How Viable Is Electroweak Baryogenesis ?

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

- <u>mjrm@umass.edu</u>
- <u>mjrm@sjtu.edu.cn</u>
- 微信 : mjrm-china
- https://michaelramseymusolf.com/

About MJRM:

Science

Family

My pronouns: he/him/his # MeToo

Friends

Catch22+2 Conference Dublin May 3, 2024

Motivation

- BAU ↔ Higgs mechanism
- Experimentally testable

Motivation

- BAU ↔ Higgs mechanism
- Experimentally testable

Viability

- Well motivated BSM scenarios
- Robust theory
- Consistent w/ experiment

Motivation

- BAU ↔ Higgs mechanism
- Experimentally testable

Viability

- Well motivated BSM scenarios
- Robust theory
- Consistent w/ experiment

Motivation

- BAU ↔ Higgs mechanism
- Experimentally testable

Viability

Well motivated BSM scenarios
Robust theory
Consistent w/ experiment

This talk

1st order EWPT

EWSB

Y_B : CPV & EW sphalerons

1st order EWPT

EWSB

Y_B : CPV & EW sphalerons

1st order EWPT \rightarrow "strong" to preserve Y_B

Y_B : diffuses into interiors

EWSB

EWBG Ingredients

- EW Sphalerons
- Strong 1st Order EW
 Phase Transition
- Left-handed number density

EWBG Ingredients

- EW Sphalerons
- Strong 1st Order EW
 Phase Transition
- Left-handed number density

First Order EWPT from BSM Higgs

First Order EWPT from BSM Higgs

loop effect

 $a_2 H^2 \phi^2$: T = 0tree-level effect

 $a_1 H^2 \phi : T = 0$ tree-level effect 5.2

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$

Phenomenology

$$h_1 = \sin \theta \ s + \cos \theta \ h$$
$$h_2 = \cos \theta \ s - \sin \theta \ h$$

 $m_{1,2}$; θ ; $h_i h_j h_k$ couplings

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$

Phenomenology

$$h_1 = \sin \theta s + \cos \theta h$$
$$h_2 = \cos \theta s - \sin \theta h$$

 $m_{1,2}$; θ ; $h_i h_j h_k$ couplings

Lauri Niemi, MJRM, Gutao Xia, 2405.01191 (today!)

Singlets: Lattice vs. Pert Theory

Lattice: Crossover

Lauri Niemi, MJRM, Gutao Xia, 2405.01191 (today!)

Singlets: Lattice vs. Pert Theory

Lauri Niemi, MJRM, Gutao Xia, 2405.01191 (today!)

Singlets: Lattice vs. Pert Theory

- Lattice: crossover-FOEWPT boundary
- FOEWPT region: PT-lattice agreement
- Pheno: precision Higgs studies may be sensitive to a greater portion of FOEWPT-viable param space than earlier realized

 $\sin\theta$

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$\frac{\mathsf{Small}}{\mathsf{V} \subset a_1 \, \mathsf{H}^2 \phi + a_2 \, \mathsf{H}^2 \phi^2}$$

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Phenomenology

- Gravitational waves
- Collider: h → γγ, dis charged track, NLO e⁺e⁻ → Zh...

BSM EWPT: Inter-frontier Connections

Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332 → PRL 126 (2021) 17 • 1 or 2 step

Non-perturbative

BSM Scalar: EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604

BSM Scalar: EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604

GW & EWPT Phase Diagram

- Single step transition: GW well outside LISA sensitivity
- Second step of 2-step transition can be observable
- Significant GW sensitivity to portal coupling

Friedrich, MJRM, Tenkanen, Tran 2203.05889

LISA

GW & EWPT Phase Diagram

Friedrich, MJRM, Tenkanen, Tran 2203.05889

EWBG Ingredients

- EW Sphalerons
- Strong 1st Order EW
 Phase Transition

 Left-handed number density

BSM CPV

BSM CPV: Inter-frontier Connections

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 -29
n	1.8 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Not shown: muon

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV	
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰	
HfF⁺	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁹	
n	1.8 x 10 ⁻²⁶	10 -31	10-26	
* 95% CL	** e ⁻ equivalent	valent		
		Cliaicu	🗙 📩 he	

 \star neutron

> proton & nuclei

 \star atoms

~ 100 x better sensitivity

Not shown: muon

Semiconole-allocary

Two-Step EW Baryogenesis

Illustrative Model:

New sector: "Real Triplet" Σ Gauge singlet S

 $H \rightarrow Set of "SM" fields: 2 HDM$

(SUSY: "TNMSSM", Coriano...)

