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Dark sector portals

Models of particle dark matter come in two varieties:

• Particles with electroweak quantum numbers that are very

weakly coupled to the Standard Model (SM)

– example: the lightest neutralino of the MSSM

• Particles that are completely neutral with respect to the SM

gauge group (which constitute the dark sector)

– requires a portal (mediator) that connects the visible (SM)

sector to the dark sector



Examples of dark sector portals

• Higgs portal: H†Hf(φdark)

• right-handed neutrino portal: HLN

• gauge boson kinetic mixing portal: FµνF
µν
dark

In this talk we focus on models of gauge boson kinetic mixing,

which necessarily involves the mixing of U(1) gauge bosons. The

simplest model of this kind adds a new U(1)′ gauge boson that

mixes with the hypercharge gauge boson of the SM.

Adding additional matter that is charged under U(1)′ but is neutral

with respect to the SM provides a plausible model for particle dark

matter.



There are many dark photon models in the literature that are

based on mixing U(1)EM with U(1)′, under the assumption that

the Z boson can be integrated out and is therefore irrelevant.

�

However, it is dangerous to neglect the effects of the Z due to

constraints from precision electroweak data.

Indeed, the precision electroweak data are in good agreement with

the SM1 and thus can be used to constrain beyond the Standard

Model (BSM) physics.

1There are a few intriguing deviations, e.g., g − 2 of the muon, the Tevatron W mass measurement, and a

few Z-pole observables (ALR and Ab
FB), that could potentially be evidence for BSM physics.



Constraining BSM physics with precision electroweak data

• If BSM physics is associated with a new energy scale that lies

significantly above the SM, then the physics associated with

this scale can be integrated out (resulting in higher-dimensional

operators). Typical approaches of this type include SMEFT or

HEFT (depending on how the Higgs field is treated).

• In many cases, the corrections to precision electroweak

observables arise mainly through gauge boson self-energy

corrections, which lead to the introduction of the so-called

oblique parameters (e.g., the Peskin-Takeuchi S, T , and U

parameters).



Oblique parameters of the SU(2)×U(1)×U(1)′ model

The current interactions of the SM electroweak gauge bosons are

given by:2

LEW =m2
WW+µW−

µ + 1

2
m̃2

Z (1 + ∆1)Z
µZµ − g√

2

(
Jµ
CC

W+
µ + h.c.

)

− eJµ
emAµ − g

2cW
(1 + ∆2) J

µ
NC

Zµ − e∆3J
µ
emZµ ,

where m2
W = 1

4
g2v2, m̃2

Z = 1

4
(g2 + g′ 2)v2, and e = gsW = g′cW .

Here, v ≃ 246 GeV, sW ≡ sin θW , and cW ≡ cos θW .

2H. Davoudiasl, K. Enomoto, H.-S. Lee, J. Lee, and W.J. Marciano Phys. Rev. D 108, 115018 (2023). See

also B. Holdom, Phys. Lett. B 166, 196 (1986).



The corresponding oblique parameters are:

αEMS = 8s2Wc2W∆2 − 4sWcW (c2W − s2W )∆3 ,

αEMT = −∆1 + 2∆2 ,

αEMU = −8s2WcW (cW∆2 + sW∆3) ,

where αEM ≡ e2/(4π). The precision electroweak data yield:3

S = −0.02± 0.10 ,

T = 0.03± 0.12 ,

U = 0.01± 0.11 ,

where S = T = U = 0 corresponds to the SM.
3J. Erler and A. Freitas, in R.L. Workman et al. (Particle Data Group), Review of Particle Physics, Prog.

Theor. Exp. Phys. 2022, 083C01 (2022).



The parameter ρ0

In the SM, ρ ≡ m2
W/(m2

Zc
2
W ) = 1 at tree-level. Erler and Freitas

(in their Review of Particle Physics review) introduce

ρ0 ≡
m2

W

m2
Z ĉ

2
Zρ̂

= 1.00038± 0.00020 ,

where ĉ2Z = 1 − sin2 θ̂W (mZ) is defined in the MS scheme, and

ρ̂ ≡ m2
W/(m2

Z ĉ
2
Z) is computed assuming the validity of the SM.

That is, ρ0 = 1 in the SM, and a deviation from ρ0 = 1 can be

interpreted as a consequence of tree-level BSM physics (under the

assumption that the latter is a small perturbation that does not

significantly modify the SM electroweak radiative corrections).



