Update: ECFA Detector R&D Roadmap Implementation

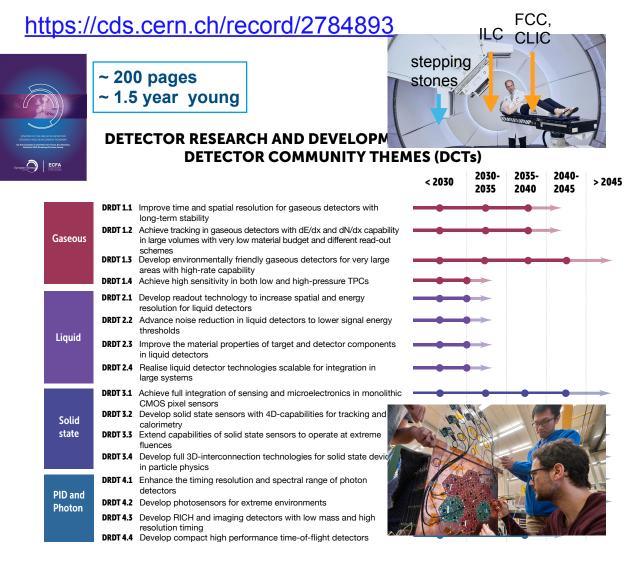
Plenary ECFA Meeting

July 12, 2023

Felix Sefkow DESY

Reminder:

Roadmap Process, Outcome Implementation plan


Status of individual DRD Proposals

Next steps: DRDC and MOUs

ECFA Detector R&D Roadmap and Implementation Plan

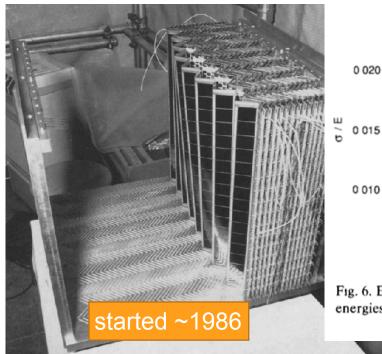
ECFA Detector Roadinap Sumnary

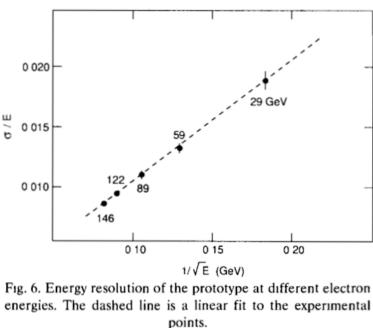
Relating Technology R&D to Major Drivers from Facilities

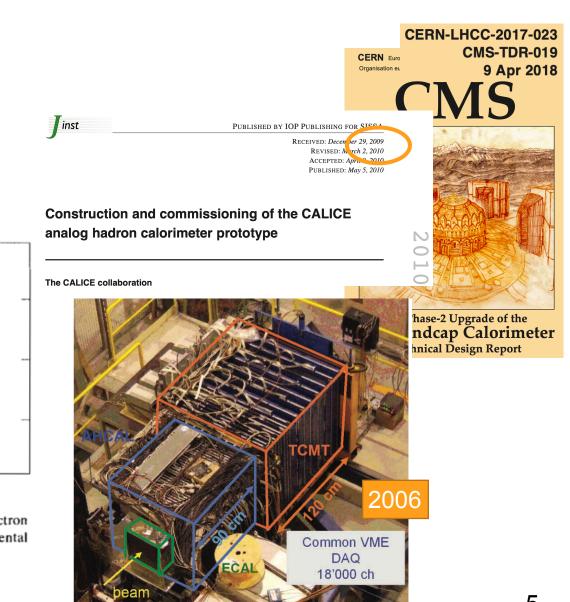
		Dates when R&D finished and real engineering & construction can start	LC	FCC, CLIC
		stepping stones		Ļ
		1 Promote the development of advanced quantum sensing technologies 2 Investigate and adapt state-of-the-art developments in guantum		
Quantum	DRDT 5.3	technologies to particle physics 3 Establish the necessary frameworks and mechanisms to allow		
	DRDT 5.4	exploration of emerging technologies 4 Develop and provide advanced enabling capabilities and infrastructure	•	►
	DRDT 6.1	1 Develop radiation-hard calorimeters with enhanced electromagnetic	•	
alorimetry	DRDT 6.2	 energy and timing resolution 2 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods 		→ →
	DRDT 6.3	.3 Develop calorimeters for extreme radiation, rate and pile-up environments		• >
		1 Advance technologies to deal with greatly increased data density	•	
	DRDT 7.2	2 Develop technologies for increased intelligence on the detector	•	
lectronics	DRDT 7.3	3 Develop technologies in support of 4D- and 5D-techniques	•	
	DRDT 7.4	4 Develop novel technologies to cope with extreme environments and required longevity	_	
	DRDT 7.5	5 Evaluate and adapt to emerging electronics and data processing technologies	•	
	DRDT 8.1	.1 Develop novel magnet systems	•	
	DRDT 8.2	2 Develop improved technologies and systems for cooling	•	
ntegration	DRDT 8.3	.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.	•	• • •
	DRDT 8.4	A Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects	•	→ →
Training	DCT 1	Establish and maintain a European coordinated programme for training in	•••••	
	DCT 2	Develop a master's degree programme in instrumentation		

