Section 8 of Dark matter via t-channel production REPORT OF THE LHC DARK MATTER WORKING GROUP

Alan S Cornell

9 June 2023

Subsection 8.1

Top-philic composite dark matter

- Some composite models have VLQs which mediate the interactions b/n DM and SM. DM and top quark interactions can be mediated by several vector-like top partners.
- The minimal composite model predicts the existence of a composite scalar heavy DM candidate S that couples to the SM top quark via a Yukawa-type interaction involving a heavy vector-like fermionic mediator T.
- Composite UV completions usually include both new states of even and odd Z₂ parity and when the phenomenology of simplified models with a fermionic mediator is studied, a new fermionic T' parity-even top partner is ignored. This Z₂-even T' partner is usually present in composite models.

Representative Feynman diagrams of contributions to DM annihilation that involve a top partner T'. Such diagrams either lead to the production of a T' partner in the final state (first and second diagrams), or proceed via virtual t-channel T' exchanges (third diagram)

Representative one-loop Feynman diagrams of contributions to **DM-nucleon scattering** that involve a top partner T', i.e. with at least one T' state in the loop.

For the non-minimal scenario already studied:

The T' partner must have a mass $m_{T'} \ge 1.3$ TeV to avoid conflict with the ATLAS and CMS searches for T' \rightarrow TS.

The presence of T['] state could alter DM production in association with a jet via additional box diagrams involving T and T['] partners.

For the parameter space region favoured by cosmology these additional diagrams do not increase the cross section.

Regardless, mono-jet contributions to the DM signal at the LHC, arising from the pp \rightarrow SSj process, remain negligible relative to those originating from the pp \rightarrow TT⁻ process.

In the case of t⁻t production in association with missing transverse energy:

When $m_s < m_T < m_T$ or $m_{T'} < m_s < m_T$ standard vector-like searches are not affected.

T' is not allowed to decay into TS ($m_{T'} \ge 1.3$ TeV still valid).

If $m_{T'} > m_T + m_s$ then $T' \rightarrow TS$ opens up and we have contributions to the t⁻tET signal from $pp \rightarrow T'T^{-'} \rightarrow TST^{-} \rightarrow tSS^{-}tSS$. This channel affects the bounds on T and T':

For light DM, T must be of at least 1.25 TeV so there is no way to relax T'.

For heavy DM, there is no $m_T + m_s < 1.3$ TeV (the m_T mass). There is no way to relax collider bounds in the non-minimal model.

Sub-section 8.2

Frustrated dark matter models

- Typical simplified dark matter model paradigm:
 DM χ interacts with SM field + some mediator
- More recent work studies colour-charged mediators (in particular, sextets) that couple to SM quarks with non-SM colour structures
- These models are examples of **frustrated dark matter** (fDM) with *no* tree-level DM DM → SM SM interactions
- fDM is a new subclass of next-generation DM models, previously explored by LHCDMWG
- For t-channel white paper, mediator production in association with W[±], which produces jets (possibly leptons) with sizeable E^{miss}

A FRUSTRATED DM MODEL

Suppose χ is Dirac and couples to color sextets

 ψ (Dirac), φ (scalar) with quantum numbers $(\mathbf{6}, \mathbf{1}, Y)$

• Most general renormalizable model and building blocks:

- For DM stability, impose \mathbb{Z}_2 symmetry and require $m_{\psi} > m_{\chi}$
- We choose Y = 4/3 so that φ couples to up-type quarks

SIGNATURES; PARAMETER SPACE

 Tree-level couplings to SM particles are phase-space suppressed but loop couplings abound —

- φ -qq couplings λ_{IJ} constrained by FCNC searches: impose MFV or some flavor texture forbidding *e.g.* φ^{\dagger} -cc
- Direct searches (dijet, multijet, jets + $E_{\rm T}^{\rm miss}$...) require color-sextet mediators m_{φ} , $m_{\psi} \sim 1$ TeV and $\lambda_{IJ} \sim \mathcal{O}(0.1)$
- *t*-channel $\varphi + W^-$ production (+ H.c.) has not been explored but has $\mathcal{O}(1)$ fb cross sections for $m_{\varphi} \sim 1$ TeV (at $\sqrt{s} = 13$ TeV LHC)

Preliminary work (1)

• Representative diagram for this *t*-channel process:

- Note $\varphi \to \psi \bar{\chi}$ is possible/interesting
- φ couples only to right-handed quarks \Longrightarrow chirality flip $\propto y_q$ for exchanged quark
- Optimal cross sections achieved for top-quark exchange + non-diagonal φ - q_Iq_J $(I \neq J)$ couplings:

$$\lambda_{IJ} = \begin{pmatrix} 0.1 & 0 & 0.25 \\ 0 & 0 & 0.25 \\ 0.25 & 0.25 & 0.75 \end{pmatrix} \quad \text{in basis } (u, c, t)$$

Preliminary work (2)

- We are looking at signals with leptonically decaying W^{\pm} and $\varphi \rightarrow$ quarks including at least one top quark
- Dijet invariant mass distributions for signals and leading backgrounds:

Sub-section 8.3

LHC signals

STATUS:

Introduction and model description written
 Non t-channel constraints being updated
 Need input for t-channel limits

- Not previously studied for this model
- Avoid duplicating other sections' work
- Full implications for baryogenesis

Questions? Ask Gonzalo Alonso Álvarez, Xabier Cid Vidal, Gilly Elor, Miguel Escudero, Carlos Vazquez Sierra