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Dark matter substructure
Two	things	we	may	agree	upon…	
• All	of	our	evidence	for	Dark	Matter	is	gravitational	
• Many	dark	matter	models	feature	substructure

Boson	stars Subhalos Miniclusters Mirror	starsPBHs
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Dark matter substructure
Two	things	we	may	agree	upon…	
• All	of	our	evidence	for	Dark	Matter	is	gravitational	
• Many	dark	matter	models	feature	substructure
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• Microlensing	can	be	used	to	probe	such	models
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 θDS = βDS − α̂DLS → β = θ − α = θ − α̂
DLS

DS
= θ −

4GM(θ)
θc2

DLS

DS

Lensing	equation
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, 

θDS = βDS − α̂DLS → β = θ − α = θ − α̂
DLS

DS
= θ −

4GM(θ)
θc2

DLS

DS

β = 0 → θ ≡ θE =
4GM

c2

DLS

DLDS Near	perfect	Einstein	
Ring	with	the	HST

Einstein	radius	
rE = θEDL
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The lensing tube

• Magnification:	 	

• 	defines	a	lensing	tube	with	radius	 	

• Defining	 ,	 ,	

			with		

μ =
θ
β

dθ
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= ∑ μi =
u2 + 2

u u2 + 4
→ 1.34

θE rE = θEDL

τ ≡ θ/θE m(τ) ≡ M(θEτ)/M
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m(τ)
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u → 1point-like	lens

normalised	impact	parameter	u ≡ β/θE

DC,	D.	McKeen,	N.	Raj,	PRD,	arXiv:2002.08962	[astro-ph.CO]	
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Projected	lens	
mass	distribution	

normalised	impact	parameter	u ≡ β/θE

DC,	D.	McKeen,	N.	Raj,	PRD,	arXiv:2002.08962	[astro-ph.CO]	
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Threshold impact parameter
Define	 		by		u1.34 μtot(u ≤ u1.34) > 1.34 All	smaller	impact	parameters	produce	

a	magnification	above	μ > 1.34

DC,	D.	McKeen,	N.	Raj,	PRD,	arXiv:2002.08962	[astro-ph.CO]	



Threshold impact parameter

Numerically	solve	the	
Schrodinger-Poisson	equations

Define	 		by		u1.34 μtot(u ≤ u1.34) > 1.34 All	smaller	impact	parameters	produce	
a	magnification	above	μ > 1.34

DC,	D.	McKeen,	N.	Raj,	PRD,	arXiv:2002.08962	[astro-ph.CO]	



Caustics

Point-like:	
∼two	images

Too	diffuse

Sufficiently	flat	density	
profiles	can	give	more	or	
fewer	lens	images	(solutions	
to	the	lens	equation)	
compared	to	a	point-like	lens

→	Constraints	on	the	dark	matter	
subfraction	may	be	stronger	or	
weaker	than	for	point-like	lenses

→	Objects	such	as	boson	stars	may	
give	unique	microlensing	signals

What’s	going	on	here?
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Generally,	constraints	on	extended	objects	are	weaker…

Constraints on DM fraction
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But	for	sufficiently	flat	density	profiles,	caustics	change	the	constraints



Extended sources: rE = θEDL ∼ rS
Same	procedure	as	before,	but	now	 	is	a	function	of	both	 	and	u1.34 r90 rS
DC,	D.	McKeen,	N.	Raj,	Z.	Wang,	PRD,	arXiv:2007.12697	[astro-ph.CO]	

From before : Point source, extended lens



Extended sources: rE = θEDL ∼ rS
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From before : Point source, extended lens

Same	procedure	as	before,	but	now	 	is	a	function	of	both	 	and	u1.34 r90 rS

+

For	point-like	lenses,	see	for	example,	
Witt	and	Mao,	Astrophys.	J	(1994);	

Montero-Camacho,	Fang,	Vasquez,	Silva,	Hirata,	
[JCAP,	arXiv:1906.05950];	

Smyth,	Profumo,	English,	Jeltema,	McKinnon,	
Guhathakurta	[PRD,	arXiv:1910.01285];

DC,	D.	McKeen,	N.	Raj,	Z.	Wang,	PRD,	arXiv:2007.12697	[astro-ph.CO]	
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DC,	D.	McKeen,	N.	Raj,	Z.	Wang,	PRD,	arXiv:2007.12697	[astro-ph.CO]	