Detector R&D Themes (DRDTs) and Detector Community Themes (DCTs). Here, except in the DCT case, the final dot position represents the target date for completion of the R&D required by the latest known future facility/experiment for which an R&D programme would still be needed in that area. The time from that dot to the end of the arrow represents the further time to be anticipated for experiment-specific prototyping, procurement, construction, installation and commissioning. Earlier dots represent the time-frame of intermediate "stepping stone"

projects where dates for the corresponding facilities/experiments are known. (Note that R&D for Liquid Detectors will be needed far into the future, however the DRDT lines for these end in the period 2030-35 because developments in that field are rapid and it is not possible today to reasonably estimate the dates for projects requiring longer-term R&D. Similarly, dotted lines for the DCT case indicate that beyond the initial programmes, the activities will need to be sustained going forward in support of the instrumentation R&D activities).


How Much Time Do We Need to Prepare?


"Random" Examples


Nuclear Instruments and Methods in Physics Research A3(9 (1991) 438-49 North-Holland NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SectionA

Performance of a liquid argon electromagnetic calorimeter with an "accordion" geometry

RD3 Collaboration

Implementation of the ECFA Detector R&D Roadmap

European Strategy stresses importance of a strong focus on instrumentation

- Relevant R&D issues must be addressed in time
- Common R&D lines with near- and mid-term projects exploit synergies and stepping stones
- Offer long-term perspectives for instrumentation physicists / engineers

Successful completion of High-Luminosity LHC must remain key focus

- started the process now, but expect only gradual ramp-up
- larger involvement of many groups after phase II construction completed

Two components

- Establishment of R&D collaborations anchored at CERN
- Implementation of General Strategic Recommendations (not covered today)

DRD: Detector R&D Collaborations

Anchored at CERN

Follow the successful model of R&D collaborations for the LHC

- funding in place since ~1986, R&D collaborations established in 1990
- few large DRD collaborations, to keep it manageable

Take full account of existing, successful and well managed R&D coll.

- Integrate with CERN EP R&D, AIDAinnova, RDxy, CALICE,...
- invite world-wide participation

Reasonably dimensioned review process (ECFA and CERN)

- addressing needs of future experiments is important criterion
- worldwide perspective

Process approved by CERN Council (Sep 2022)

- following extensive consultations with funding agencies
- Document: <u>https://indico.cern.ch/event/1197445/contributions/5034860/</u> <u>attachments/2517863/4329123/spc-e-1190-c-e-3679-</u> <u>Implementation_Detector_Roadmap.pdf</u>

Implementation Timeline

Community-driven approach, supported by ECFA Roadmap Task Forces

Goal: Transition to new scheme during 2023

- approval of LHC-oriented RD50 (silicon), RD51 (gas detector) collaborations expires Dec 2023
 Major Steps:
- community input (via existing R&D bodies where possible) by Q1 2023
- Written proposals, based on ECFA Detector Roadmap, by July 2023
 - 20 pages, concrete and realistic plans, deliverables, resource-loaded, for period 2024-2026
 - and with less precision beyond
- In parallel, DRD Committee mandate and membership defined
- Review (by DRDC, assisted by EDP) in fall 23, approval by end 2023
- R&D collaborations operational
- MoU signatures) through 2024

Challenge

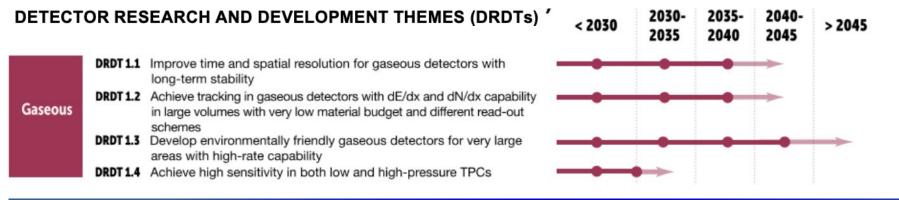
• funding not exactly known - but cost projections should be backed by Funding Agencies

Connection with ECFA Study on Future Higgs EW top Factories

Guidance and feedback

DRD to address needs of full spectrum of future facilities

- including near and far future, acceleration and non-accelerator
- Higgs factory ranking very high in European Particle Physics Strategy Update
- next to HL-LHC
- one of the main "customers" for several DRDs


ECFA Study WG3 on detectors organised two compact workshops in May

- bring together studies of future facilities and detector R&D community
- review requirements from physics, conceptual design drivers and emerging R&D proposals
- Calorimetry and PD <u>https://indico.cern.ch/event/1256374/timetable/?view=standard</u>
- Tracking and vertexing https://indico.cern.ch/event/1264807/timetable/?view=standard

