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Cosmological 1%t-order phase transitions

Figure: Cutting et al. arXiv:1906.00480.

Universe supercools

Bubbles nucleate, expand and collide

This creates long-lived fluid flows
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And creates gravitational waves: Oh i
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Bubble nucleation uncertainties
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Gravitational wave spectrum

GW signal depends strongly on 4
phase transition quantities,

QGW = F( T*, R*, Oy, VW),

T, : percolation temperature,
R, : bubble radius,

Qv : transition strength,

Viv . bubble wall speed.

Each depends on the bubble
nucleation rate.

10° 10* 0.001 0.010 0.100 1
f (Hz)

Large uncertainties linked to
predictions of nucleation rate.
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The bubble nucleation rate
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Perturbation theory for bubble nucleation

The bubble nucleation rate takes a semiclassical form,
[~ Ae B,

with tree-level (B) and one-loop (A) contributions.
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Solving for B

Computing B requires solving one nonlinear ODE

d® ¢y, F +gd¢b/F
dr? r dr

— V'(¢pF) = 0.

B = 2 (E[és] — Eléx).

Think of B as the internal energy of a critical bubble, E,/T.
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Solving for A

Computing A requires solving an infinite number of linear ODEs

dr2  rdr r2
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{d + 2d _U+1) + V//((bb/F)} YT(r) =o.
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Think of A as the log entropy of fluctuations about this bubble,

A~ m4e5,

so that minus the free energy appears in the exponent

[ mte—(B—ST)/T
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BubbleDet

First public code for computing the one-loop term, A.
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An example, the thin wall limit for d = 3,

I~ m*exp (—0':2)5> exp (—ii)
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Out-of-equilibrium effects on nucleation

Transition surface

Nucleation is not just energy and
entropy, Eei[d] ‘ Stable region

27

Langer '69

and k4yn depends on dynamics of
out-of-equilibrium particles Af:

d3

Fayn B0 = (V2 = V' [gp]) A — Z s (27r)3szAf

Hirvonen 24
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Do we really understand bubble nucleation?

At least five different expressions for rqyn.
Langer '69, Affleck '81, Linde '81
Arnold & McLerran '87, Hirvonen '24

Infrared divergences in K4y, for weak damping.
Hangi et al. '90, Ekstedt '22

Radical proposals:
- additional saddlepoints
- nucleation via intermediate solitons
Tye & Wong '11

Skeletons in
How could we tell if we understand bubble the closet
nucleation?

- analogue experiments
- lattice simulations
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Analogue experiments

3He bulk phase diagram, B=0

T/mK

® (lear disagreement for A-B transition in superfluid 3He,
1

~ few hours < age of universe <
rexperiment theory

® Good agreement for rate in 14+1d ferromagnetic superfluid,
taking entropy (A) as a fit parameter.
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Lattice simulations
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A super perturbative benchmark point

/?h? point
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as(us) = hA5/ (4 gs))
Perturbation theory converging very quickly for latent heat,

1.341(2) = 1.2 +0.1378+0.0054 — 0.0016 + . . .
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lattice tree 1-loop 2-loop 3-loop

£ 1.34170(4)
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Benchmarking against the lattice
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Qualitative agreement for log rate, but way worse than latent heat,
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Conclusions

Nucleation rate — Qgw predictions.
Nucleation rate < energy, entropy & dynamics

Can we get experiments, lattice and perturbation theory to
agree?

Are we missing something?
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Conclusions

Nucleation rate — Qgw predictions.
Nucleation rate < energy, entropy & dynamics

Can we get experiments, lattice and perturbation theory to
agree?

Are we missing something?

Thanks for listening!
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Backup slides



Real scalar model

A simple model,

f—f(u¢)+a¢+ d>2+ ¢3+ ¢4

+Jl¢+J2¢ ;

with only two relevant scales:

hard: E ~ 7T (nonzero Matsubara modes)

m? = m? 4 (nmT)? with n # 0

soft: E ~ gT (Debye screened)

RN

2 / \ 272
meffN \\ 1 Ng T

s

1/1



	Appendix

