Probes of extended dark matter structures

Djuna Lize Croon (IPPP Durham)
Catch22+2, May 2024
djuna.I.croon@durham.ac.uk | djunacroon.com

Dark matter substructure

Two things we may agree upon...

- All of our evidence for Dark Matter is gravitational
- Many dark matter models feature substructure
PBHs Boson stars Subhalos Miniclusters Mirror stars

Dark matter substructure

Two things we may agree upon...

- All of our evidence for Dark Matter is gravitational
- Many dark matter models feature substructure

- Microlensing can be used to probe such models

Geometry

"Thin screen approximation"

Geometry

"Thin screen approximation"

Geometry

$\theta \mathrm{D}_{\mathrm{S}}=\beta \mathrm{D}_{\mathrm{S}}-\hat{\alpha} \mathrm{D}_{\mathrm{LS}} \rightarrow \beta=\theta-\alpha=\theta-\hat{\alpha} \frac{\mathrm{D}_{\mathrm{LS}}}{\mathrm{D}_{\mathrm{S}}}=\theta-\frac{4 \mathrm{GM}(\theta)}{\theta \mathrm{c}^{2}} \frac{\mathrm{D}_{\mathrm{LS}}}{\mathrm{D}_{\mathrm{S}}}$

Geometry

"Thin screen approximation"

$\theta \mathrm{D}_{\mathrm{S}}=\beta \mathrm{D}_{\mathrm{S}}-\hat{\alpha} \mathrm{D}_{\mathrm{LS}} \rightarrow \beta=\theta-\alpha=\theta-\hat{\alpha} \frac{\mathrm{D}_{\mathrm{LS}}}{\mathrm{D}_{\mathrm{S}}}=\theta-\frac{4 \mathrm{GM}(\theta)}{\theta \mathrm{c}^{2}} \frac{\mathrm{D}_{\mathrm{LS}}}{\mathrm{D}_{\mathrm{S}}}$
$\beta=0 \rightarrow, \theta \equiv \theta_{E}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{\mathrm{LS}}}{D_{\mathrm{L}} D_{\mathrm{S}}}} \quad \begin{aligned} & r_{E}=\theta_{E} D_{\mathrm{L}}\end{aligned}$

The lensing tube

- Magnification: $\mu=\frac{\theta}{\beta} \frac{d \theta}{d \beta}=\sum \mu_{i}$

The lensing tube
normalised impact parameter $u \equiv \beta / \theta_{E}$ 1

- Magnification: $\mu=\frac{\theta}{\beta} \frac{d \theta}{d \beta}=\sum \mu_{i}=\frac{u^{2}+2}{u \sqrt{u^{2}+4}} \vec{\bigcap}^{1.34}$
point-like lens $\quad u \rightarrow 1$

The lensing tube

normalised impact parameter $u \equiv \beta / \theta_{E}$
!

- Magnification: $\mu=\frac{\theta}{\beta} \frac{d \theta}{d \beta}=\sum \mu_{i}=\frac{u^{2}+2}{u \sqrt{u^{2}+4}} \rightarrow 1.34$

$$
\text { point-like lens } \quad u \rightarrow 1
$$

- θ_{E} defines a lensing tube with radius $r_{E}=\theta_{E} D_{L}$
- Defining $\tau \equiv \theta / \theta_{E}, m(\tau) \equiv M\left(\theta_{E} \tau\right) / M$,
$u=\tau-\frac{m(\tau)}{\tau}$ with $\mu=\left|1-\frac{m(\tau)}{\tau^{2}}\right|^{-1}\left|1+\frac{m(\tau)}{t^{2}}-\frac{1}{\tau} \frac{d m(\tau)}{d \tau}\right|^{-1}$

The lensing tube

normalised impact parameter $u \equiv \beta / \theta_{E}$
\downarrow

- Magnification: $\mu=\frac{\theta}{\beta} \frac{d \theta}{d \beta}=\sum \mu_{i}=\frac{u^{2}+2}{u \sqrt{u^{2}+4}} \rightarrow 1.34$

$$
\text { point-like lens } \quad u \rightarrow 1
$$

- θ_{E} defines a lensing tube with radius $r_{E}=\theta_{E} D_{L}$
- Defining $\tau \equiv \theta / \theta_{E}, m(\tau) \equiv M\left(\theta_{E} \tau\right) / M$,
$u=\tau-\frac{m(\tau)}{\tau}$ with $\mu=\left|1-\frac{m(\tau)}{\tau^{2}}\right|^{-1}\left|1+\frac{m(\tau)}{t^{2}}-\frac{1}{\tau} \frac{d m(\tau)}{d \tau}\right|^{-1}$

