Coherent Elastic neutrino-Nucleus Scattering with directional (vBDX-DRIFT) detectors

Diego Aristizabal usm

PRD 104 (2021) 033004 & PRD 107 (2023) 013003

vBDX-DRIFT collaboration:

Diego Aristizabal (USM), Joshua Barrow (Minnesota), Bhaskar Dutta (Texas A&M)

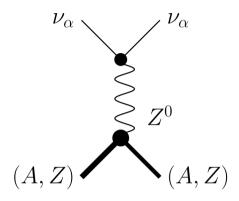
Doojin Kim (Texas A&M), Daniel Snowden-Ifft (Occidental College)

Louis Strigari (Texas A&M), Michael Wood (Canisius College)

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 1/20

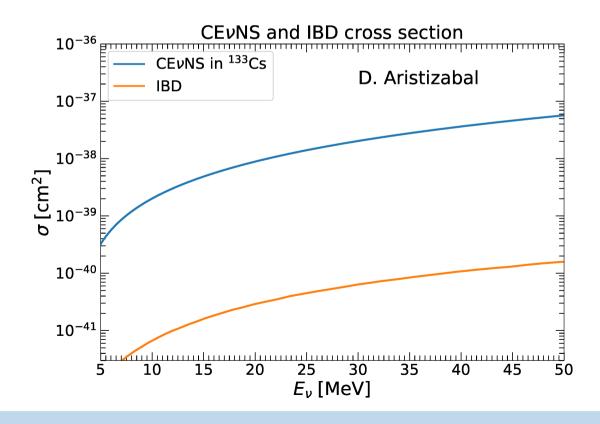
What is Coherent Elastic neutrino-Nucleus Scattering?

• What is Coherent Elastic neutrino-Nucleus Scattering?


- CEvNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics

CEvNS signals

SM and BSM studies


A few comments on rock neutron bckg

Final remarks

$$|\nu_{\alpha} + (A, Z)\rangle \rightarrow |\nu_{\alpha} + (A, Z)\rangle$$

Possible when E_{ν} sufficiently small

CEVNS in more detail

CE $_{\nu}$ NS occurs when the neutrino energy $E_{_{\nu}}$ is such that nucleon amplitudes sum up coherently \Rightarrow cross section enhancement

$$\lambda \gtrsim R_N \, \Rightarrow \, q \lesssim 200 \; {
m MeV}$$
 $E_R = q^2/2m_N \, \Rightarrow \, E_{
u} \simeq \sqrt{E_R^{
m max} m_N/2}$ $E_{
u} \lesssim 200 \; {
m MeV}$

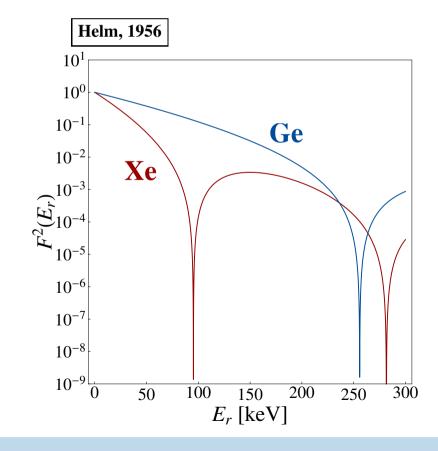
• What is Coherent Elastic neutrino-Nucleus Scattering?