Two CPV Phases:

 δ_{Σ} : δ_{S} :

Triplet phase Singlet phase

Inoue, Ovanesyan, R-M: 1508.05404

Two-Step EW Baryogenesis & EDMs

 Transport Problem:
 Particle masses depend on spacetime → CPV sources
 Include CPC effects in thermal plasma

- Bubble dynamics
- CPV Sources
- Chemical & thermal
 equilibration, diffusion...

 CPV Sources
 Chemical & thermal equilibration, diffusion...

Quantum Kinetic Eqs

Two-Step EWBG: Transport Theory & EDMS

Two-Step EWBG: Transport Theory & EDMS

Two-Step EWBG: Transport Theory & EDMS

 $a_2 H_1^* H_2 \Sigma^2 + c.c.$

Two-Step EWBG: Transport Theory & EDMS

 $a_2 H_1^* H_2 \Sigma^2 + c.c.$

Two-Step EWBG: Transport Theory & EDMS

 $a_2 H_1^* H_2 \Sigma^2 + c.c.$

CPV for EWBG

How Viable is EWBG ?

- Electroweak baryogenesis remains a theoretically compelling and experimentally testable scenario
- Experimental information from the cosmic, energy, and intensity frontiers provides essential input for assessing EWBG viability
- A robust confrontation of theory and experiment relies on continual improvements in theoretical tools, from high-T EFT and lattice thermodynamics through quantum transport theory and more

T. D. Lee Institute / Shanghai Jiao Tong U.

T. D. Lee Institute / Shanghai Jiao Tong U.

How Viable is EWBG ?

- Electroweak baryogenesis remains a theoretically compelling and experimentally testable scenario
- Experimental information from the cosmic, energy, and intensity frontiers provides essential input for assessing EWBG viability
- A robust confrontation of theory and experiment relies on continual improvements in theoretical tools, from high-T EFT and lattice thermodynamics through quantum transport theory and more

B1

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

Lowest non-trivial order in grad's

 $2k \cdot \partial_X G^{\scriptscriptstyle <}(k,X) = -i \Big[M^2(X), G^{\scriptscriptstyle <}(k,X) \Big] - 2 \Big[k \cdot \Sigma, G^{\scriptscriptstyle <}(k,X) \Big] + \Lambda \Big[G(k,X) \Big]$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

Lowest non-trivial order in grad's

 $2k \cdot \partial_X G^{<}(k,X) = -i [M^2(X), G^{<}(k,X)] - 2[k \cdot \Sigma, G^{<}(k,X)] + \Lambda [G(k,X)]$ Spacetime evolution of densities

Systematic Systematic Baryogenesis:

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X) G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

Diagonal after rotation to local mass basis:

$$M^{2}(X) = U^{+} m^{2}(X) U$$

$$\Sigma_{\mu}(X) = U^{+} \partial_{\mu} U \qquad (\tilde{t}_{L}, \tilde{t}_{R}) \rightarrow (\tilde{t}_{1}, \tilde{t}_{2})$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

Flavor oscillations: flavor off-diag densities

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \Big[M^2(X), G^{<}(k,X) \Big] - 2 \Big[k \cdot \Sigma, G^{<}(k,X) \Big] + \Lambda \Big[G(k,X) \Big]$$

CPV in m²(X): for EWB, arises from spacetime varying complex phase(s) generated by interaction of background field(s) (Higgs vevs) with quantum fields

$$\Sigma_{\mu}(X) = U^{+} \partial_{\mu} U \quad \Rightarrow \text{ First order in v' (x)}$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \Big[M^2(X), G^{<}(k,X) \Big] - 2 \Big[k \cdot \Sigma, G^{<}(k,X) \Big] + \Lambda \Big[G(k,X) \Big]$$

Collision term: CP conserving interactions leading to thermalization, chemical equilibration, diffusion, damping,...