Status of DRD Proposals

DRD1: Gaseous Detectors

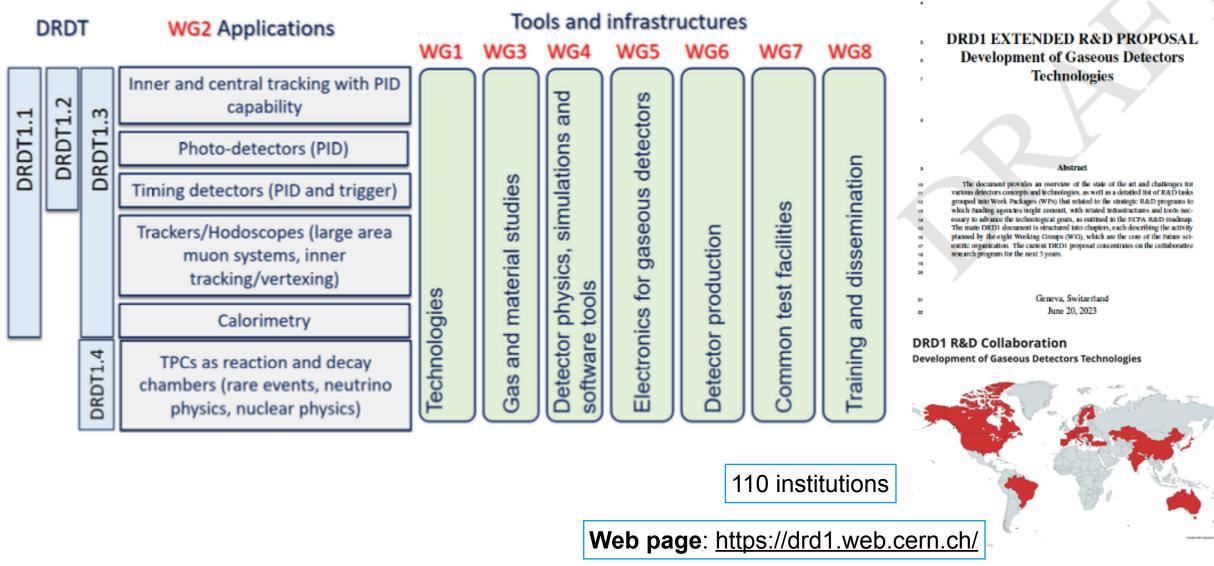
Successor and extension of RD51

Future Hadron Colliders: FCC-hh Muon System (MPGD - OK, particle rates are comparable with HL-LHC) Future Lepton Colliders: Tracking (FCC-ee / CepC - Drift Chambers; ILC / CePC - TPC with MPGD readout) Calorimetry (ILC, CepC – RPC or MPGD), Muon Systems (many gas det. are OK)

Future Election-Ion Collider: Tracking (GEM, µWELL; TPC/MPGD), RICH (THGEM), TRD (GEM)

TF Convenors: Anna Colaleo (INFN Bari (IT)), Leszek Ropelewski (CERN)

Proposal status: Draft released, on track for submission by end of July


• extended proposal (100p, executive summary in preparation)

Community Meeting: most recent June 23, https://indico.cern.ch/event/1273991/timetable/#20230622

DRD1 Structure and Community

DRD1

DRD2: Liquid Detectors

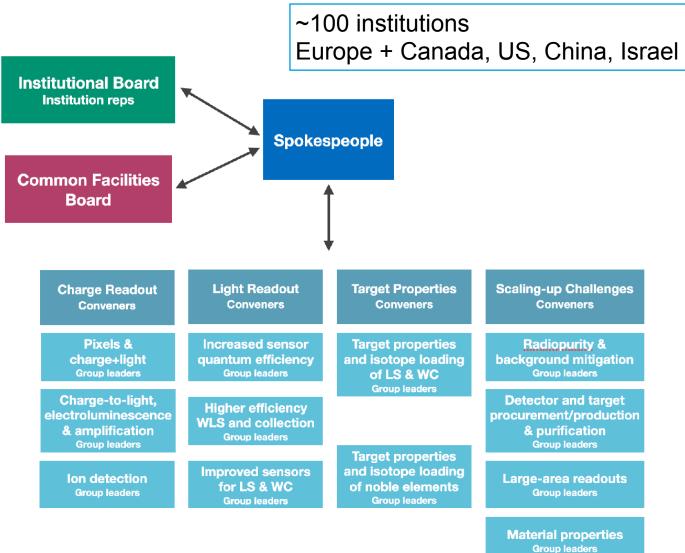
New Collaboration

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs)

	DRDT 2.1	Develop readout technology to increase spatial and energy resolution for liquid detectors
Liquid	DRDT 2.2	Advance noise reduction in liquid detectors to lower signal energy thresholds
Liquid	DRDT 2.3	Improve the material properties of target and detector components in liquid detectors
	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems

