

Flavoured mediators and dark matter

Rute Pedro, on behalf of the DM flavour section

DM t-channel white paper meeting, 9th June 2023

Goal of the section and contributors

- Explore models where dark matter carries flavour and comes in multiple generations
 - Provide benchmark model description to section 2
 - Explore the phenomenology of the models and collider signatures
 - Present constraints from cosmology, direct detection, flavour physics and LHC searches
 - Prospects for the HL-LHC scenario

M. Blanke, G. Polesello, H. Acaroglu, M. Krämer, L. Rathmann, J.S. Heisig, ; R. Pedro, N. Castro, M. Moreno Llacer, M.J.Costa Mezquita, J.E. Garcia, B. Maier, A. Moreno Briceño, F. Benoit, B. Fuks, F. Parraud, R.C. Batalha Pedro, D. Tuckler

Current section line-up

5	Flav	Flavoured mediators and dark matter		
	5.1	Dark Minimal Flavour Violation		6
		5.1.1	Dark Minimal Flavour Violation	6
		5.1.2	Phenomenology of DMFV models	6
		5.1.3	Single-top signatures	6
		5.1.4	Flavoured Majorana dark matter	6
		5.1.5	(or 6.x?) Lepton-flavoured dark matter	6
	5.2	2 Boosted top probes of top-philic dark matter		6
	5.3	3 Charm-philic dark matter		6
	5 4	4 Strange-philic dark matter ???		6

5.1.1 Dark Minimal Flavour Violation

Flavoured dark matter basics

dark matter carries flavour and comes in multiple generations

- richer phenomenology with more parametric freedom
- reconcile WIMP hypothesis with non-observation of DM

New coupling to quarks:

 χ_i

 q_i

- q_i SM quarks
- χ_i DM fermion, flavoured
- ϕ coloured scalar mediator
- λ flavour-violating coupling matrix

Dark Minimal Flavour Violation hypothesis

AGRAWAL, BLANKE, GEMMLER (2014)

- ► DM is a triplet under a new $U(3)_{\chi}$ global flavour symmetry
- general flavour violating coupling of DM with SM quarks
- ightharpoonup coupling matrix λ is the only new source of FV in addition to SM Yukawa couplings

DMFV models

variety of simplified *t*-channel models, depending on spin assignments and SM fields coupled to dark sector

5.1.2 Phenomenology of DMFV models

Quark-flavoured DMFV models studied

Dirac fermion DM and scalar mediator:

bottom-flavoured DM coupling to RH down-type quarks

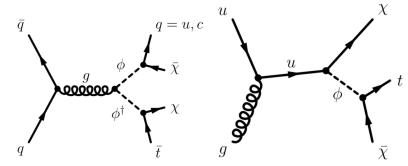
AGRAWAL, BLANKE, GEMMLER (2014)

► top- or charm-flavoured DM coupled to RH up-type quarks

BLANKE, KAST (2017); JUBB, KIRK, LENZ (2017)

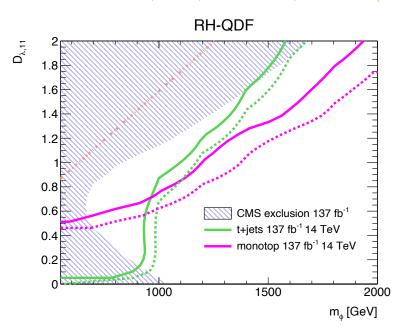
► top/bottom-flavoured DM coupled to LH quark doublets Blanke, Das, Kast (2017)

Majorana fermion DM and scalar mediator:


► top- or charm-flavoured DM coupled to RH up-type quarks Acaroglu, Blanke (2021)

Pheno highlights (model-dependent)

- ► liquid Xe experiments require suppressed DM coupling to first quark generation
- thermal freeze-out possible due to enlarged parameter space coannihilation and conversion-driven region currently under study
 - Acaroglu, Blanke, Heisig, Krämer, Rathmann
- structure of λ strongly constrained by neutral meson mixings, but MFV not required
- ► LHC constraints mainly from mediator pair production ➤ SUSY squark searches


5.1.3 Single-top signatures

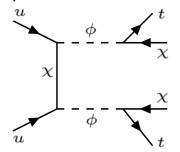
 coloured scalar mediators couples to all three SM and DM flavours, inducing flavour violating single-top sigatures

- ▶ developed dedicated search strategies for $tj + E_T$, $t + E_T$ and $tb + E_T$
- ▶ increased LHC reach

Blanke, Pani, Polesello, Rovelli (2020)

5.1.4 Flavoured Majorana dark matter

Majorana-specific phenomenology


Changing from Dirac to Majorana up-type flavoured DM has profound implications on all aspects of phenomenology!