A generic SU(2)×U(1)×U(1)′ model

Kinetic mixing of the hypercharge gauge boson B̂ and the U(1)′

gauge boson X̂ is governed by the mixing parameter ǫ,

L ⊃ −1

4
B̂µνB̂

µν − 1

4
X̂µνX̂

µν +
ǫ

2cW
X̂µνB̂

µν .

To obtain a canonical form of the kinetic Lagrangian, we transform

the B̂ and X̂ fields such that

X̂ = ηX , B̂ = B +
ǫ

cW
ηX ,

where

η ≡ 1√
1− ǫ2/c2W

.



Scalar fields and their vacuum expectation values (vevs)

Φ: SM-like complex scalar doublet with weak isospin t1 =
1

2
, U(1)

and U(1)′ charges Y = 1

2
and Y ′ = 0, and vev

〈
Φ0

〉
= v1/

√
2.

ϕi (i = 2, 3, . . . N): with weak isospins ti, U(1) and U(1)′ charges

yi and y′i, and vevs
〈
ϕ0
i

〉
= vi/

√
2.

The resulting W± mass is

m2
W =

g2v2

4
=

g2
[
v21 +

∑N
i=2

2(CRi
− y2i )v

2
i ci

]

4
,

where CRi
= ti(ti+1) for a complex [real] ϕi multiplet, with ci = 1

[ci = 1/2]. Scalar field multiplets are chosen such CRi
= 3y2i (to

reproduce the observed value of mW/mZ).



The squared-mass matrix of the massive neutral gauge bosons

with respect to the {Z0,X} basis, where Z0 ≡ W 3cW − BsW is

orthogonal to the photon field A, is given by

M2 =


 m̃2

Z (M2)12

(M2)12 (M2)22


 .

An explicit expression for the off-diagonal element of M2 is

(M2)12 = −m̃2
Z

v2

[
4ηtW ǫ

N∑

i=1

v2i y
2
i + 4ητcW

N∑

i=2

v2i yiy
′
i

]
,

where tW ≡ sW/cW , τ ≡ gX/g and η ≡ 1/
√

1− ǫ2/c2W .

Diagonalizing M2 yields the mass eigenstate fields Z and Z ′.




 Z0

X


 =


 cosα − sinα

sinα cosα





 Z

Z ′




defines the mixing angle α, and m̃2
Z = m2

Z cos2α+m2
Z′ sin

2α,

where mZ [mZ′] is the mass of the physical Z [dark Z ′] boson.

Having chosen scalar multiplets such that CRi
= 3y2i , it follows

that
m2

W

m̃2
Zc

2
W

= 1 ,

at tree level. Hence,

ρ− 1 = (r − 1) sin2α ,

with r ≡ m2
Z′/m2

Z, and the value of sinα is controlled by
(
M2

)
12
.



In particular,

sin2 2α =
4
[
(M2)12

]2

(m2
Z −m2

Z′)2
.

It is useful to eliminate sinα in favor of the parameter r212,

r212 ≡
(
(M2)12
m̃2

Z

)2

=
(1− r)2 sin2α cos2α
[
1− (1− r) sin2α

]2 .

As before, r ≡ m2
Z′/m2

Z. The end result is:

ρ− 1 =
−1 + r − 2r212 +

√
(1− r)2 − 4r r212

2(1 + r212)
,

which is a monotonically decreasing function of r12. Equivalently,

r212 =
(1− ρ)(ρ− r)

ρ2
.



A dark matter (DM) candidate

Consider the dark Z ′ model with an additional an SU(2)×U(1)

singlet Dirac fermion with a nonzero U(1)′ charge, denoted by χ.

Then, the dark Lagrangian is given by

LDM = iχ /Dχ−mχχχ ,

where the covariant derivative can be expanded as

Dµ = ∂µ + igXY ′η (sαZµ + cαZ
′
µ) ,

with sα ≡ sinα and cα ≡ cosα.

In the following, we assume that the DM candidate χ is in thermal

equilibrium in the early Universe.



The velocity averaged cross section for χχ annihilation is given by

〈σχχv〉 ≃ 2× 10−26 cm3 s−1 ≃ 1.7× 10−9 GeV−2 ,

for values of mχ >∼ 10 GeV, under the assumption that χ particles

saturate the observed DM abundance today. As the Universe

evolves and the temperature drops, a point is reached where the

DM decouples from the thermal bath and it freezes out.