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_{X} G^{<}(k,X) = -i \Big[M^{2}(X), G^{<}(k,X) \Big] - 2 \Big[k \cdot \Sigma, G^{<}(k,X) \Big] + \Lambda \Big[G(k,X) \Big] \\ (u \cdot \partial_{X} + \vec{F} \cdot \nabla_{k}) f_{m}(\vec{k},X) = - \Big[i\omega_{k} + u \cdot \Sigma, f_{m}(\vec{k},X) \Big] \\ + \mathcal{C}_{m}[f_{m}, \bar{f}_{m}](\vec{k},X) \quad (2a) \\ (u \cdot \partial_{X} + \vec{F} \cdot \nabla_{k}) \bar{f}_{m}(\vec{k},X) = + \Big[i\omega_{k} - u \cdot \Sigma, \bar{f}_{m}(\vec{k},X) \Big] \\ + \mathcal{C}_{m}[\bar{f}_{m}, f_{m}](\vec{k},X) \quad (2b) \\ Fifective \Delta \omega between particle & antiparticle flavor oscillations \\ flavor oscillations \\ Phase in m^{2}(x) \\ \Sigma^{\mu}(x) = U^{\dagger}(x) \partial^{\mu}U(x) = \begin{pmatrix} 0 & -e^{-i\alpha} \\ e^{i\alpha} & 0 \end{pmatrix} \partial^{\mu}\theta + \begin{pmatrix} i \sin^{2} \theta & \frac{i}{2} \sin 2\theta e^{-i\alpha} \\ -i \sin^{2} \theta \end{pmatrix} \partial^{\mu}\alpha. \\ Rotation to mass basis: \theta$$

General Considerations

 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

 $H \rightarrow$ Set of "SM" fields, including at least one that breaks EWSB at during second step & persists to T = 0 (e.g., single H, 2HDM...)

What are possibilities for generating CPV asymmetries needed for baryogenesis during the first step ?

2-Step EWBG: Rich Array of Scenarios

 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

- New sector contains additional LH fermions that contribute to the B+L anomaly: CPV interactions with φ_j → n_L
- CPV asymmetry generated for subset of φ_j, then transferred to SM sector
- CPV asymmetry generated in SM sector via interactions with the ϕ_j 58

2-Step EWBG: Rich Array of Scenarios

 Σ dark matter

 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

- New sector contains additional LH fermions that contribute to the B+L anomaly: CPV interactions with φ_i → n_L
- CPV asymmetry generated for subset of φ_j, then transferred to SM sector
- CPV asymmetry generated in SM sector via interactions with the ϕ_j 59

Illustrative Study

CPV asymmetry generated in SM sector via interactions with the ϕ_j

Considerations:

- Renormalizable interactions in scalar sector
- At least two new sector fields get spacetime varying vevs v_{NEW} (x) during step 1, at least one of which is EWSB
- At least two scalar fields mix due to v_{NEW} (x), at least one of which is in SM sector

$T_{EW} \rightarrow$ Scale for Colliders & GW probes

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) \, h^2 + \lambda \, h^4 \ \ {\rm \textbf{+}} \ .. \label{eq:V}$$

$T_{EW} \rightarrow$ Scale for Colliders & GW probes

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2-T_0^2)\,h^2 + \lambda\,h^4 \ \ {\rm +} \ .. \label{eq:V}$$

$$T_0 \sim 140 \text{ GeV} \equiv T_{EW}$$

FO EWPT → Collider target:

M_{BSM} ≤ 700 GeV δκ_H ≥ 0.01 B8.2

Challenges for Theory

Perturbation theory

- I.R. problem: poor convergence
- Thermal resummations
- Gauge Invariance
 (radiative barriers)
- RG invariance at T>0

BSM proposals

Non-perturbative (I.R.)

 Computationally and labor intensive

EFT 1: Thermodynamics

Matching: Two Elements

Dimensional Reduction

All integrals are 3D with prefactor T \rightarrow Rescale fields, couplings...

$$\int \frac{d^4k}{(2\pi)^4} \longrightarrow \frac{1}{\beta} \sum_n \int \frac{d^3k}{(2\pi)^3}$$

•
$$\varphi^2_{4d} = T \varphi^2_{3d}$$

• $T \lambda_{4d} = \lambda_{3d}$

Thermal Loops

Equate Greens functions

$$\phi_{\rm 3d}^2 = \frac{1}{T} \big[1 + \hat{\Pi}_{\phi}'(0,0) \big] \phi^2$$

$$a_{2,3} = T \left[a_2 - a_2 (\hat{\Pi}'_H(0) + \hat{\Pi}'_{\Sigma}(0)) + \hat{\Gamma}(0) \right]$$

Field

Quartic coupling