DC,	Sevillano	Muñoz	arXiv:2403.13072

Accretion impacting 
the ionisation history



BS light curves have different shapes

Boson star with τm = 1
PBH (or )τm = 0

 τ = θ/θE

τm ≡ θlens/θE = rlens/rE

Miguel	Crispim-Romao,	DC,	arXiv:2402.00107



BS light curves have different shapes

Caustic	peaks	arise	
when	the	number	of	
images	changes

Boson star with τm = 1
PBH (or )τm = 0

Miguel	Crispim-Romao,	DC,	arXiv:2402.00107

 τ = θ/θE

τm ≡ θlens/θE = rlens/rE



BS light curves have different shapes

Preview	with	OGLE-II	timestamps

Miguel	Crispim-Romao,	DC,	arXiv:2402.00107



ML + ML
Microlensing	+	Machine	Learning	
• Microlensing	data	is	time	series	data	
• Challenge:	low-cadence	data,	lower	signal-to-noise	ratios	
• MicroLIA:	use	a	Random	Forest	(RF)	algorithm	to	find	
microlensing	event	(and	distinguish	from	other	events)	

Our	adaptations:	
• Implement	boson	star	and	NFW	light	curves	with

	
• Instead	of	an	RF,	we	use	a	histogram-based	gradient	
boosted	classifier	(HBGC)	

• Add	criterium	

0.5 < tm < 5

μ ≥ 1.34
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Microlensing	+	Machine	Learning	
• Microlensing	data	is	time	series	data	
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• Instead	of	an	RF,	we	use	a	histogram-based	gradient	
boosted	classifier	(HBGC)	

• Add	criterium	

0.5 < tm < 5

μ ≥ 1.34

Godines	et	al,	arXiv:2004.14347

Miguel	Crispim-Romao,	DC,	arXiv:2402.00107



ML + ML
Microlensing	+	Machine	Learning	
• Microlensing	data	is	time	series	data	
• Challenge:	low-cadence	data,	lower	signal-to-noise	ratios	
• MicroLIA:	use	a	Random	Forest	(RF)	algorithm	to	find	
microlensing	event	(and	distinguish	from	other	events)	

Our	adaptations:	
• Implement	boson	star	and	NFW	light	curves	with

	
• Instead	of	an	RF,	we	use	a	histogram-based	gradient	
boosted	classifier	(HBGC)	to	improve	speed	

• Add	criterium	

0.5 < τm < 5

μ ≥ 1.34
(…	and	a	few	fixes)

Miguel	Crispim-Romao,	DC,	arXiv:2402.00107



Complete datasets not available 

So	for	now…	generating	and	injecting	events	
•

Reject	events	with	
multiple	bumps



Miguel	Crispim-Romao,	DC,	arXiv:2402.00107



Miguel	Crispim-Romao,	DC,	arXiv:2402.00107



τm

Miguel	Crispim-Romao,	DC,	arXiv:2402.00107



Indeed,	the	most	probable	
detections	are	for	0.8 < τm < 3



Current work

• ELAsTiCC	dataset	(Extended	LSST	Astronomical	Time	Series	
Classification	Challenge)	
• Multiple	sources,	galactic	and	extragalactic	
• Science	purposed

Teamed	up	with	MicroLIA’s	main	author	Daniel	Godines	(and	Miguel)

ELAsTiCC	presents	the	first	
simulation	of	LSST	alerts,	with	
millions	of	synthetic	transient	
light	curves	and	host	galaxies.	
The	data	is	being	used	to	test	
broker	alert	systems	and	
classifiers,	and	develop	the	
infrastructure	for	LSST’s	Dark	
Energy	Science	Collaboration	
Time-Domain	needs.

Odd



• All	of	our	current	evidence	for	Dark	Matter	is	gravitational;	
many	dark	matter	models	feature	substructure	

• Microlensing	provides	a	way	to	look	for	dark	matter	
substructure	of	a	large	range	of	sizes	and	masses	
→Extended	objects	may	give	unique	microlensing	signatures	
→Non-observation	can	be	used	to	derive	constraints	

• Microlensing	signatures	of	extended	objects	can	be	
distinguished	using	machine	learning		

• Future	work:	comparing	to	all	events	in	ELaSTiCC,	deep	
learning	on	the	light	curves,	…

To conclude,



Thank you! 
 
