Probes of extended dark matter structures

Djuna Lize Croon (IPPP Durham)

Catch22+2, May 2024

djuna.l.croon@durham.ac.uk djunacroon.com

Dark matter substructure

Two things we may agree upon...

- All of our evidence for Dark Matter is gravitational
- Many dark matter models feature substructure

Boson stars

Subhalos

Miniclusters

Mirror stars

Dark matter substructure

Two things we may agree upon...

- All of our evidence for Dark Matter is gravitational
- Many dark matter models feature substructure

Microlensing can be used to probe such models

Lensing equation

The lensing tube

• Magnification: $\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \sum \mu_i$

The lensing tube normalised impact parameter $u \equiv \beta/\theta_E$ • Magnification: $\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \sum \mu_i = \frac{u^2 + 2}{u\sqrt{u^2 + 4}} \rightarrow 1.34$ point-like lens $u \rightarrow 1$

- θ_E defines a lensing tube with radius $r_E = \theta_E D_L$
- Defining $\tau \equiv \theta/\theta_E$, $m(\tau) \equiv M(\theta_E \tau)/M$,

$$u = \tau - \frac{m(\tau)}{\tau} \text{ with } \mu = \left| 1 - \frac{m(\tau)}{\tau^2} \right|^{-1} \left| 1 + \frac{m(\tau)}{t^2} - \frac{1}{\tau} \frac{dm(\tau)}{d\tau} \right|^{-1}$$

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

The lensing tube normalised impact parameter $u \equiv \beta / \theta_E$ • Magnification: $\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \sum \mu_i = \frac{u^2 + 2}{u\sqrt{u^2 + 4}} \rightarrow 1.34$ point-like lens $u \rightarrow 1$

- θ_E defines a lensing tube with radius $r_E = \theta_E D_L$
- Defining $\tau \equiv \theta / \theta_E$, $m(\tau) \equiv M(\theta_E \tau) / M$, ullet

$$u = \tau - \frac{m(\tau)}{\tau} \quad \text{with} \quad \mu = \left| 1 - \frac{m(\tau)}{\tau^2} \right|^{-1} \left| 1 + \frac{m(\tau)}{t^2} - \frac{1}{\tau} \frac{dm(\tau)}{d\tau} \right|^{-1}$$
Projected lens
$$m(\tau) \equiv M(\theta_E \tau)/M = \frac{\int_0^\tau d\sigma \sigma \int_0^\infty d\lambda \rho(r_E \sqrt{\sigma^2 + \lambda^2})}{\int_0^\infty d\gamma \gamma^2 \rho(r_E \gamma)}$$

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

 $a\gamma\gamma^{2}\rho(r_{E}\gamma)$

- θ_E defines a lensing tube with radius $r_E = \theta_E D_L$
- Defining $\tau \equiv \theta/\theta_E$, $m(\tau) \equiv M(\theta_E \tau)/M$,

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

Threshold impact parameter

Define $u_{1.34}$ by $\mu_{tot}(u \le u_{1.34}) > 1.34$

All smaller impact parameters produce a magnification above $\mu > 1.34$

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

Threshold impact parameter

Define $u_{1.34}$ by $\mu_{tot}(u \le u_{1.34}) > 1.34$

All smaller impact parameters produce a magnification above $\mu > 1.34$

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

Caustics

What's going on here?

Caustics

Point-like:

~two images

Boson star

2.0

 $U_{1.34}$

1.0

0.5

 0.0^{1}

 $\check{1}0^{-1}$

What's going on here?

Three

images

One image of the

point-like case

 10^{0}

 $r_{90}/r_{\rm E}(x)$

One boson

star image

Too diffuse

 10^{1}

Sufficiently flat density profiles can give more or fewer lens images (solutions to the lens equation) compared to a point-like lens

→ Objects such as boson stars may give unique microlensing signals

→ Constraints on the dark matter subfraction may be stronger or weaker than for point-like lenses

Constraints on DM fraction

Generally, constraints on extended objects are weaker...