Projected lens mass distribution

$$
m(\tau) \equiv M\left(\theta_{E} \tau\right) / M=\frac{\int_{0}^{\tau} d \sigma \sigma \int_{0}^{\infty} d \lambda \rho\left(r_{E} \sqrt{\sigma^{2}+\lambda^{2}}\right)}{\int_{0}^{\infty} d \gamma \gamma^{2} \rho\left(r_{E} \gamma\right)}
$$

The lensing tube

normalised impact parameter $u \equiv \beta / \theta_{E}$
\downarrow

- Magnification: $\mu=\frac{\theta}{\beta} \frac{d \theta}{d \beta}=\sum \mu_{i}=\frac{u^{2}+2}{u \sqrt{u^{2}+4}} \rightarrow 1.34$

$$
\text { point-like lens } \quad u \rightarrow 1
$$

- θ_{E} defines a lensing tube with radius $r_{E}=\theta_{E} D_{L}$
- Defining $\tau \equiv \theta / \theta_{E}, m(\tau) \equiv M\left(\theta_{E} \tau\right) / M$,
$u=\tau-\frac{m(\tau)}{\tau}$ with $\mu=\left|1-\frac{m(\tau)}{\tau^{2}}\right|^{-1}\left|1+\frac{m(\tau)}{t^{2}}-\frac{1}{\tau} \frac{d m(\tau)}{d \tau}\right|^{-1}$

NFW, Boson star

$$
m(\tau) \equiv M\left(\theta_{E} \tau\right) / M=\frac{\int_{0}^{\tau} d \sigma \sigma \int_{0}^{\infty} d \lambda \rho\left(r_{E} \sqrt{\sigma^{2}+\lambda^{2}}\right)}{\int_{0}^{\infty} d \gamma \gamma^{2} \rho\left(r_{E} \gamma\right)}
$$

Threshold impact parameter

Define $u_{1.34}$ by $\mu_{\text {tot }}\left(u \leq u_{1.34}\right)>1.34$
All smaller impact parameters produce a magnification above $\mu>1.34$

Threshold impact parameter

Define $u_{1.34}$ by $\mu_{\mathrm{tot}}\left(u \leq u_{1.34}\right)>1.34$

All smaller impact parameters produce a magnification above $\mu>1.34$

Caustics

What's going on here?

Sufficiently flat density profiles can give more or fewer lens images (solutions to the lens equation) compared to a point-like lens
\rightarrow Objects such as boson stars may give unique microlensing signals
\rightarrow Constraints on the dark matter subfraction may be stronger or weaker than for point-like lenses

Caustics

What's going on here?

Sufficiently flat density profiles can give more or fewer lens images (solutions to the lens equation) compared to a point-like lens
\rightarrow Objects such as boson stars may give unique microlensing signals
\rightarrow Constraints on the dark matter subfraction may be stronger or weaker than for point-like lenses

Constraints on DM fraction

Generally, constraints on extended objects are weaker...

Constraints on DM fraction

But for sufficiently flat density profiles, caustics change the constraints

Extended sources: $r_{E}=\theta_{E} D_{L} \sim r_{S}$

Same procedure as before, but now $u_{1.34}$ is a function of both r_{90} and r_{S} DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

Extended sources: $r_{E}=\theta_{E} D_{L} \sim r_{S}$

Same procedure as before, but now $u_{1.34}$ is a function of both r_{90} and r_{S} DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

From before : Point source, extended lens

Point-like lens, extended source

For point-like lenses, see for example, Witt and Mao, Astrophys. J (1994); Montero-Camacho, Fang, Vasquez, Silva, Hirata, [JCAP, arXiv:1906.05950]; Smyth, Profumo, English, Jeltema, McKinnon,

Guhathakurta [PRD, arXiv:1910.01285];

Extended sources: $r_{E}=\theta_{E} D_{L} \sim r_{S}$

Same procedure as before, but now $u_{1.34}$ is a function of both r_{90} and r_{S} DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

BS light curves have different shapes

Miguel Crispim-Romao, DC, arXiv:2402.00107

$$
\begin{aligned}
& \tau=\theta / \theta_{E} \\
& \tau_{m}=\theta_{\text {lens }} / \theta_{E}=r_{\text {lens }} / r_{E}
\end{aligned}
$$

Boson star with $\tau_{m}=1$
PBH (or $\tau_{m}=0$)

BS light curves have different shapes
 Miguel Crispim-Romao, DC, arXiv:2402.00107

$$
\begin{aligned}
& \tau=\theta / \theta_{E} \\
& \tau_{m} \equiv \theta_{\text {lens }} / \theta_{E}=r_{\text {lens }} / r_{E}
\end{aligned}
$$

Boson star with $\tau_{m}=1$
PBH (or $\tau_{m}=0$)