<u>Neutrinos</u>	Dark Matter	Ονββ
 Future generation: DUNE modules 1 & 2 DUNE near detectors DUNE modules 3 & 4 HK Future neutrino telescopes 	Future generation: ✓XLZD ✓GADMC/Argo ✓HeRALD ✓SBC	 Future generation: ✓ nEXO ✓ KL-Z+ ✓ Upgrades to SNO+

TF Convenors: J. Monroe (RHUL (GB)), R. Guenette (Manchester (GB))

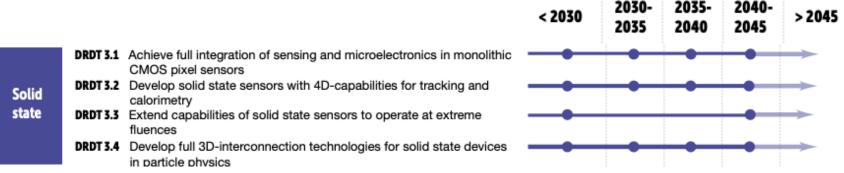

Proposal status: First full draft ready, on track for submission by end of July

• proposal draft (20 p), to be posted to community; all tables complete

Community Meeting: April 20, https://indico.cern.ch/event/1214404/timetable/#20230420

DRD2 Structure and Community

Building up

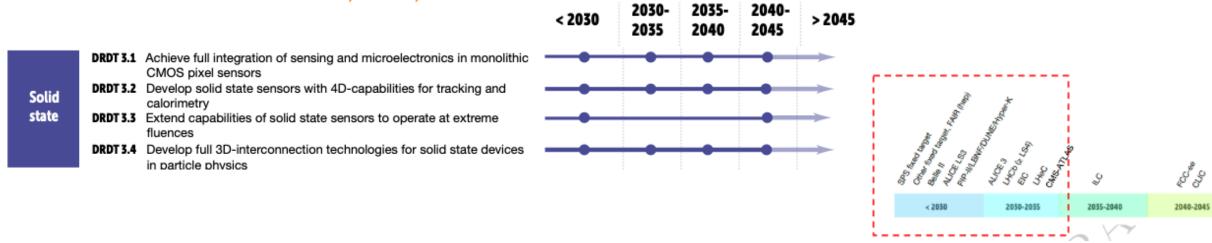


Contents

1	Introduction	1
2	Planning of Technology Areas 2.1 Technology Area 1: Charge Readout 2.1.1 Technology 1.1: Pixels and Charge + Light Readouts 2.1.2 Technology 1.2: Amplification structures, charge to Light conversion and granular light	1 1 1
	2.12 Technology Area 2: Light Readout 2.2.1 Technology Area 2: Light Readout 2.2.2 Technology 2.1: increased sensor quantum efficiency 2.2.2 Technology 2.2: Higher efficiency WLS/collection 2.2.3 Technology 2.3: Improved sensors for liquid scintillators (LS)/Water	4 5 8 8
	 2.2.3 Technology J.3: Improved sensors for fight schuting (LS)/ water 2.3 Technology Area 3: Target Properties 2.3.1 Technology 3.1: Target properties and isotope loading of Water and Liquid Scintillator	9 9 12
	2.4 Technology Area 4: Scaling-up challenges 2.4.1 Technology 4.1: radiopurity and background mitigation 2.4.2 Technology 4.2: Detector & target procurement/production & purification 2.4.3 Technology 4.3: Large-area readouts	13 13 15 16
3	Common tools test facilities	17
4	Partnerships (industrial, other research areas, other applications)	17
5	Networking and training	18
6	Proposal for the collaboration structure	18
7	Resources	19
8	Summary	22
R	eferences	22

