions.

where ⌃̃A ⌘
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2
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The problematic term has now disappeared proving its association with a finite width of

the background solution. The price of this simplification is the implicit dependence of the

spectral function on the perturbation �S
< through the resummed collision term ⌃̃A.

How important are these �S-induced corrections to self-energies? They can be formally

expressed as shifts in thermal functions a, b, aI and bI , and hence as an eventual shift in the

complex momentum vector Q = q + iqI , introduced above equation (6.51). For complex

parts these shifts are proportional to g �Q ⇠ g
2
sµ where µ / vw(|m|

2
✓
0)0 and can be

neglected to the order we are working. Shifts �q coming from �⌃H are di↵erent, but again

controlled by an expansion in gradients, and we already have included these corrections

up to next-to-leading order in our analysis of thermal WKB-states. Similarly, a small shift

is induced to the width: ��s± ⇠ µ�s±, which again is negligible everywhere to the order

we are working. So, in the end we can use the ansatz (6.5) and the equation (7.3) with

thermal self-energy functions ⌃th

H
, ⌃th

A
and a corresponding solution to pole-equations: A.

That is, to the order we are working, one can just drop the �⌃<
S
th

H
-term in equation (7.1).

Let us clarify what we just proved. Ideally, one would like to solve equations (2.9)

and (2.10) exactly finding exact inhomogeneous solutions for the pole functions and cor-

respondingly S
< = S

r
⇤⌃<

⇤S
a. However, this is just a fancy way of rewriting the initial

problem as coupled integral equations and not useful in practice. Our solution is to in-

troduce an approximate known inhomogeneous background solution that tracks the true

solution for S< as well as possible and model the di↵erence by a dynamical perturbation,

whose source is defined by the chosen background solution. This procedure is not exact,

but we have proved that it is consistent and quantitatively correct to the order we are

working in the gradient expansion.

7.1 Vanishing of collisional sources

It is clear from above that the collision term in (7.3) is parametrically of order⇠ g
2
sµ and can

be computed working to zeroth order in gradients, just as the thermal term in section 6.3.

However, ref. [29] reported a new source arising from the self-energy diagram shown in
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Figure 7: Leading contribution to the 2PI-action �2 (left) and to fermion self energy

(right) in the Yukawa model. u and b are space-time coordinates and a and b labels on the

complex time contour C (see section 2.
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These results still agree with [29]. Let us now be very precise of the definition of the
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Inserting this and similar expressions for other terms back to (7.7), we see that the equi-

librium part of the collision term vanishes identically as it should. Note in particular that
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withand
“KMS”

This implies a symmetric relation

As a result thermal equilibrium holds and the C-source term vanishes.
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non-trivial structure comes from the equation for 𝒜s