BS light curves have different shapes

Miguel Crispim-Romao, DC, arXiv:2402.00107

Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios

ML + ML
Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios
- MicroLIA: use a Random Forest (RF) algorithm to find microlensing event (and distinguish from other events)
$M L+M L$
Microlensing + Machine Learning
- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios
- MicroLIA: use a Random Forest (RF) algorithm to find microlensing event (and distinguish from other events)

Our adaptations:

- Implement boson star and NFW light curves with $0.5<\tau_{m}<5$
- Instead of an RF, we use a histogram-based gradient boosted classifier (HBGC) to improve speed
- Add criterium $\mu \geq 1.34$

Complete datasets not available

Table 1
Selection Criteria for High-quality Microlensing Events in OGLE GVS Fields

Criteria	Remarks	Number
All stars in databases		1,856,529,265
$\chi_{\text {out }}^{2} /$ dof $\leqslant 2.0$	No variability outside a window centered on the event (duration of the window depends on the field)	
$n_{\text {DIA }} \geqslant 3$	Centroid of the additional flux coincides with the source star centroid	
$\chi_{3+}=\sum_{i}\left(F_{i}-F_{\text {base }}\right) / \sigma_{i} \geqslant 32$	Significance of the bump	23,618
$A \geqslant 0.1 \mathrm{mag}$	Rejecting low-amplitude variables	
$n_{\text {bump }}=1$	Rejecting objects with multiple bumps Reject events with	18,397
	Fit quality: multiple bumps	
$\chi_{\text {fit }}^{2} /$ dof $\leqslant 2.0$	χ^{2} for all data	
$\chi_{\text {fit, }{ }^{2}}^{2} /$ dof $\leqslant 2.0$	χ^{2} for $\left\|t-t_{0}\right\|<t_{\mathrm{E}}$	
$\sigma\left(t_{\mathrm{E}}\right) / t_{\mathrm{E}}<0.5$	Einstein timescale is well measured	
$t_{\text {min }} \leqslant t_{0} \leqslant t_{\text {max }}$	Event peaked between $t_{\min }$ and $t_{\text {max }}$, which are moments of the first and last observation of a given field	
$u_{0} \leqslant 1$	Maximum impact parameter	
$t_{\mathrm{E}} \leqslant 500 \mathrm{~d}$	Maximum timescale	
$A \geqslant 0.4$ mag if $t_{\mathrm{E}} \geqslant 100$ days	Long-timescale events should have high amplitudes	
$I_{\text {s }} \leqslant 21.0$	Maximum I-band source magnitude	
$F_{\mathrm{b}}>-F_{\text {min }}$	Maximum negative blend flux, corresponding to $I=20.5$ mag star	460

So for now... generating and injecting events

Predicted label

OGLE-II Timestamps

Boson Star Events w/ OGLE-II Timestamps

Boson Star Events w/ OGLE-II Timestamps

Indeed, the most probable detections are for $0.8<\tau_{m}<3$

Current work

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

- ELAsTiCC dataset (Extended LSST Astronomical Time Series Classification Challenge)

- Multiple sources, galactic and extragalactic
- Science purposed

ELAsTiCC presents the first simulation of LSST alerts, with millions of synthetic transient light curves and host galaxies. The data is being used to test broker alert systems and classifiers, and develop the infrastructure for LSST's Dark Energy Science Collaboration Time-Domain needs.

To conclude,

- All of our current evidence for Dark Matter is gravitational; many dark matter models feature substructure
- Microlensing provides a way to look for dark matter substructure of a large range of sizes and masses
\rightarrow Extended objects may give unique microlensing signatures
\rightarrow Non-observation can be used to derive constraints
- Microlensing signatures of extended objects can be distinguished using machine learning
- Future work: comparing to all events in ELaSTiCC, deep learning on the light curves, ...

Thank you!

...ask me anything you like!
djuna.I.croon@durham.ac.uk | djunacroon.com

Back up slides

Case study 1: NFW-halo mass profile

- Well-known halo profile: $\rho(r)=\frac{\rho_{\mathrm{s}}}{\left(r / r_{\mathrm{s}}\right)\left(1+r / r_{\mathrm{s}}\right)^{2}}$
- As the mass inclosed formally diverges, we cut it off at $R_{\text {cut }}=100 R_{\text {sc }}$
- Enclosed mass $\propto \log (\kappa+1)-(\kappa /(\kappa+1))$ where $\kappa=R_{\mathrm{cut}} / R_{\mathrm{sc}}$
- Computing $m(\tau)$ is then a trivial exercise:

Case study 2: Boson star mass profile

- The Schrodinger-Poisson equation,
$\mu \Psi=-\frac{1}{2 m_{\phi}}\left(\Psi^{\prime \prime}+\frac{2}{r} \Psi^{\prime}\right)+m_{\phi} \Phi \Psi$

describes a spherically symmetric ground state of a free scalar field in the non-relativistic limit
- The mass enclosed is given by

$$
M_{\mathrm{BS}}(r)=\frac{1}{m_{\phi} G} \int_{0}^{m_{\phi} r^{r}} d y y^{2} \Psi^{2}(y)
$$

from which $m(\tau)$ may be computed

Caustics

Consequence: the Einstein tube is not a tube; not ellipsoidal

\rightarrow Depending on the source, experiments may be more or less sensitive to extended objects compared to point sources in different locations

