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⇒ LLPs if:

 ▪     small or/and
 ▪ Small mass splitting, in particular:
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▪ Minimal quark-philic models:
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Plot only for small mass splittings, ∆m ≲ 0.1mY !

Long-lived particles!
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LLP Signatures: large ∆m
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Many thanks to  
Heather Russell for the 
ATLAS and LLP figures!
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Figure 7. Summary of the LHC constraints for the lepton-like (upper panel) and the quark-like
(lower panel) FIMP scenarios. The lines correspond to contours of ⌦sh

2 = 0.12 for the values of
ms and TR given in the legend.

events leave only a few hits in the inner detector. Further lowering TR leads into the region
that can be well covered by the DL search, and thus the mass reach goes up to 400 GeV
for c⌧ ⇠ 1 cm.

We now turn to the small reheating temperatures that indicate the limit below which
one can probe specific baryogenesis models. While supercooled scenarios (TR < 50 GeV)
cannot be falsified with our analysis since the corresponding parameter space is almost
already probed (except for a tiny region around mF ⇠ 400 GeV), there is still parameter

developed in [133].
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Many thanks to  
Heather Russell for the 
ATLAS and LLP figures!
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.
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out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
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the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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particular to a potential production during the reheating
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driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.
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would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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▪ Displaced jets+MET suffers from minv-cut!
Figure 3: The invariant mass distribution for candidate displaced vertices. The blue histogram shows
the distribution for a gluino simplified model with a large mass gap: (mg̃, m�̃

0
1
) = (625 GeV, 100 GeV).

The orange histogram shows the distribution for the model considered here with masses (m
b̃
, m�) =

(625 GeV, 100 GeV), while the green histogram shows the same distribution but for the compressed
scenario: (m

b̃
, m�) = (625 GeV, 600 GeV).

sections matching next-to-leading order calculations with the resummation of the next-to-next-
to-leading threshold logarithms, as obtained from NNLL-FAST [161, 162].

As expected, most of the events fail the mDV cut, suppressing the signal yield. The
resulting 95% CL exclusion is illustrated by the solid purple curve in Fig. 1 that shows that
only points with very large cross sections (small eb masses) and a mass gap larger than 15 GeV
are excluded. Since the main loss in sensitivity is due to the invariant mass requirement for the
displaced vertices, we try to estimate what could be the reach resulting from relaxing this cut.
In order to achieve this, we assume that the SM background remains unchanged and the DV
reconstruction efficiency for vertices with mDV < 10 GeV is the same as the one for mDV =

15 GeV. Although these certainly are optimistic assumptions, it allows us to use the efficiencies
provided by the ATLAS collaboration when smaller mass cuts are used. The result is shown
by the purple dashed line in Fig. 1, the excluded region being now significantly enhanced,
extending up to 1 TeV bottom partner masses for small lifetimes (large mass splittings within
the considered scenario).

Once again we stress that this is an optimistic and probably unrealistic projection. Nev-
ertheless, it illustrates the impact of the invariant mass cut on the sensitivity to models with
small mass gaps and reveals the potential gain of relaxing this cut. To achieve this, the back-
ground might be reduced by other means, e.g. by requiring a larger displacement. In fact, Fig. 1
shows a significant region where the displaced jets without a mDV cut would outperform the
disappearing track search (e.g. for c⌧ > 2.5 cm).

3.5 Delayed jets
Another option for distinguishing the long lifetime of some particles is to measure the timing
information of their decay products, and search for delays with respect to the collision time.
This method was exploited in a recent CMS analysis [147], where timing capabilities of the
CMS electromagnetic calorimeter (ECAL) were used to identify non-prompt or “delayed” jets.
The analysis is sensitive to long-lived particles decaying within the ECAL barrel volume ex-
tending up to 1.79 m and covering |⌘| < 1.48. The analysis uses only calorimetric information
to reconstruct jets and imposes a set of quality criteria on the ECAL cells and energy fractions.
Jet timing is calculated from the median of the times of ECAL cells associated with the jet,
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Reinterpretation of searches
(thermalized: conversion-driven FO, co-annihilation)
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[Garny, JH 2112.01499]



Reinterpretation of searches
(thermalized: conversion-driven FO, co-annihilation)

&

100 500200 300150

10

20

50

100

200

500

1000

2000

�
m

[G
eV

]

m� [GeV]

⌦h2 = 0.12

�SUSY

1

3

Xenon1T

Xenon1T

"
��

>
4⇡

conversion-driven freeze-out region

L
H

C
l
o
o
p
-
i
n
d
.!H

i
g
g
s

i
n
v
.!