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

Constraints on DM fraction

But for sufficiently flat density profiles, caustics change the constraints

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

Extended sources: $r_E = \theta_E D_L \sim r_S$

Same procedure as before, but now $u_{1.34}$ is a function of both r_{90} and r_S DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

Extended sources: $r_E = \theta_E D_L \sim r_S$

Same procedure as before, but now $u_{1.34}$ is a function of both r_{90} and r_{S} DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

Extended sources: $r_E = \theta_E D_L \sim r_S$

Same procedure as before, but now $u_{1.34}$ is a function of both r_{90} and r_S DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

DC, Sevillano Muñoz arXiv:2403.13072

 $M({
m M}_{\odot})$

BS light curves have different shapes

Miguel Crispim-Romao, DC, arXiv:2402.00107

BS light curves have different shapes

Miguel Crispim-Romao, DC, arXiv:2402.00107

BS light curves have different shapes

Miguel Crispim-Romao, DC, arXiv:2402.00107

ML + ML

Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios

ML + ML

Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios
- MicroLIA: use a Random Forest (RF) algorithm to find microlensing event (and distinguish from other events)

Godines et al, arXiv:2004.14347

ML + ML

Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios
- MicroLIA: use a Random Forest (RF) algorithm to find microlensing event (and distinguish from other events)

Our adaptations:

- Implement boson star and NFW light curves with $0.5 < \tau_m < 5$
- Instead of an RF, we use a histogram-based gradient boosted classifier (HBGC) to improve speed
- Add criterium $\mu \ge 1.34$

(... and a few fixes)

Complete datasets not available

Selection Criteria for High-quality Microlensing Events in OOLE OVS Fields			
Criteria	Remarks		Number
All stars in databases			1,856,529,265
$\chi^2_{ m out}/ m dof\leqslant 2.0$	No variability outside a window centered on the event (duration of the window depends on the field)		
$n_{\rm DIA} \ge 3$	Centroid of the additional flux coincides with the source star centroid		
$\chi_{3+} = \sum_{i} (F_i - F_{\text{base}}) / \sigma_i \ge 32$	Significance of the bump		23,618
$A \ge 0.1 \text{ mag}$	Rejecting low-amplitude variables		
$n_{\rm bump} = 1$	Rejecting objects with multiple bumps	Reject events with	18,397
	Fit quality:	multiple bumps	
$\chi^2_{ m fit}/{ m dof}\leqslant 2.0$	χ^2 for all data		
$\chi^2_{ m fit,t_E}/ m dof\leqslant 2.0$	χ^2 for $ t - t_0 < t_{\rm E}$		
$\sigma(t_{\rm E})/t_{\rm E} < 0.5$	Einstein timescale is well measured		
$t_{\min} \leqslant t_0 \leqslant t_{\max}$	Event peaked between t_{min} and t_{max} , which are moments of the first and last observation of a given field		
$u_0 \leqslant 1$	Maximum impact parameter		
$t_{\rm E} \leqslant 500 \ {\rm d}$	Maximum timescale		
$A \ge 0.4$ mag if $t_{\rm E} \ge 100$ days	Long-timescale events should have high amplitudes		
$I_{ m s}\leqslant21.0$	Maximum I-band source magnitude		
$F_{ m b}>-F_{ m min}$	Maximum negative blend flux, corresponding to $I = 20.5$ mag star		460

 Table 1

 Selection Criteria for High-quality Microlensing Events in OGLE GVS Fields

So for now... generating and injecting events

Miguel Crispim-Romao, DC, arXiv:2402.00107

Boson Star Events w/ OGLE-II Timestamps

Miguel Crispim-Romao, DC, arXiv:2402.00107

Current work

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

- ELAsTiCC dataset (Extended LSST Astronomical Time Series Classification Challenge)
 - Multiple sources, galactic and extragalactic
 - Science purposed

ELAsTiCC presents the first simulation of LSST alerts, with millions of synthetic transient light curves and host galaxies. The data is being used to test broker alert systems and classifiers, and develop the infrastructure for LSST's Dark Energy Science Collaboration Time-Domain needs.