Constraining extended objects

The differential event rate contains all the essential physics

$$
\underbrace{x=\frac{D_{\mathrm{L}}}{D_{\mathrm{S}}}}{ }_{\frac{d^{2} \Gamma}{d x d t_{\mathrm{E}}}=\varepsilon\left(t_{\mathrm{E}}\right) \frac{2 D_{\mathrm{S}}}{v_{0}^{2} M} f_{\mathrm{DM}} \rho_{\mathrm{DM}}(x) v_{\mathrm{E}}^{4}(x) e^{-v_{\mathrm{E}}^{2}(x) / v_{0}^{2}}}
$$

Constraining extended objects

The differential event rate contains all the essential physics

$$
\begin{aligned}
& x=\frac{D_{\mathrm{L}}}{D_{\mathrm{S}}} \\
& \frac{d^{2} \Gamma}{d x d t_{\mathrm{E}}}=t_{\mathrm{E}}=\begin{array}{l}
\text { Fraction } \\
\text { of } \Omega_{\mathrm{DM}} \\
\text { Halo profile: } \\
\text { isothermal }
\end{array} \\
& \begin{array}{ll}
\text { Efficiency of } \\
\text { the experiment }
\end{array}
\end{aligned}
$$

Constraining extended objects

The total number of expected events depends on the experiment

$$
N_{\mathrm{events}}=N_{\star} T_{\mathrm{obs}} \int_{0}^{1} d x \int_{t_{\mathrm{E}, \min }}^{t_{\mathrm{E}, \max }} d t_{\mathrm{E}} \frac{d^{2} \Gamma}{d x d t_{\mathrm{E}}}
$$

Constraining extended objects

The total number of expected events depends on the experiment

$$
N_{\text {events }}=N T_{\text {obs }} \int_{0}^{1} d x \int_{t_{\mathrm{E}, \text { min }}}^{t_{\mathrm{E}, \mathrm{max}}} d t_{\mathrm{E}} \frac{d^{2} \Gamma}{d x d t_{\mathrm{E}}}
$$

Number of Observation time observed stars

EROS-2 LMC: 2500 days
EROS-2 LMC:
OGLE-IV: 1826 days
5.49×10^{6}
OGLE-IV:
4.88×10^{7}

Constraining extended objects

The total number of expected events depends on the experiment

Maximum and
minimum transit time

Number of observed stars

EROS-2 LMC:
5.49×10^{6}
OGLE-IV:
4.88×10^{7}

Observation time

EROS-2 LMC: 2500 days OGLE-IV: 1826 days

Obtaining constraints

To obtain limits, we have to account for the observed events

- EROS-2: 3.9 events at 90\% CL
- OGLE-IV: $\mathcal{O}(1000)$ astrophysical events, Poissonian 90\% CL: $\kappa=4.61$

Bin events in t_{E}

$$
N_{i}^{\mathrm{SIG}} \equiv N_{i}^{\mathrm{FG}}+N_{i}^{\mathrm{DM}}
$$

$$
\kappa=2 \sum_{i=1}^{N_{\mathrm{bins}}}\left[N_{i}^{\mathrm{FG}}-N_{i}^{\mathrm{SIG}}+N_{i}^{\mathrm{SIG}} \ln \frac{N_{i}^{\mathrm{SIG}}}{N_{i}^{\mathrm{FG}}}\right]
$$

Lensing geometry

- Up to this point, we have assumed that the sources are pointlike light sources (a good approximation for EROS/OGLE)
- This approximation breaks down when $r_{E}=\theta_{E} D_{L} \sim r_{S}$
- Geometry in the lens plane:

$\left\{\begin{array}{l}\text { Lensing equation: } \\ \bar{u}(\varphi)=\tau(\varphi)-\frac{m(\tau(\varphi))}{\tau(\varphi)}\end{array}\right.$

Star sizes in M31

Feature importance

Opportunities for positive detection
 Miguel Crispim-Romao, DC, arXiv:2402.00107

Let's dream...

- The OGLE time steps are quite irregular
- Many different factors play a role...
- Observational Constraints (weather, moon phase, ...)
- Resource Allocation
- Target Prioritization
- Technical Maintenance and Downtime
- But it is interesting what the effect of cadence (ir)regularity is on the observational prospects
- So, let us imagine for a moment that we could achieve perfect daily cadence

NFW Events w/ Regular Daily Cadence

... only observed if regular cadence is achieved