				e of milestones and major deliverable		
Deliverables	Milestone	2024	2025	2026	2027-2030	>2030
Al: Charge Readout						
A1.1: Pixels and Charge + Light Readouts						
TA1.1.D1: Design a IC charge sensing pixel readout optimized	D1.1.M1.1 Lower pixel thresholds to the limit of CMOS capabilities.	O(1000 ENC)	O(5	00 ENC)	O(<200 ENC)	O(<100 ENC)
for low energy detection and minimizing power consumption.	TA1.1.MI.2 Lower power consumption	${\sim}100~{\rm uW/ch}$	50-10	00 uW/ch	<50 uW/ch	
TA1.1.D2: Scaling pixel readout to O(100 million) channels		O(100k)	0(1	million)	O(10million)	
TALLD: Doing of an architecture explain of capturing multimodel signals	TA1.1.38.1 Maximize photocathode coverages and QE is an air integrated IC charges and YUV light seming scheme for pixel TPCs	 Complete simulation of embedded photodetector technology - Mosurement for y flar in ASe horizontal geometry - ASe vertical geometry viability Integrated Front/SPM demonstrations (SoLAr) Organics viability ZaO explorations 	 Smull scale prototyping for embodied photodetector technology Simulation package for multiple modality pixels 	Joint readont scheme for ASh britoatal goo Monsurement Low γ flax in ASe werlind goo Other material explorations (Perrovskins, Nanoplatelets, etc)	 Performance assessment for embodded photoditector technology Small scale prototyping ASb horizontal goo Joint rendont scheme k small scale prototyping for ASe vertical goo Messurement Low γ flux in perovskitts k manphildets 	Mid-scale prototyp for pixel embedded photodetectors (data taking and valida - Mid-scale prototyp for multiple modalit (data taking and valida Scalability
	TA1.1.M3.2 Novel fast (O(GHz)) clock/timing sechilterures for charge & Q+L readout	50 MHz	100 MHz	500 MHz	1 GHz	
A1.2: Amplification structures, charge to Light conversion and gram	har light readout of dual phase detectors					
TA1.2.D1: Granular S2 light	TA1.2.MI.1: Camera-based particle tracking	first testing of photosensitive TPX4	testing TPX4 camera on prototype TPC; Design of VUV ontics	testing integrate VUV image intensifier and TPX4 camera	test tracking, physics capability long TPX4 camera TPC runs	scalability implementation R&E
	TA1.2M1.2: SiPM-based particle tracking				demonstrate mm tracking resolution and sub-percent energy resolution	
	TA1.2.M1.3: Conven-based S1 detection				demonstrate S1 detection with TPX4cam using WLS-coated GEMs or S2 induced by S1 via photoelectric effect	
A1.2.D2: Optimisation and characterisation of charge amplification structures	TA1.2.M2.1: dual phase	demonstrate single photoelectron sensitivity using novel amplification structures	demonstrate ER/NR discrimination; demonstrate feasibility of new techniques to generate intense proportional scintillation	optimisation of harge-area cryogenic glass thick GEMs		
	TA1.2.M2.2a: single phase LXe	demonstrate single photoelectron sensitivity using novel electroluminescence structures	demonstrate ER/NR discrimination	developments for m ² -scale testing device and integration techniques		
	TA1.2.M2.2b: single phase LAr		demonstrate stable charge amplification	demonstrate sub-keV detection threshold		
	TA1.2.M2.8: noved amplification strategies for single and mimol-phase detectors		report on the feasibility of LAr/LXe 10 1 scale detector with bubble-assisted amplification/electroluminescence			
TA1.2.D3: Demonstration of scalability of D1 an D2	TA1.2.M3.1: LAr / dual phase Ar large scale tests			imaging large-area with TPX camera readout in protoDUNE	Evaluate tracking and physics capabilities in protoDUNE rune	
	TA1.2.M3.2: Single phase LXe / dral phase Xe large scale tests		m ² -sized demonstrator of a dual-phase LXe electroluminescence	m ² -sized demonstrator of a single-phase LXe electrolyminescence	demonstrate scalability to m ² scale	experimental implements

Successor and extension of RD50, RD42,...


TF Convenors: Giulio Pellegrini (IMB-CNM-CSIC) (ES)), Nicolo Cartiglia (INFN Torino (IT))

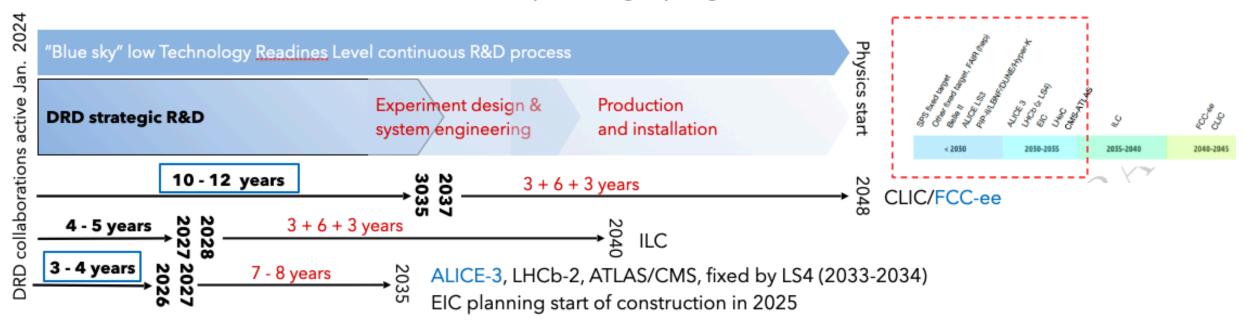
Proposal status: First full draft completed, ready for submission in July (with estimated resources)

• draft (40p) circulated to the community questionnaires on resources sent today, feedback by end August

Community Meeting: March 22-23, <u>https://indico.cern.ch/event/1214410/timetable/#20230322.detailed</u> DESY. Detector Roadmap | Felix Sefkow | July 2023

Successor and extension of RD50, RD42,...

