


Gamma-ray Astronomy: A Unique Probe of the Universe



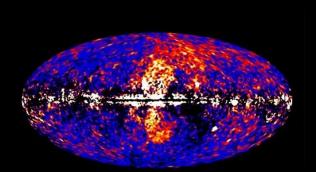
## Contents

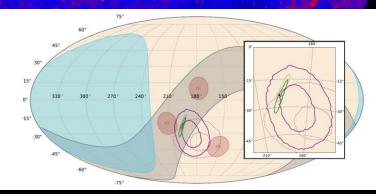
- Space-based vs. ground-based gamma-ray astronomy
- A brief description of Fermi (LAT)
- Ground-based gamma-ray telescopes
  - Imaging Atmospheric Cherenkov Telescopes (IACTs)
  - Water Cherenkov Detectors (WCDs)
- The future: CTAO, SWGO & their science aims

# Space vs. Ground in Gamma Rays



Space MeV to ~100 GeV (Fermi: ~100 MeV to ~100 GeV) Collection area ~ m<sup>2</sup> -> low instantaneous sensitivity, drop off at high energies Poor angular resolution ~ 1 deg. BUT large field-of-view, all-sky capability


#### Ground

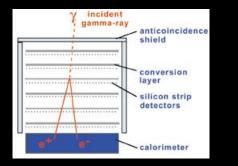

Few 10s of GeV to PeV + Collection area ~ 10<sup>4</sup> m<sup>2</sup> + -> excellent instantaneous sensitivity Better angular resolution ~0.1 deg.



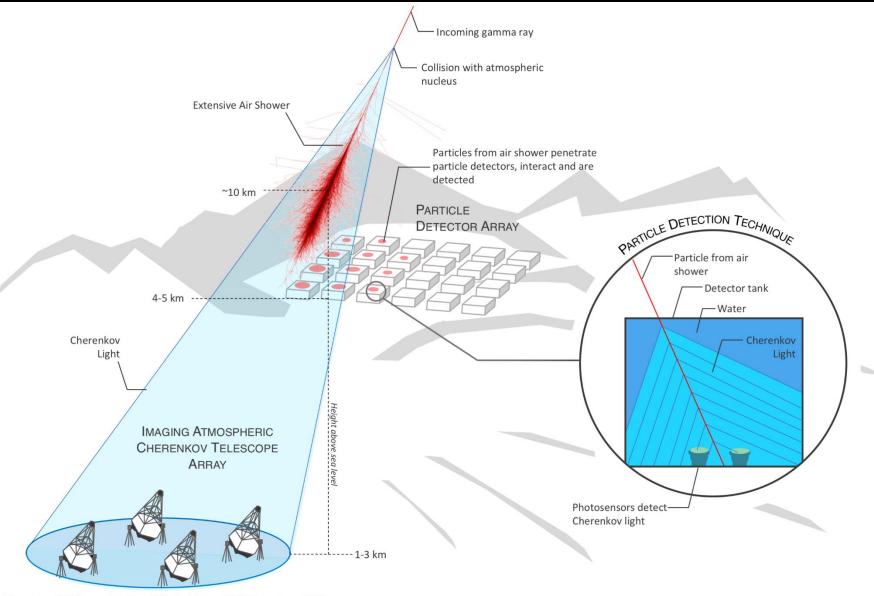
# Fermi

- Fermi Gamma-ray Large Area Space Telescope
- Launched 11/6/08
- Covers whole sky in 180 min
- Nominal energy range 10 MeV 300 GeV
- 2 instruments
  - Large Area Telescope (LAT)
  - GLAST Burst Monitor (GBM)






Goldstein et al., Ap.J. Lett, 848, L14 (2017)


Su et al., https://arxiv.org/abs/1005.5480

# Limitations...

Fermi detects high energy gamma-rays – from ~100 MeV to ~100 GeV. It is hard for a space-based detector to do much better than this.







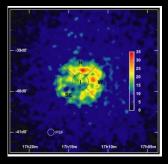
Shower image, 100 GeV y-ray adapted from: F. Schmidt, J. Knapp, "CORSIKA Shower Images", 2005, https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html

Not to scale

## Current Imaging Atmospheric Cherenkov Telescopes








Typical requirement – clear, dry site around 1 – 3 km above sea level.