- ► relic abundance: p-wave suppression for annihilation into massless final states
- direct detection: suppression of spin-independen WIMP-nucleon scattering
- ▶ flavour: suppressed contribution to $D^0 \bar{D}^0$ mixing imply possible large CP-violating effects in charm decays (c.f. $\Delta A_{\rm CP}$)

Acaroglu, Blanke (2021) Acaroglu, Blanke, Heisig, Krämer, Rathmann

Majorana-specific LHC signatures

Majorana nature of DM induces same-sign mediator pair-production

- enhanced cross-sections for standard squark searches
- ightharpoonup same-sign $tt+E_T$ signature
- single-top final states with charge asymmetry

5.1.5 (or 6.x?) Lepton-flavoured dark matter

DMFV models coupled to leptons coupling to RH charged leptons studied

► Dirac DM, scalar mediator

CHEN, HUANG, TAKHISTOV (2015)

complex scalar DM, fermionic mediator

Acaroglu, Agrawal, Blanke (2022a)

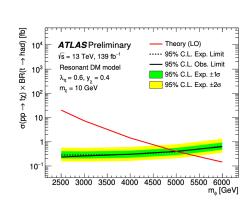
Pheno in a nutshell

- constraints from flavour, direct & indirect detection, relic abundance push mass scale into multi-100 GeV regime
- beyond current collider reach
- ▶ too heavy to solve $(g-2)_{\mu}$ anomaly

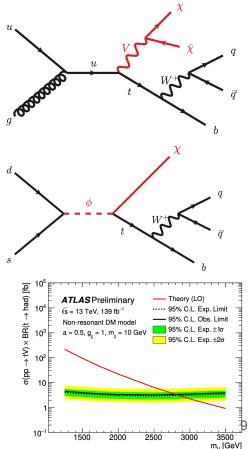
Model extensions to accomodate $(g-2)_{\mu}$

include second mediator & couple DM also to LH leptons

increased NP contributions to $(g-2)_{\mu}$ thanks to chirality-flip


Acaroglu, Agrawal, Blanke (2022b)

- ▶ in progress: include Higgs-portal coupling in scalar DM scenario additional contribution to DM freeze-out makes EW-scale masses viable
 - large $(g-2)_{\mu}$ without chirality flip
 - more easily accessible at colliders


Acaroglu, Blanke, Tabet

5.2 Boosted top probes for top-philic DM

- ATLAS search in $t + \mathbb{Z}_T$ final state, with boosted hadronic top ATLAS-CONF-2022-036
 - Probes Simplified Models of Dark Matter <u>1106.6199</u> [B. Fuks et al.]
 - Non-resonant FCNC production of vector V mediator
 - Resonant production of coloured scalar ϕ mediator, charged 2/3e
- Current upper limits on the production cross-section
 - m_{ϕ} > 5 TeV, m_{V} > 2.8 TeV
 - Assuming specific couplings and m_{γ} =10 GeV
- HL-LHC sensitivity study drawn from this analysis
 - Mediator mass exclusion limits
 - Expected cross-section limits in 2D planes of the parameter space (coupling and masses)

N. Castro, M. Moreno Llacer, M.J.Costa Mezquita, J.E. Garcia, R. Pedro, B. Maier, A. Moreno Briceño

5.3 Charm-philic DM

Review/draw constrains on charm flavoured DM

- LHC searches, flavour physics, ...
- Preliminary results with LO limits for a charm-philic model using 4 searches of jet+MET
- ATLAS mono-jet analysis newly implemented in MadAnalysis 5 (<u>ANA-EXOT-2018-06-PAPER</u>)
- NLO plots on the wish-list

Phenomenological investigations of charm-tagging