TF Convenors: Giulio Pellegrini (IMB-CNM-CSIC) (ES)), Nicolo Cartiglia (INFN Torino (IT))


Proposal status: First full draft completed, ready for submission in July (with estimated resources)

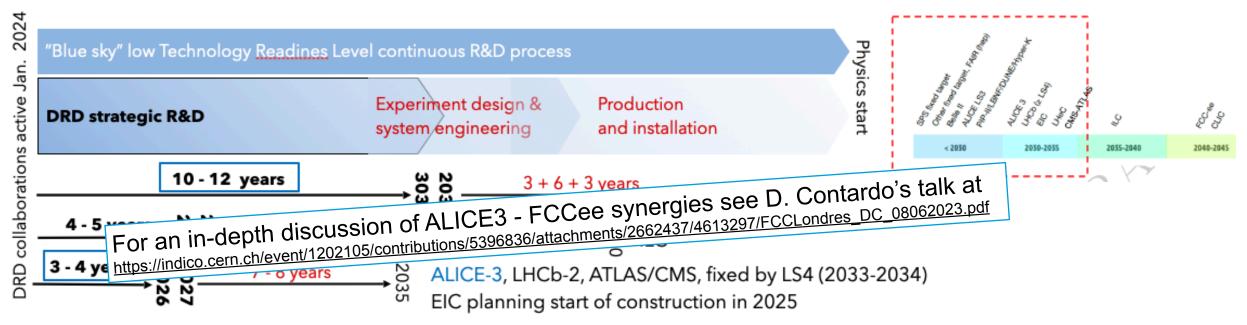
• draft (40p) circulated to the community questionnaires on resources sent today, feedback by end August

Community Meeting: March 22-23, <u>https://indico.cern.ch/event/1214410/timetable/#20230322.detailed</u> DESY. Detector Roadmap | Felix Sefkow | July 2023

Successor and extension of RD50, RD42,...

Broad brush timeline of ECFA roadmap strategic programs*

* Not exhaustive, now BELLE considering 3rd upgrade at high luminosity, Muon Collider new timeline from Snowmass, and also CEPC

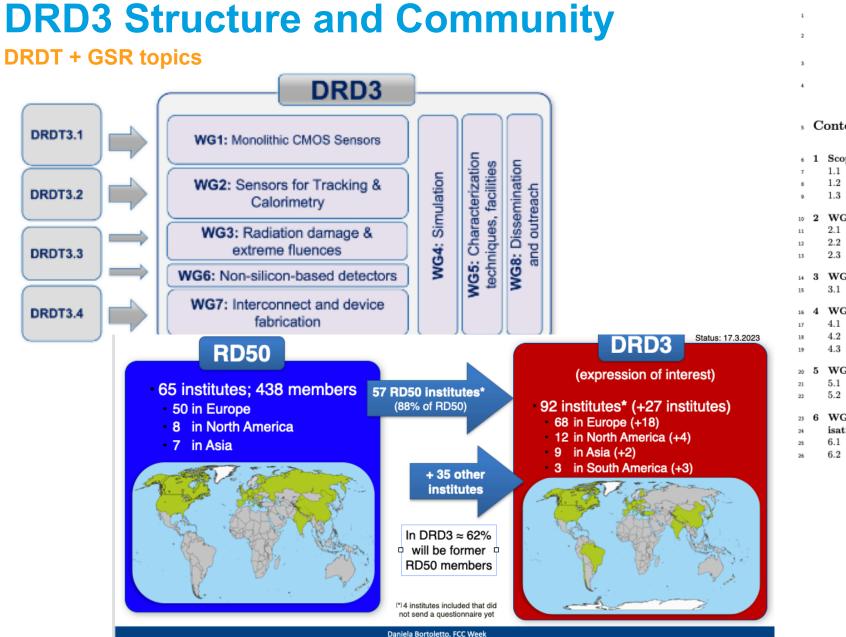

TF Convenors: Giulio Pellegrini (IMB-CNM-CSIC) (ES)), Nicolo Cartiglia (INFN Torino (IT))

Proposal status: First full draft completed, ready for submission in July (with estimated resources)

• draft (40p) circulated to the community questionnaires on resources sent today, feedback by end August **Community Meeting**: March 22-23, <u>https://indico.cern.ch/event/1214410/timetable/#20230322.detailed</u> Detector Roadmap | Felix Sefkow | July 2023

Successor and extension of RD50, RD42,...

Broad brush timeline of ECFA roadmap strategic programs*


* Not exhaustive, now BELLE considering 3rd upgrade at high luminosity, Muon Collider new timeline from Snowmass, and also CEPC

TF Convenors: Giulio Pellegrini (IMB-CNM-CSIC) (ES)), Nicolo Cartiglia (INFN Torino (IT))

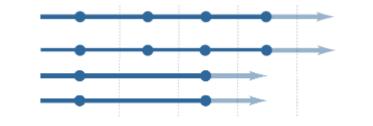
Proposal status: First full draft completed, ready for submission in July (with estimated resources)

• draft (40p) circulated to the community questionnaires on resources sent today, feedback by end August

Community Meeting: March 22-23, <u>https://indico.cern.ch/event/1214410/timetable/#20230322.detailed</u> DESY. Detector Roadmap | Felix Sefkow | July 2023