# The VHE Catalogue (so far)

- As of 30<sup>th</sup> November 2023
  - ~270 sources detected
  - 96 as yet unidentified
  - Many spatially extended
- Galactic Sources
  - 1 pulsing pulsar the Crab
  - 38 pulsar wind nebulae
  - 11 binary systems
  - 3 massive star clusters
  - 16 shell SNRs
  - 11 SNR/molecular cloud shocks
  - 1 star-formation region
  - 1 globular cluster (Terzan 5)
- AGN & Other Galaxies
  - 89 active galactic nuclei
  - 2 starburst galaxies, NGC253 & M82
  - Sources identified in the LMC












# Current Water Cherenkov Detectors

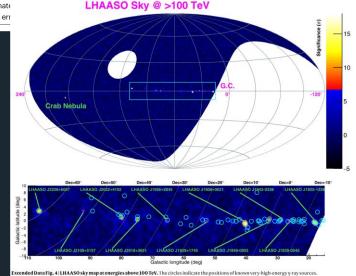
Advantage: can operate 24/7 Disadvantages: high energy threshold, less good angular/energy resolution



LHAASO in Tibet – huge observatory. Ultimately WCD, wide-angel Cherenkov telescopes, muon detectors and fluorescence detectors. HAWC (High Altitude Water Cherenkov) detector – on the flanks of the Sierra Negra volcano near Puebla, Mexico. Altitude 4.1 km asl.



# **Results from LHAASO**


| Source name       | RA (°) | dec. (°) | Significance above 100 TeV ( $\times \sigma$ ) | E <sub>max</sub> (PeV)      | Flux at 100 TeV (CU) |
|-------------------|--------|----------|------------------------------------------------|-----------------------------|----------------------|
| LHAASO J0534+2202 | 83.55  | 22.05    | 17.8                                           | 0.88 ± 0.11                 | 1.00(0.14)           |
| LHAASO J1825-1326 | 276.45 | -13.45   | 16.4                                           | 0.42 ± 0.16                 | 3.57(0.52)           |
| LHAASO J1839-0545 | 279.95 | -5.75    | 7.7                                            | 0.21±0.05                   | 0.70(0.18)           |
| LHAASO J1843-0338 | 280.75 | -3.65    | 8.5                                            | 0.26 -0.10 <sup>+0.16</sup> | 0.73(0.17)           |
| LHAASO J1849-0003 | 282.35 | -0.05    | 10.4                                           | 0.35 ± 0.07                 | 0.74(0.15)           |
| LHAASO J1908+0621 | 287.05 | 6.35     | 17.2                                           | 0.44 ± 0.05                 | 1.36(0.18)           |
| LHAASO J1929+1745 | 292.25 | 17.75    | 7.4                                            | 0.71-0.07 <sup>+0.16</sup>  | 0.38(0.09)           |
| LHAASO J1956+2845 | 299.05 | 28.75    | 7.4                                            | 0.42 ± 0.03                 | 0.41(0.09)           |
| LHAASO J2018+3651 | 304.75 | 36.85    | 10.4                                           | 0.27 ± 0.02                 | 0.50(0.10)           |
| LHAASO J2032+4102 | 308.05 | 41.05    | 10.5                                           | 1.42 ± 0.13                 | 0.54(0.10)           |
| LHAASO J2108+5157 | 317.15 | 51.95    | 8.3                                            | 0.43 - 0.05                 | 0.38(0.09)           |
| LHAASO J2226+6057 | 336.75 | 60.95    | 13.6                                           | 0.57 ± 0.19                 | 1.05(0.16)           |

#### All above 7 sigma significance

Celestial coordinates (RA, dec.); statistical significance of detection above 100 TeV (calculated using a point-like template for the Crab Nebula and LHAASO J2108+5157 and 0.3° extension templates for the other sources); the corresponding differential photon fluxes at 100 TeV; and detected highest photon energies. Errors are estimate **LHAASO Sk** contains ±34.14% of events with respect to the most probable value of the event distribution. In most cases, the distribution is a Gaussian and the err

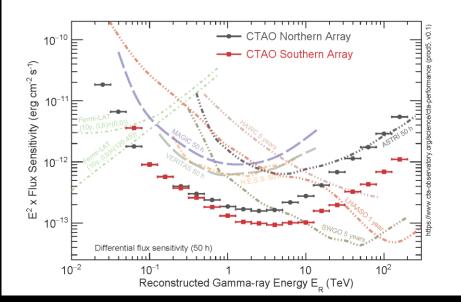
A big surprise - many accelerators producing gamma rays with energies over 10<sup>15</sup> eV in the Galaxy.