○ CE_VNS in more detail

- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail

CEvNS signals

SM and BSM studies


A few comments on rock neutron bckg

Final remarks

Freedman, 1974; Drukier & Stodolsky, 1984

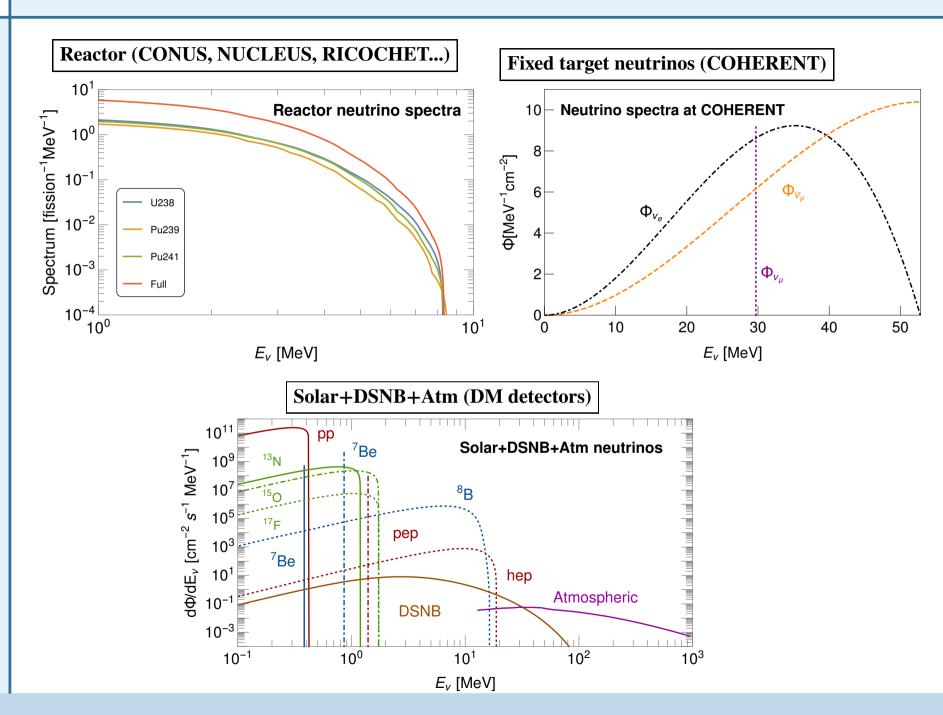
$$\frac{d\sigma_{\nu}}{dE_R} = \frac{G_F^2}{4\pi} Q_{\rm SM}^2 m_N \left(1 - \frac{E_r m_N}{2E_{\nu}^2}\right) \underbrace{F^2(E_r)}_{\rm Form \ factor}$$

$$Q_{\text{SM}}^2 = [N - (1 - s_W^2)Z]^2 \simeq N^2$$

CEVNS environments

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CE_VNS in more detail

CEvNS environments


- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics

CEvNS signals

SM and BSM studies

A few comments on rock neutron bckg

Final remarks

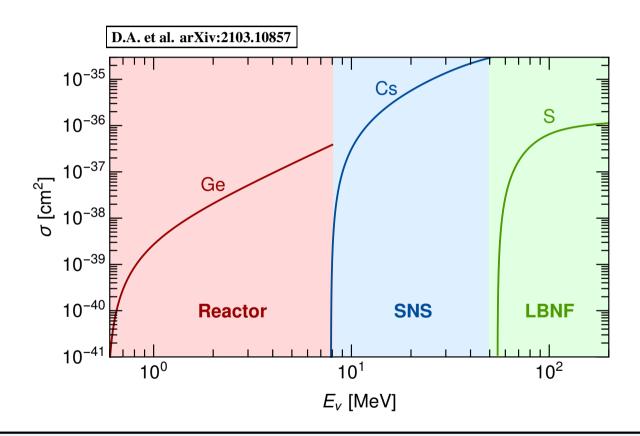
Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 4/20

Neutrino sources and CEvNS "regimes"

• What is Coherent Elastic neutrino-Nucleus Scattering?

- CEvNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics

CEvNS signals


SM and BSM studies

A few comments on rock neutron bckg

Final remarks

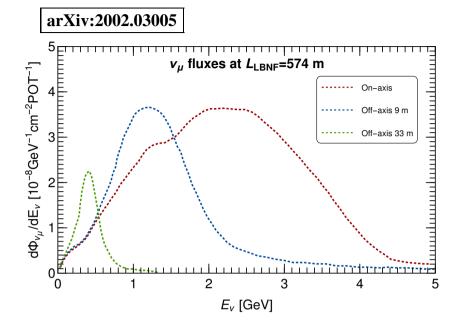
Decay-in-flight neutrinos sources can as well be used

NuMI and LBNF

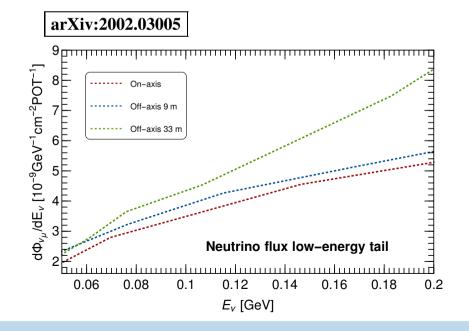
Entering the "high-energy" window requires a substantial amount of ν 's in the low-enery tail LBNF provides that!