Bitbo Bond State Beteetors	
- Research Proposal -	
DRD3 Proposal Team	
July 11, 2023	
s	
f the DRD3 collaboration	
DRD3 working group structure	
ategic R&D	

DBD3 - Solid State Detectors


5 Contents

6	1	Scope of the DRD3 collaboration	3
7		1.1 The DRD3 working group structure	3
8		1.2 Strategic R&D	3
9		1.3 Common R&D	4
10	2	WG1: Monolithic CMOS sensors	6
11		2.1 WG1 Research Goals	6
12		2.2 Technology processes	9
13			12
14	3	, all benear in tracing and the traces of the second	14
15		3.1 WG2 Research Goals	14
		Y	
16	4	WG3: Radiation damage and extreme fluence operation	16
17		4.1 Radiation damage and hardening studies at material level	16
18		4.2 Radiation damage and hardening studies at device and system levels	17
19		4.3 WG3 Reasearch Goals	18
20	5	WG4: Simulation	19
21	-	5.1 Activities	19
22			19
23	6	WG5: Techniques, infrastructures and facilities for sensors character-	
24	Ů		21
24 25	Ū	isation 6.1 Working group implementation	

DRD4: Photodetectors and Particle ID

New Collaboration

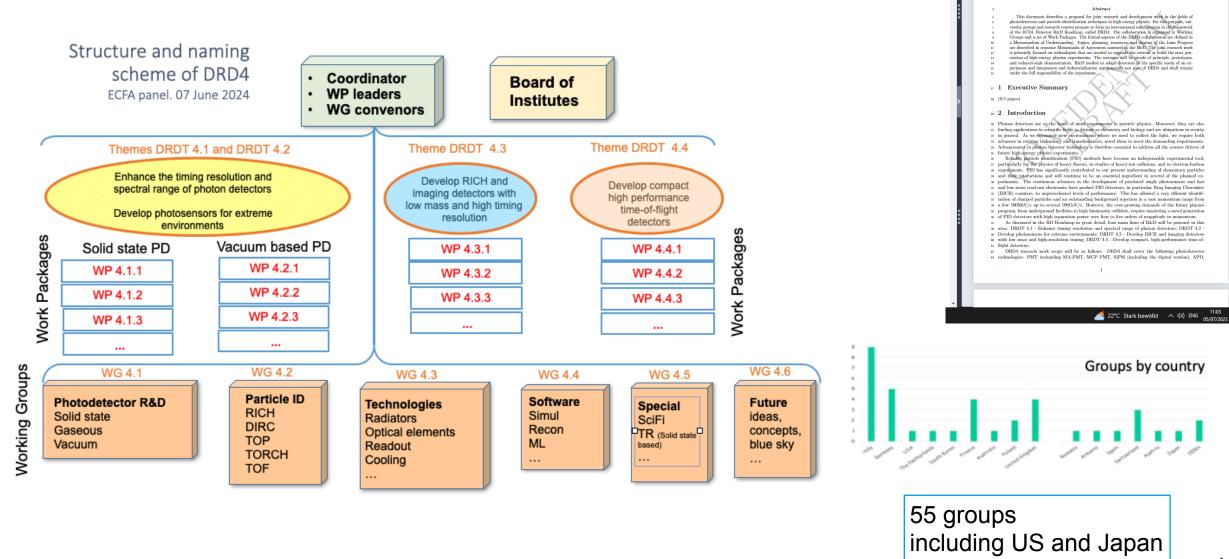
PID and	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors
Photon	DRDT 4.2	Develop photosensors for extreme environments
	DRDT 4.3	Develop RICH and imaging detectors with low mass and high resolution timing
	DRDT 4.4	Develop compact high performance time-of-flight detectors

Z-Factories are great Flavour Factories

Most groups focus on near-term projects HL-LHC LS4 upgrades of **LHCb**, **ALICE**, **EIC**,.. Recently grown interest in hadron separation for e+e-

Working point	Lumi. / IP [10 ³⁴ e	$cm^{-2}.s^{-1}$] Tot	al lumi. (2 IP	s) Run time	e Ph	ysics goal
Z first phase	100	2	26 ab^{-1} /year	2		
Z second phase	200	5	52 ab^{-1} /year	2	1	50 ab^{-1}
Particle product	tion (10 ⁹) B^0 /	$\overline{B}^0 = B^+ / B^-$	B_s^0 / \overline{B}_s^0	$\Lambda_b \ / \ \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle I	[27.	5 27.5	n/a	n/a	65	45
FCC-ee	e 100	0 1000	250	250	1000	500

TF Convenors: Christian Joram (CERN), Peter Krizan (JSI (SI))

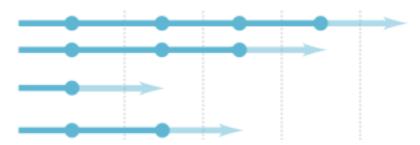

Proposal status: Draft underway for preliminary submission in July (with estimated resources)

• following 4 online surveys; aim at 20p, polished version with final resource tables after summer break