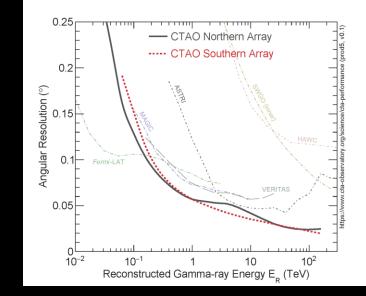
Cao et al, Nature (2021) https://www.nature.com/articles/s4158 6-021-03498-z

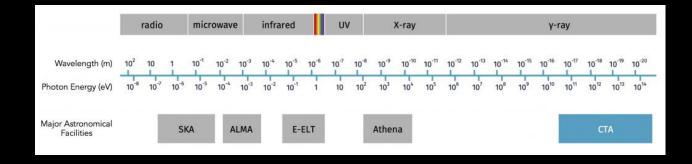


# The next big step...

- The world's VHE gamma-ray telescope
- Explores top 4-5 decades in energy
- Factor of 10 improvement on current telescopes
- Full sky coverage
- Large community of users




Multiple telescope designs to cover the full energy range – SST, MST and LST. More than 60 telescopes split between its two array sites.

## **CTAO** Performance





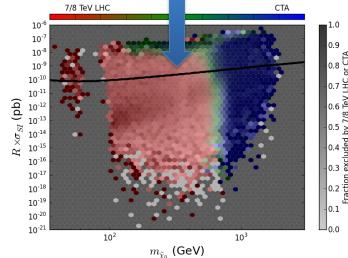



## **CTAO** Science

- Theme 1: Cosmic Particle Acceleration
  - How and where are particles accelerated?
  - How do they propagate?
  - What is their impact on the environment?
- Theme 2: Probing Extreme Environments
  - Processes close to neutron stars and black holes?
  - Processes in relativistic jets, winds and explosions?
  - Exploring cosmic voids
- Theme 3: Physics Frontiers beyond the SM
  - What is the nature of dark matter? How is it distributed?
  - Is the speed of light constant for high energy photons?
  - Do axion-like particles exist?

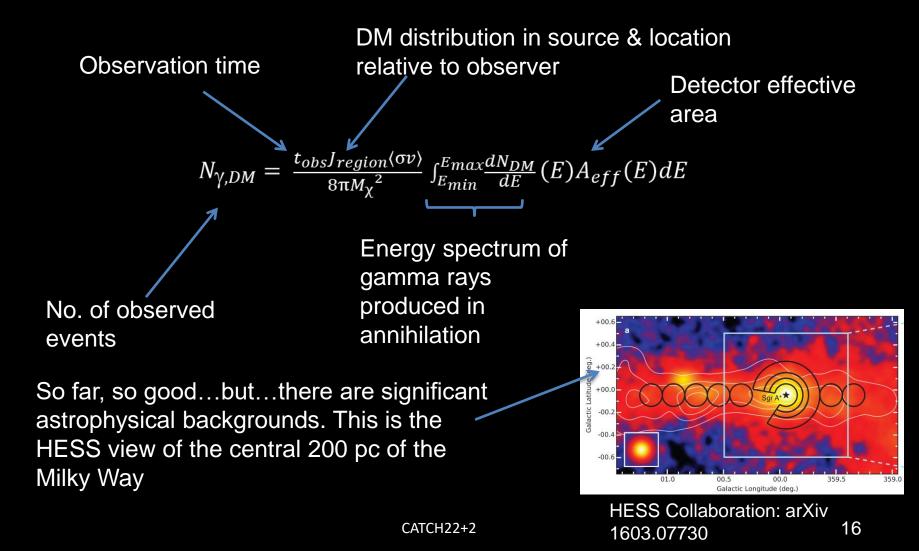


ArXiv: 1709.07997


## **CTA and the Hunt for Dark Matter**

CTA has excellent sensitivity to regions of the parameter space not accessible to the LHC or direct experiments Indirect detection experiments also give DM distribution

