Collider phenomenology of the minimal models towards a t-channel DM whitepaper

Luca Panizzi

Which signatures

Not all processes might be possible at tree-level

depending on coupling or mass splitting

Long-lived mediators

Bound states Displaced vertices Delayed jets/photons

BS	F@LHC	
LLPs	Prompt/DD	
DM coupling strength		

Mediators with prompt decay MET+SM

depending on which SM particle

Interacting with SM gauge bosons (Z/W) or the Higgs boson

Which signatures

Interaction with the up quark

goals and status

Go beyond existing results

Combination of all channels, relevance of NLO corrections and interference effects

Interaction with the up quark

goals and status

- Go beyond existing results
- Identify benchmarks allowed by LHC and cosmology observables

Interaction with the up quark

goals and status

- Go beyond existing results
- Identify benchmarks allowed by LHC and cosmology observables

	M_Y	M_X	λ
S3M_uR	3300	2700	4.79563
F3S_uR	3400	2500	4.88088
F3V_uR	3500	1500	1.0066

Around the exclusion reach at Run 3 and within the discovery reach for HL-LHC

• Store event samples and kinematical distributions for subsequent analyses

Plots by A. Desai work in progress

Universal couplings

The public UFO model is constructed with option 2

C. Arina, B. Fuks and L. Mantani, Eur. Phys. J. C 80 (2020) no.5, 409, [arXiv:2001.05024 [hep-ph]].

Possible arguments:

- Many theory models have mediator partners for each quark (e.g. SUSY, UED...), which justifies option 2
- If the DM is a gauge boson it would make sense to go with option 1, but if it is a composite vector option 2 is ok
- With option 1, if the DM is fermion or scalar, MFV would probably be more reasonable, so no universal couplings

Solution: we are going with option 2

Universal couplings

Analysis strategy

- Breaking the scan into all the signal elements to determine constraints for individual and universal couplings at the same time
- Combine collider results with cosmological bounds (already discussing with people in the cosmology section)
- Identify benchmark points not excluded yet and produce signal samples and kinematical distributions (same as for uR)

Conclusion

Possibility to cover an ample spectrum of possibilities But simulations take time and resources

Person-power with cluster access would be useful We are setting a common format for combining results from different simulations

Further directions and possible interplays

- So far only right-handed couplings: identify key differences with the left-handed case
- Top-philic models: identify points in common and differences to avoid doing the same work
- Lepto-philic models: are all possibilities covered? can we combine efforts?