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 5/20

LBNF neutrino beamline low-energy tail


- What is Coherent Elastic neutrino-Nucleus Scattering?
- CEvNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- ◆LBNF neutrino beamline low-energy tail

CEvNS signals


SM and BSM studies

A few comments on rock neutron bckg

Final remarks

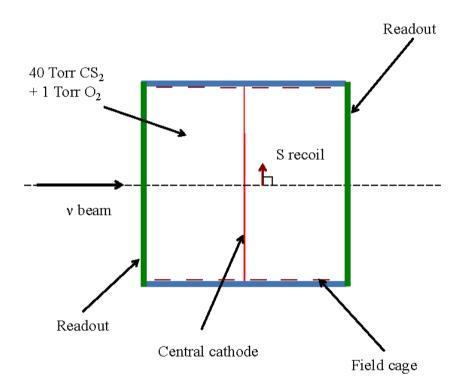
Full spectrum $\Rightarrow n_{\nu} \simeq 10^{14}/\text{year/cm}^2$ Available e.g for $\nu - e$ scattering

Low-energy tail: $n_{\rm v} \simeq 10^{12}/{\rm year/cm^2}$ $\sigma_{\rm CEvNS} \sim N^2$

Sizable number of events!

VBDX-DRIFT: Basics

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CEvNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics


CEvNS signals

SM and BSM studies

A few comments on rock neutron bckg

Final remarks

- Directional low pressure TPC detector
- \Box Operates with CS₂ (other gases possible CF₄, C₈H₂₀Pb...)

NRs mainly in sulfur induce ionization

□ CS₂ ions used to transport the ionization to the readout planes (MWPCs)

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 7/20

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CEvNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics

Signals in CS₂ and CF₄

SM and BSM studies

A few comments on rock neutron bckg

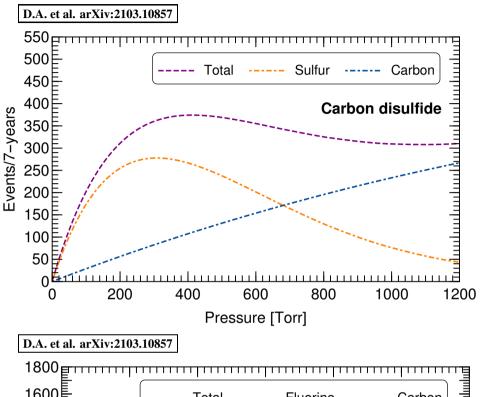
Final remarks

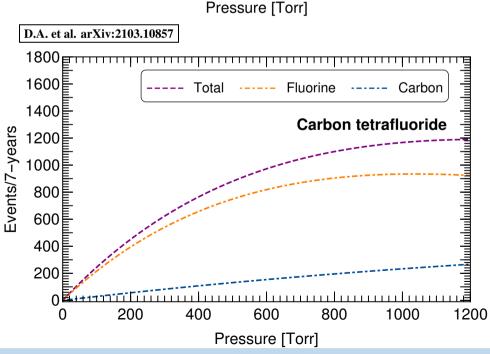
CEvNS signals

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 8/20

Signals in CS_2 and CF_4

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CEvNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics


CEvNS signals


Signals in CS₂ and CF₄

SM and BSM studies

A few comments on rock neutron bckg

Final remarks

Signal peaks at 400 Torr

Expected signal: 370 events

100% filled with CF₄

Expected signal: 880 events

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 9/20

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CEvNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics

SM and BSM studies

- Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Weak mixing angle at vBDX-DRIFT
- Neutrino NSI

A few comments on rock neutron bckg

Final remarks

SM and BSM studies

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 10/20

Measurements of R_n via CEvNS

- CEvNS in more detail
- CEvNS environments.
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail

CEvNS signals

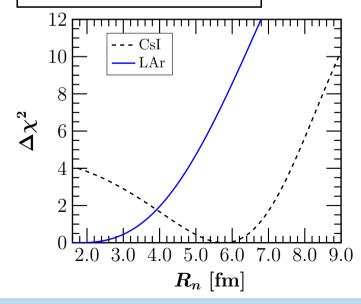
SM and BSM studies

- lacktriangle Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Weak mixing angle at vBDX-DRIFT
- Neutrino NSI

A few comments on rock neutron bckg

Final remarks

$$F_W(q^2) = \frac{1}{Q_W} \left[Z g_V^p F_V^p(q^2) + (A - Z) g_V^n F_V^n(q^2) \right]$$


 \Rightarrow F_V^p : Depends on $R_p \Rightarrow$ known at 0.1% level $(e^- - N \text{ scattering})$

 \Rightarrow F_V^n : Depends on $R_n \Rightarrow$ poorly known (hadron experiments)

$$N_{\mathsf{CEvNS}} = N_{\mathsf{CEvNS}}(R_n)$$

$$N_{\text{CEvNS}}^{\text{Exp}} \Rightarrow R_n$$

Miranda et al, JHEP 05 (2020)

COHERENT 90% CL limits

Csl: $R_n^{Cs} = R_n^{l}$: $R_n \subset [3.4, 7.2]$ fm

Ar: $R_n < 4.33 \,\text{fm}$

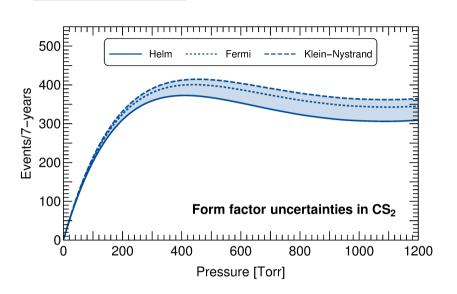
Neutron density distributions: Results

• What is Coherent Elastic neutrino-Nucleus Scattering?

- CE_VNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics

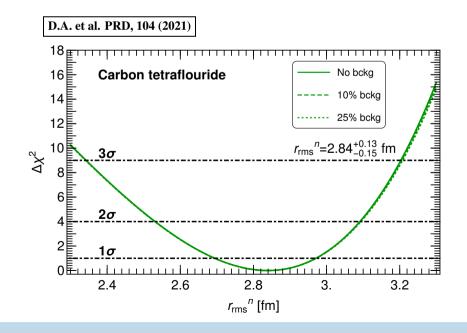
CEvNS signals

SM and BSM studies


 Measurements of R_n via CEvNS

- Neutron density distributions:Results
- Weak mixing angle at vBDX-DRIFT
- Neutrino NSI

A few comments on rock neutron bckg


Final remarks

D.A. et al. PRD, 104 (2021)

High-energy nature of the flux

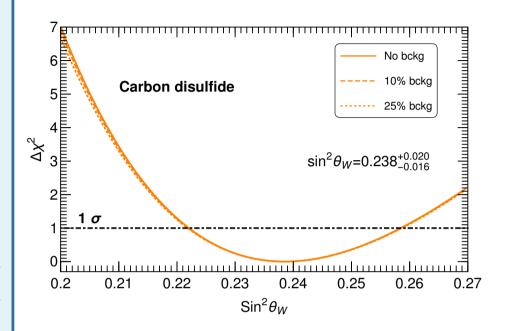
- ⇒ Moderate dependence on the FF
- \Rightarrow Accounted for in signal uncertainty $\sim 10\%$

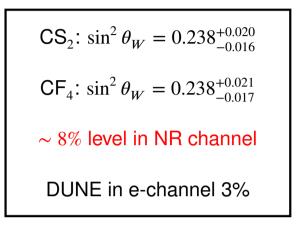
Approximation: $r_{\text{rms}}^n|_{C} = r_{\text{rms}}^n|_{F}$

C and F determined with a 3% accuracy

Weak mixing angle at ν BDX-DRIFT

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CE_VNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail

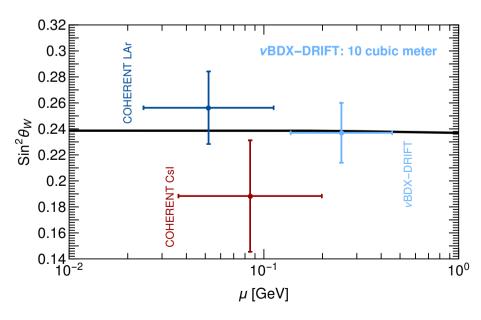

CEvNS signals


SM and BSM studies

- Measurements of R_n via CEvNS
- Neutron density distributions:
 Results
- ◆ Weak mixing angle at vBDX-DRIFT
- Neutrino NSI

A few comments on rock neutron bckg

Final remarks



How this compares with COHERENT?