R-hadrons

-

LHC stop I

-

LHC stop II

LEP

Challenging:
transition between 
prompt/long-lived



Beyond minimal quark-philic models

4

5

7

10

13

16

Ωh2=0.12

100 150 200 250

0.5

1.0

1.5

2.0

2.5

3.0

mΧ [GeV]

Δm
[G
eV

]

(a) �H = 0.01

4

5

7

10

13

16

19

Ωh2=0.12

100 150 200 250 300 350

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

mΧ [GeV]

Δm
[G
eV

]

(b) �H = 0.1

(c) �H = 0.5

Figure 5: Viable parameter space for DM abundance through conversion driven freeze-out
for several value of the H � � coupling �H . Contours denoting ⌦h2 = 0.12 for fixed value
of the Yukawa coupling ��/10�7 are shown with blue lines. The border of the parameter
space is delimited by a green contour corresponding the combinations of �m,m giving rise
to the right dark matter abundance through mediator annihilation driven freeze-out.
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Figure 6: Proper life time of the mediator as a function of the dark matter mass. Each panel
corresponds to a different value of �H contributing to the mediator annihilation. The blue
contours reproduce the correct relic abundance in the (m�, c⌧�) plane for different values of
the mass-splitting �m. The gray dotted line separates the conversion driven (top) from the
mediator annihilation driven (bottom) freeze-out regime. The excluded regions resulting
from heavy stable particle (HSCP, red region) searches and disappearing tracks (DT, green
region) searches at LHC are also shown. See text for details.
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▪ Leptophilic t-channel models:
   Similar pheno, e.g. conversion-driven freeze-out:
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▪ Non-minimal models:
   e.g. Dark Minimal Flavour Violation 

loop-level contributions to the DM–nucleon scattering cross section. In combination with
the constraints from the thermal freeze-out condition, the direct detection limits translate
into a lower bound on the DM mass.

Analysing the constraints from collider searches, flavour physics, cosmology and direct de-
tection experiments, we shall see that the phenomenology changes drastically when, instead of
a Dirac fermion, DM is introduced as a Majorana fermion.

2 Flavoured Majorana Dark Matter in DMFV

The subject of this paper is a simplified model based on the DMFV hypothesis [16]. This section
briefly introduces the DMFV framework in general and then presents the explicit DMFV model
to be studied.

2.1 A Simplified DMFV Model

In the DMFV framework the SM is extended by a new flavour symmetry, generically denoted
as G(3)�, and a DM field �, that transforms under the fundamental representation of this new
symmetry. This results in a global

GDMFV = U(3)q ⇥ U(3)u ⇥ U(3)d ⇥ G(3)� , (2.1)

flavour symmetry, where we focus on DM interacting with SM quarks. Depending on whether
the field � is a Dirac or Majorana fermion the symmetry group G(3)� is either a U(3)� or an
O(3)� group, respectively. In DMFV the SM Yukawa couplings Yu, Yd, and � – the coupling
of � to quarks – constitute the only sources that break the flavour symmetry GDMFV. In this
sense, the DMFV framework goes beyond the scope of MFV [11–15], as it extends the SM
flavour symmetry by G(3)� and includes one new source of flavour and CP violation, namely
�. DMFV models can be classified by the type of flavour to which the DM couples and the
fermion nature of the DM particle. The cases of � being a Dirac fermion and coupling to right-
handed up quarks uR [17, 18], right-handed down quarks dR [16], left-handed quark doublets
qL [19] and right-handed charged leptons [20] have already been studied.

In this paper we present a simplified model that constitutes the first realization of the DMFV
ansatz where the new DM field � is assumed to be a Majorana fermion. In analogy to the
model analysed in [17], it is assumed that � couples to right-handed up quarks through the
exchange of a scalar boson �. The Lagrangian of this model reads:

L = LSM +
1

2

�
i�̄/@� � M��̄�

�
� (�ij ūRi�j � + h.c.) + (Dµ�)†(Dµ�)

� m2

�
�†� + �H� �†� H†H + ���

⇣
�†�

⌘
2

. (2.2)

Here we have introduced � as a four-component Majorana spinor � = (�L, i�2�⇤
L
)T , with �L

being a two-component Weyl spinor. Note that due to its Majorana nature the kinetic term
and the mass term of � include a factor of 1/2. The field � transforms as a singlet under
the SM gauge group and as a triplet under a global O(3)� symmetry, i.e. it comes in three
generations. Its lightest generation is assumed to constitute the observed DM in the universe.
Interactions between SM quarks and this new DM field � are parametrised by the coupling �,

4

[Acaroglua, Blanke 2109.10357]
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Beyond minimal quark-philic models

▪ Non-minimal models:
   e.g. Dark Minimal Flavour Violation [Acaroglua, Blanke 2109.10357]



Conclusion

▪ Minimal quark-philic models

  ▪ SuperWIMP / freeze-in: 
     Light DM, current searches apply
  ▪ Conversion-driven freeze-out: 
     Small mass splitting O(10GeV) challenging

  ▪ Coannihilation:
     Transition between prompt and long-lived

▪ Beyond minimal quark-philic models

  ▪ Leptophilic: Similar pheno
  ▪ Dark Minimal Flavor Violation: more variety 
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