#### 7/8 TeV LHC

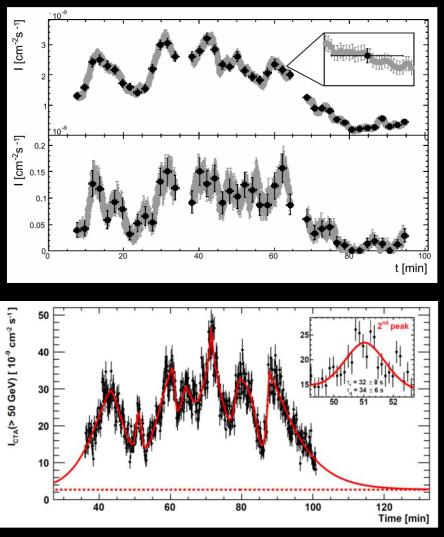

# Models accessible to CTA in blue, to LHC in red.

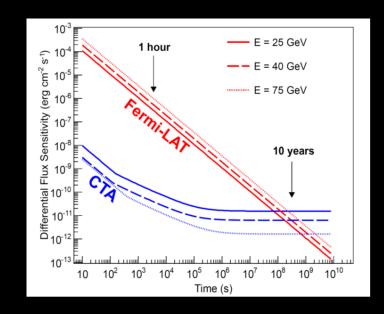
Cahill-Rowley et al. ArXiv 1305.6921



**XENON1T Exclusion** 

# Indirect Detection of Dark Matter via $\gamma$ -rays

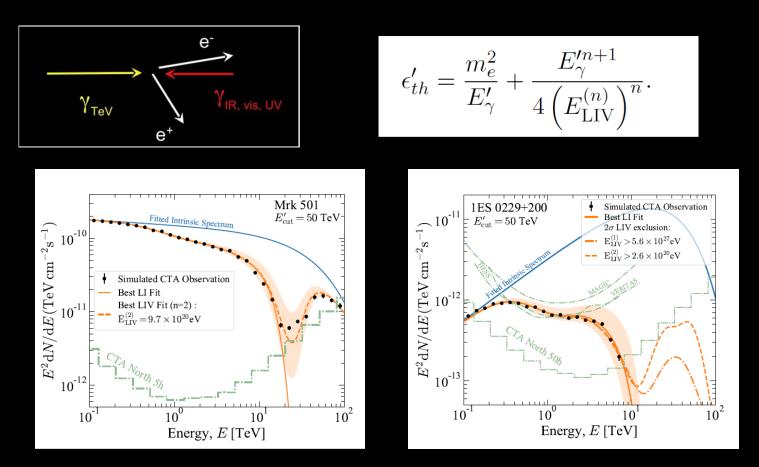




## **DM Search Targets**

DM simulation from Pieri et al., arXiv:0908.0195 (photons > 3 GeV)

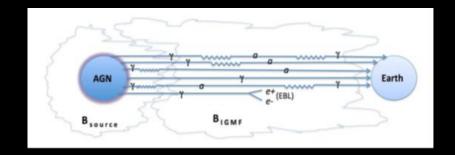


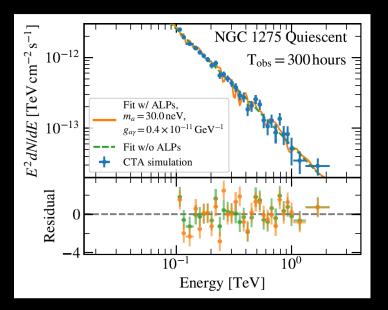
## LIV: Energy-dependent Dispersion






H.E.S.S. measurements of an extremely bright flare from PKS 2155-304 (top). Simulation of CTA measurement of the same flare (below).

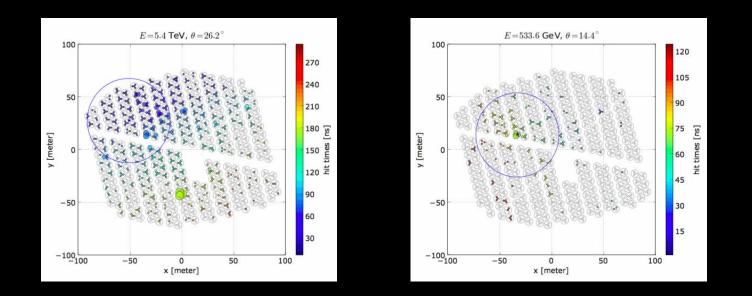

H.E.S.S. Collaboration, PRL 101.170402 (2008)