LAr: $q \subset [35, 68] \text{ MeV}$

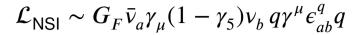
CsI: $q \subset [38, 78]$ MeV

 ν BDX-DRIFT: q ⊂ [78, 397] MeV

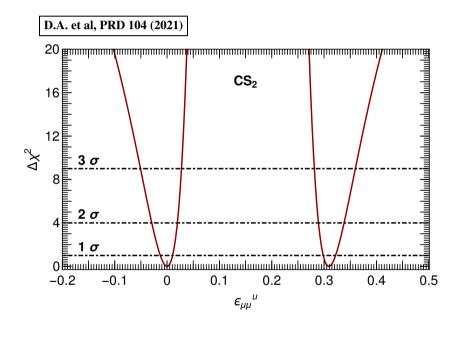
Neutrino NSI

- CE_VNS in more detail
- CEvNS environments.
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail

CEvNS signals


SM and BSM studies

- lacktriangle Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Weak mixing angle at vBDX-DRIFT


Neutrino NSI

A few comments on rock neutron bckg

Final remarks

Initial state flavor, ν_{μ} : Only $\epsilon_{\mu b}$ parameters are testable

Region I: Deviations are small, $\epsilon^u_{\mu\mu} \to 0$

Region II: NSI exceeds SM by ~ 2

⇒ Destructive interference

ν BDX-DRIFT CS ₂ (7-years)		COHERENT CsI (1-year)	
$\epsilon^{u}_{\mu\mu}$	$[-0.013, 0.011] \oplus [0.30, 0.32]$	$\epsilon^u_{\mu\mu}$	$[-0.06, 0.03] \oplus [0.37, 0.44]$
$\epsilon_{e\mu}^{u}$	[-0.064, 0.064]	$\epsilon_{e\mu}^{u}$	[-0.13, 0.13]

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 14/20

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CEvNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics

SM and BSM studies

A few comments on rock neutron bckg

- Assessing rock neutrons
- Neutron spectra
- Rock neutron bckg vs signal

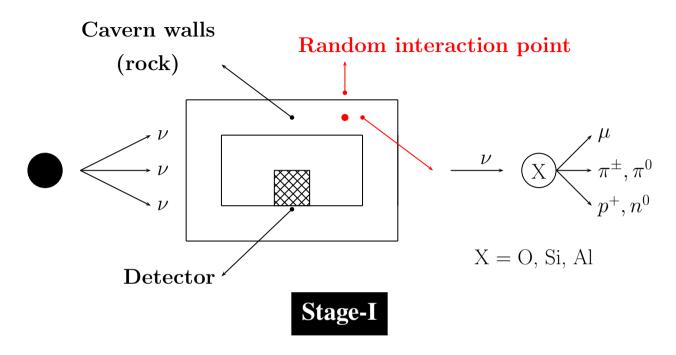
Final remarks

A few comments on rock neutron bckg

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 15/20

Assessing rock neutrons

- What is Coherent Elastic neutrino-Nucleus Scattering?
 CEvNS in more detail
- CEVINS In more detail
 CEVINS environments.
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics


CEvNS signals

SM and BSM studies

A few comments on rock neutron bckg

- Assessing rock neutrons
- Neutron spectra
- Rock neutron bckg vs signal

Final remarks

- Use GENIE to generate final-state particles energy spectra
- Sample (randomly) (x, y, z) and propagate with the aid of GEANT4 $\Rightarrow n^0$ from the walls.