We consider models where mZ′ < mZ (or equivalently, r < 1),

omitting the regime where r is close to 1. Two scenarios emerge:

1. mZ′ > mχ > me

2. mχ > mZ′ > me



1. The characteristic regime: mZ′ > mχ > me.
4

The dominant annihilation mechanism is the s-channel scattering

process χχ → Z ′∗ → f̄ f̄ . It then follows that

〈σχχv〉 ≈
m2

χ

πm4
Z′

(ǫegXY ′)
2
,

under the assumption that mχ ≫ me and mZ′ ≫ mχ. By

assuming Y ′ = 1, we obtain the observed DM abundance with

1.7× 10−9

GeV2
≈ 0.038

GeV2

( mχ

0.01GeV

)2
(
0.1GeV

mZ′

)4

(ǫ gX)2 ,

which, after fixing the masses, yields a value for ǫ gX.
4See E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, Phys. Rev. D 90, 014052 (2014), and H. Davoudiasl

and W.J. Marciano, Phys. Rev. D 92 035008 (2015).



2. The secluded regime: mχ > mZ′ > me.
5

The dominant annihilation mechanism is χχ → Z ′Z ′ via t-channel

χ-exchange. It then follows that

〈σχχv〉 ≈
g4
X
η4 c4α Y

′4

8πm2
χ

,

under the assumption that mχ ≫ mZ′. Assuming again that

Y ′ = 1, we obtain the observed DM abundance with

1.7× 10−9GeV−2 ≈ 0.04
g4
X
η4 c4α
m2

χ

.

After fixing mχ and mZ′ (and determining the mixing angle α),

we may constrain the values of gX and ǫ.

5See M. Pospelov, A. Ritz, and M.B. Voloshin, Phys. Lett. B 662, 53 (2008), and J.A. Evans, S. Gori and

J. Shelton, Looking for the WIMP Next Door, JHEP 02 (2018) 100.



Dark matter and the electroweak ρ parameter

Example 1: An SU(2)×U(1)×U(1)′ model with scalar multiplets

ϕi beyond the SM Higgs doublet that are non-inert (i.e., vi 6= 0)

and charged under both U(1) and U(1)′. If we assume a parameter

regime where ǫ ≪ 1 and r = m2
Z′/m2

Z ≪ 1, then

c2α =
1

1 + r212
+O(r) .

where r212 =
[
(M2)12

]2
/m̃4

Z ∼ g2
X
/g2 ∼ 2.34g2

X
, assuming that

4cW
v2

∑

i

yiy
′
iv

2
i ∼ O(1) .

For example, if mχ = 20GeV (corresponding to the secluded

regime) then gX ∼ 0.0645.



As gX becomes larger, so does r212. Because the expression

obtained for ρ−1 is a monotonically decreasing function with r212,

it follows that ρ − 1 gets more negative with larger r12. Thus, a

large gX pushes towards a larger negative value of ρ− 1.



For r ≪ 1, the contribution of r to ρ− 1 is small. Then, we may

approximate

ρ− 1 = − r212
1 + r212

+O(r) .

Using r212 ∼ g2
X
/g2 ∼ 2.34g2

X
, we end up with

ρ− 1 ∼ −0.0096 ,

which, is inconsistent with the global electroweak fit value of

ρ0 = 1.00038 ± 0.00020 quoted earlier. That is, we can assume

that the deviation from ρ = 1, which is due to the tree-level effect

exhibited above, can be constrained by the observed value of ρ0.



Example 2: An SU(2)×U(1)×U(1)′ model with an extended Higgs

sector that contains an SU(2)×U(1) singlet scalar ϕ (dark Higgs)

with a U(1)′ charge of y′ = 1. In this case, r212 = η2t2W ǫ2.

Assuming that |ǫ| ≪ 1 and 1− r ∼ O(1), it follows that

ρ− 1 =
r212
r − 1

+O(r412) .

We then end up with:

ρ− 1 = − ǫ2t2W
1− r

+O(ǫ4) .

For example, assuming that the true value of ρ0 is no more than

5σ below the central value obtained in the analysis of electroweak

data, one can deduce an upper limit of |ǫ| <∼ 0.046.



Conclusions

• Models of dark matter mediated by a dark photon (or dark Z

boson) cannot ignore constraints of precision electroweak data.

• The precision of the parameter ρ0 obtained in a global fit to

electroweak data imposes strong constraints on realistic models

of dark matter that communicate with the SM sector via gauge

boson kinetic mixing.

• Additional constraints based on the oblique parameters (or

more generally, the coefficients of higher dimensional operators

in SMEFT or HEFT) should also be taken into account in

determining whether a particular dark matter model is viable.