…ask me anything you like!  
 
djuna.l.croon@durham.ac.uk | djunacroon.com 



Back up slides 



• Well-known	halo	profile:			 	

• As	the	mass	inclosed	formally	diverges,	we	cut	it	off	at	
	

• Enclosed	mass 		where	

ρ(r) =
ρs

(r/rs)(1 + r/rs)2

Rcut = 100 Rsc

∝ log(κ + 1) − (κ/(κ + 1))
κ = Rcut /Rsc

Case study 1: NFW-halo mass profile

• Computing	 	is	then	a	trivial	
exercise:

m(τ)
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• The	Schrodinger-Poisson	equation,	

	

describes	a	spherically	symmetric	ground	state	of	a	free	
scalar	field	in	the	non-relativistic	limit	

• The	mass	enclosed	is	given	by		

	 		

from	which	 	may	be	computed

μΨ = −
1

2mϕ (Ψ′ ′ +
2
r

Ψ′ ) + mϕΦΨ

MBS(r) =
1

mϕG ∫
mϕr

0
dy y2 Ψ2(y)

m(τ)
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Case study 2: Boson star mass profile
Describes	the	radial	
distribution	

τ



Caustics
Consequence:	the	Einstein	tube	is	not	a	tube;	not	ellipsoidal

0 10 20 30 40 50
0.0

0.5

1.0

1.5

→	Depending	on	the	source,	
experiments	may	be	more	or	
less	sensitive	to	extended	
objects	compared	to	point	
sources	in	different	locations



Constraining extended objects

x =
DL

DS

The	differential	event	rate	contains	all	the	essential	physics



Constraining extended objects

Efficiency	of	
the	experiment

220 km/s

Fraction	
of		ΩDM

Halo	profile:	
isothermal

x =
DL

DS

The	differential	event	rate	contains	all	the	essential	physics



Constraining extended objects
The	total	number	of	expected	events	depends	on	the	
experiment



Constraining extended objects
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observed	stars	

EROS-2	LMC:	
5.49×106	

OGLE-IV:	
4.88×107

Observation	time	

EROS-2	LMC:	2500 days	
OGLE-IV:	1826 days	



Constraining extended objects
The	total	number	of	expected	events	depends	on	the	
experiment

Maximum	and	
minimum	transit	time
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	or	rare

Number	of	
observed	stars	

EROS-2	LMC:	
5.49×106	

OGLE-IV:	
4.88×107

Observation	time	

EROS-2	LMC:	2500 days	
OGLE-IV:	1826 days	



Obtaining constraints
To	obtain	limits,	we	have	to	account	for	the	observed	events	
• EROS-2:	3.9 events	at	90%	CL	
• OGLE-IV:	  astrophysical	events,	Poissonian	90%	CL:		𝒪(1000)

κ = 4.61

Bin	events	in	tE



μi = η
1

πr2
S ∫

2π

0
dφ

1
2

τ2
i (φ)

Lensing geometry

ū(φ) = u2 + r2
S + 2urS cos φ

Lensing	equation:		

ū(φ) = τ(φ) −
m(τ(φ))

τ(φ)

Image	Image	

rs ≡ xR⋆/rE

• Up	to	this	point,	we	have	assumed	that	the	sources	are	point-
like	light	sources	(a	good	approximation	for	EROS/OGLE)	
• This	approximation	breaks	down	when	 	

• Geometry	in	the	lens	plane:

rE = θEDL ∼ rS



Star sizes in M31
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We	adopt	the	distribution	derived	in	
[Smyth	et	al.,	PRD,	arXiv:1910.01285]	
using	the	Panchromatic	Hubble	
Andromeda	Treasury	star	catalogue	
and	the	MESA	Isochrones	and	Stellar	
Tracks	stellar	evolution	package

Initially,	the	Subaru-HSC	collaboration	
used	 	for	all	stars,	but	this	
overestimates	the	constraints	on	the	
dark	matter	fraction

R = R⊙

Nevents = N⋆Tobs ∫ dtE ∫ dR⋆ ∫
1

0
dx

d2Γ
dxdtE

dn
dR⋆



Feature importance 



Opportunities for positive detection

Ogle-IV

0.8 < τm < 3

Caustics	arise	for	0.8 < τm < 3

Miguel	Crispim-Romao,	DC,	arXiv:2402.00107



Let’s dream…
• The	OGLE	time	steps	are	quite	irregular	
• Many	different	factors	play	a	role…	
• Observational	Constraints	(weather,	moon	phase,	…)	
• Resource	Allocation	
• Target	Prioritization	
• Technical	Maintenance	and	Downtime	

• But	it	is	interesting	what	the	effect	of	cadence	(ir)regularity	
is	on	the	observational	prospects	
• So,	let	us	imagine	for	a	moment	that	we	could	achieve	
perfect	daily	cadence



τm

Miguel	Crispim-Romao,	DC,	arXiv:2402.00107



τm

High	confidence	
detections!

…	only	observed	if	regular	cadence	is	achieved	
Miguel	Crispim-Romao,	DC,	arXiv:2402.00107