## LIV: modifications to pair-production threshold on EBL



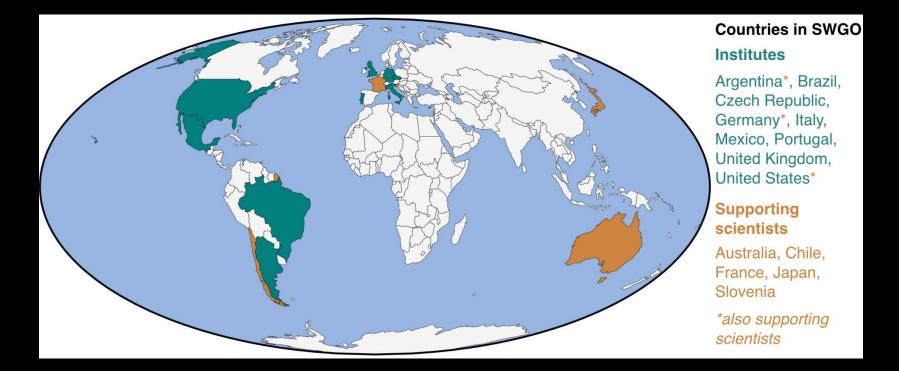
CTA Collaboration, https://arxiv.org/abs/2010.01349

## Sensitivity to ALPs






Spectral effects on individual objects likely to be subtle (though detectable). Observation of a statistically significant number of ever more distant objects violating what we know of the EBL likely to be more powerful.

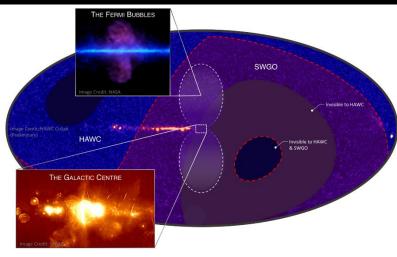

CTA Collaboration: https://arxiv.org/abs/2010.01349





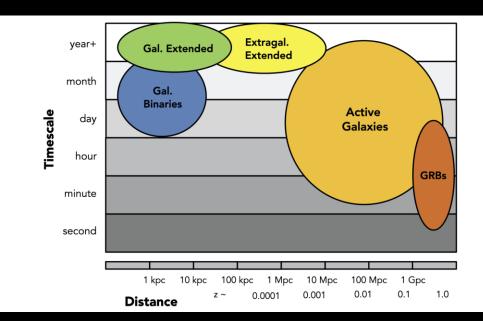
Energy threshold is around 1 TeV, 99% gamma-hadron separation achieved via looking at the spatial and temporal data of the incoming events.

## Who's involved?




In the UK of course it's Durham, Leicester, Liverpool and Oxford a.k.a. the CTA-UK hardware team.

# Science with SWGO


- Genuinely unbiased survey of the Galactic Plane/Centre
- The Fermi Bubbles
- Transient Objects

BIG advantage for SWGO...



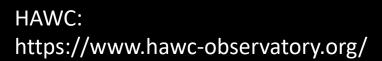
# Transients

- Obvious targets:
  - Blazars (a better chance to spot periodicity)
  - Galactic transients (binary systems)
  - Gravitational wave events
  - Gamma-ray bursts (esp. short)

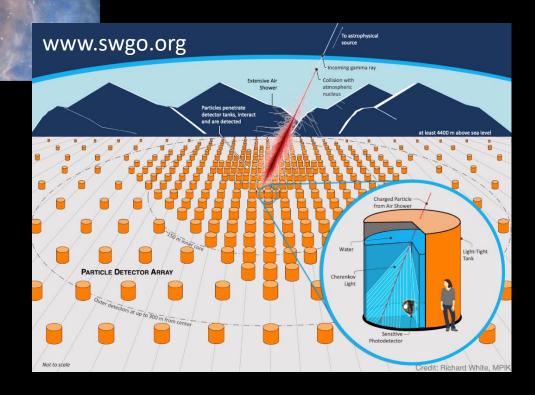


#### Image: Jim Hinton

# Possible (likely) locations


- Somewhere in South America
  - Latitude between 10 and 30 deg. South
  - Altitude at least 4.4 km a.s.l.
- 100s of GeV to 100s of TeV energy range
- Current options:
  - Argentina
  - Bolivia
  - Chile
  - Peru

www.ctao.org


### CTAO

To keep up with HESS: https://www.mpi-hd.mpg.de/HESS/

VERITAS: https://veritas.sao.arizona.edu/



LHAASO: http://english.ihep.cas.cn/lhaaso/