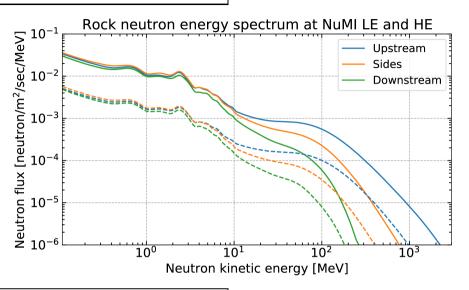
Stage-II

Fire n^0 from the wall and use GEANT4 to record energy deposited in in veto and fiducial volume

Neutron spectra

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CEvNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail

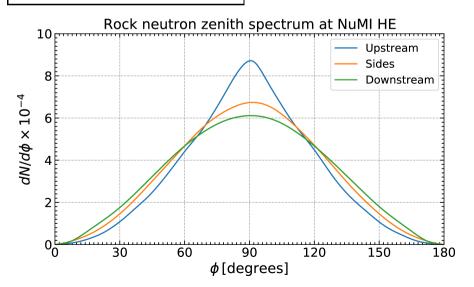
CEvNS signals


SM and BSM studies

A few comments on rock neutron bckg

- Assessing rock neutrons
- Neutron spectra
- Rock neutron bckg vs signal

Final remarks


D.A.S. et al. arXiv:2210.08612

Calculation done for two NuMI modes:

Low-Energy and High-Energy

D.A.S. et al. arXiv:2210.08612

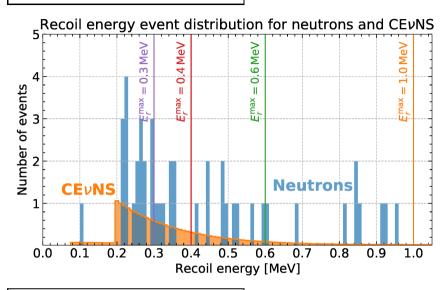
Neutrons (tend to) pile up along the direction of the beam

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 17/20

Rock neutron bckg vs signal

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CE_VNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics

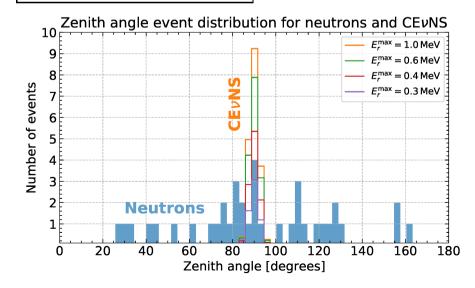
CEvNS signals


SM and BSM studies

A few comments on rock neutron bckg

- Assessing rock neutrons
- Neutron spectra
- Rock neutron bckg vs signal

Final remarks


D.A.S. et al. arXiv:2210.08612

NuMI Low Energy (LE) mode

Exposure 10 m³ – year

D.A.S. et al. arXiv:2210.08612

Events pile up at 90°

Signal-to-noise ratio: 2.5

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 18/20

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CE_VNS in more detail
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics

SM and BSM studies

A few comments on rock neutron bckg

Final remarks

Conclusions

Final remarks

Diego Aristizabal, May 3, 2024 CATCH22+2, Dublin, Ireland - p. 19/20

Conclusions

- What is Coherent Elastic neutrino-Nucleus Scattering?
- CEvNS in more detail
- CEvNS environments.
- Neutrino sources and CEvNS "regimes"
- LBNF neutrino beamline low-energy tail
- vBDX-DRIFT: Basics

CEvNS signals

SM and BSM studies

A few comments on rock neutron bckg

Final remarks

Conclusions

∠ VBDX-DRIFT combined with a high-energy neutrino beam (e.g. LBNF) is suitable for CEvNS measurements in CS₂, CF₄, C₂H₂₀Pb...

Rock neutron background is likely to be the most challenging background

Directionality allows background rejection

Offers a rich neutrino program, complementary to other CEvNS related agendas: *v*-cleus, CONUS, CONNIE, COHERENT (SNS)...

SM measurements include: Weak mixing angle at $\langle Q \rangle \simeq 0.1 \, \text{GeV}$ neutron density distributions of C, F, S, Pb with sensitivities of order 3-8%

BSM searches include: Neutrino NSI, NGI and light vector and scalar mediators Sensitivities for NSI: $\mathcal{O} \sim 10^{-2}$ couplings can be tested

Directional signatures of LDM

Thanks!