To conclude,

- All of our current evidence for Dark Matter is gravitational; many dark matter models feature substructure
- Microlensing provides a way to look for dark matter substructure of a large range of sizes and masses
 - → Extended objects may give unique microlensing signatures
 - →Non-observation can be used to derive constraints
- Microlensing signatures of extended objects can be distinguished using machine learning
- Future work: comparing to all events in ELaSTiCC, deep learning on the light curves, ...

Thank you!

...ask me anything you like!

djuna.l.croon@durham.ac.uk | djunacroon.com

Back up slides

Case study 1: NFW-halo mass profile

• Well-known halo profile: $\rho(r) = \frac{\rho_s}{(r/r_s)(1 + r/r_s)^2}$

- As the mass inclosed formally diverges, we cut it off at $R_{\rm cut} = 100 R_{\rm sc}$
- Enclosed mass $\propto \log(\kappa + 1) (\kappa/(\kappa + 1))$ where $\kappa = R_{\rm cut}/R_{\rm sc}$
- Computing $m(\tau)$ is then a trivial exercise:

Case study 2: Boson star mass profile

describes a spherically symmetric ground state of a free scalar field in the non-relativistic limit

• The mass enclosed is given by

$$M_{\rm BS}(r) = \frac{1}{m_{\phi}G} \int_{0}^{m_{\phi}r} dy \ y^2 \ \Psi^2(y)$$
from which $m(\tau)$ may be computed

Caustics

Consequence: the Einstein tube is not a tube; not ellipsoidal

→ Depending on the source,
 experiments may be more or
 less sensitive to extended
 objects compared to point
 sources in different locations

The differential event rate contains all the essential physics

$$\begin{aligned} x &= \frac{D_{\rm L}}{D_{\rm S}} \\ & \swarrow \frac{d^2 \Gamma}{dx dt_{\rm E}} = \varepsilon(t_{\rm E}) \frac{2D_{\rm S}}{v_0^2 M} f_{\rm DM} \rho_{\rm DM}(x) v_{\rm E}^4(x) e^{-v_{\rm E}^2(x)/v_0^2} \end{aligned}$$

The differential event rate contains all the essential physics

The total number of expected events depends on the experiment

$$N_{\rm events} = N_{\star} T_{\rm obs} \int_0^1 dx \int_{t_{\rm E,min}}^{t_{\rm E,max}} dt_{\rm E} \frac{d^2 \Gamma}{dx dt_{\rm E}}$$

The total number of expected events depends on the experiment

The total number of expected events depends on the experiment

Obtaining constraints

To obtain limits, we have to account for the observed events

- EROS-2: $3.9\,$ events at 90% CL
- OGLE-IV: $\mathcal{O}(1000)$ astrophysical events, Poissonian 90% CL: $\kappa = 4.61$

Lensing geometry

- Up to this point, we have assumed that the sources are pointlike light sources (a good approximation for EROS/OGLE)
- This approximation breaks down when $r_E = \theta_E D_L \sim r_S$

Star sizes in M31

 $N_{\text{events}} = N_{\star} T_{\text{obs}} \int dt_{\text{E}} \int dR_{\star} \int_{0}^{1} dx \frac{d^{2} \Gamma}{dx dt_{\text{E}}} \frac{dn}{dR_{\star}}$

Feature importance

Opportunities for positive detection

Miguel Crispim-Romao, DC, arXiv:2402.00107

Let's dream...

- The OGLE time steps are quite irregular
- Many different factors play a role...
 - Observational Constraints (weather, moon phase, ...)
 - Resource Allocation
 - Target Prioritization
 - Technical Maintenance and Downtime
- But it is interesting what the effect of cadence (ir)regularity is on the observational prospects
- So, let us imagine for a moment that we could achieve perfect daily cadence

NFW Events w/ Regular Daily Cadence

Miguel Crispim-Romao, DC, arXiv:2402.00107

... only observed if regular cadence is achieved

Miguel Crispim-Romao, DC, arXiv:2402.00107