Community Meeting: Update on June 15, https://indico.cern.ch/event/1294239/

DRD4 Structure and Community

Strong interest

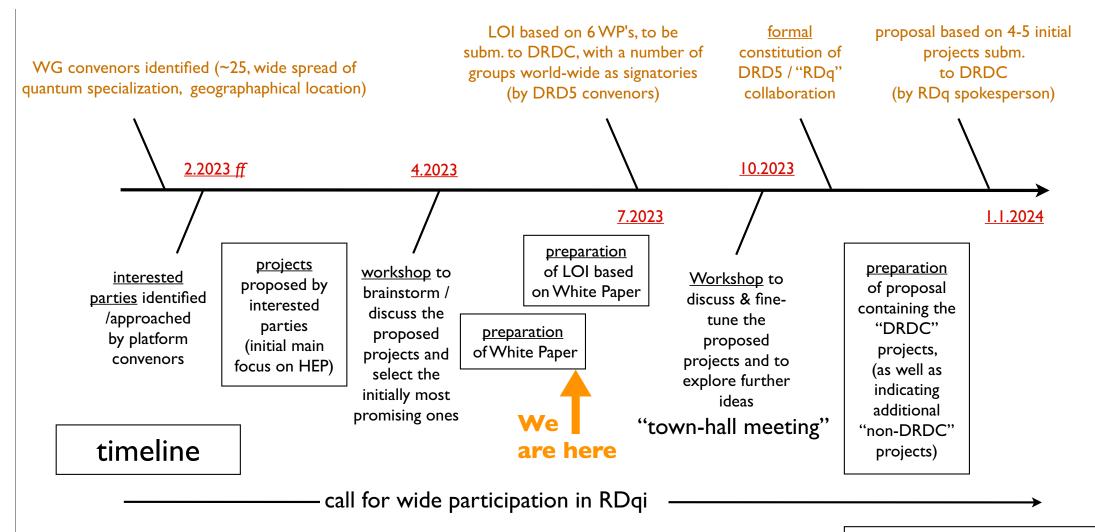


DRD4 Research Proposal July 5, 2023

DRD5: Quantum Technologies

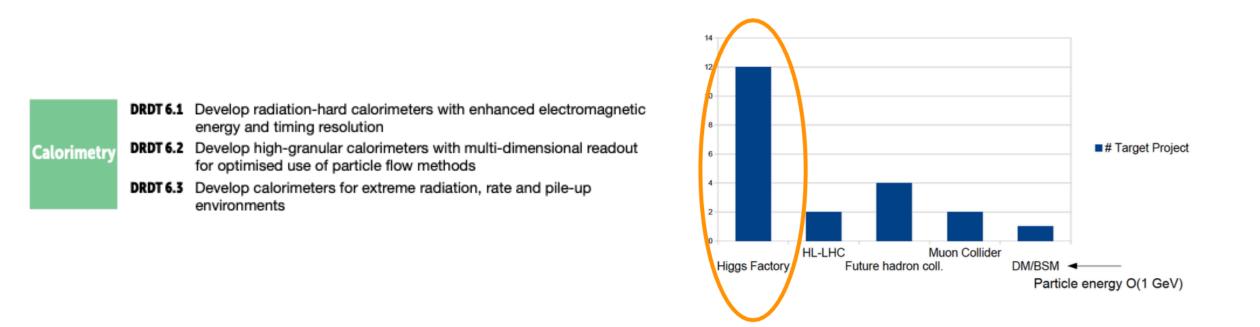
Complex Community of Communities

	DRDT 5.1	Promote the development of advanced quantum sensing technologies
	DRDT 5.2	Investigate and adapt state-of-the-art developments in quantum
Quantum		technologies to particle physics
	DRDT 5.3	Establish the necessary frameworks and mechanisms to allow
		exploration of emerging technologies
	DRDT 5.4	Develop and provide advanced enabling capabilities and infrastructure


TF Convenors: Marcel Demarteaau (ORNL (US)), Michael Doser (CERN) **Proposal status:** White paper evolving draft at <u>http://doser.web.cern.ch/</u> **Community Meeting**: Convenor level, minutes at <u>http://doser.web.cern.ch/</u>

Status of DRD5 / RDq efforts

- contacted wide range of communities worldwide (also in fields not involved with collider-based particle physics)
- determined interest by groups, suitability of technologies, biggest challenges for those
- Trying to grow a community of communities (there are no pre-existing such global communities)
- Additional challenge: no single host lab, many university labs; distributed platforms (2 in Europe, 2 in US, 2 in Asia, each a "steward" for a WG / WP
- Each "WP" is a high level set of activities consisting of sub-WP's
- Have been in touch with several other DRD's to discuss overlaps / sharing (e.g. cryo-electronics, superconducting calorimetry, ...). Contact with industry will evolve naturally via activities of the individual WG participants
- Collaboration structure is part of the discussion; initial model being polished


DRD5: Proceeding on a Different Timeline

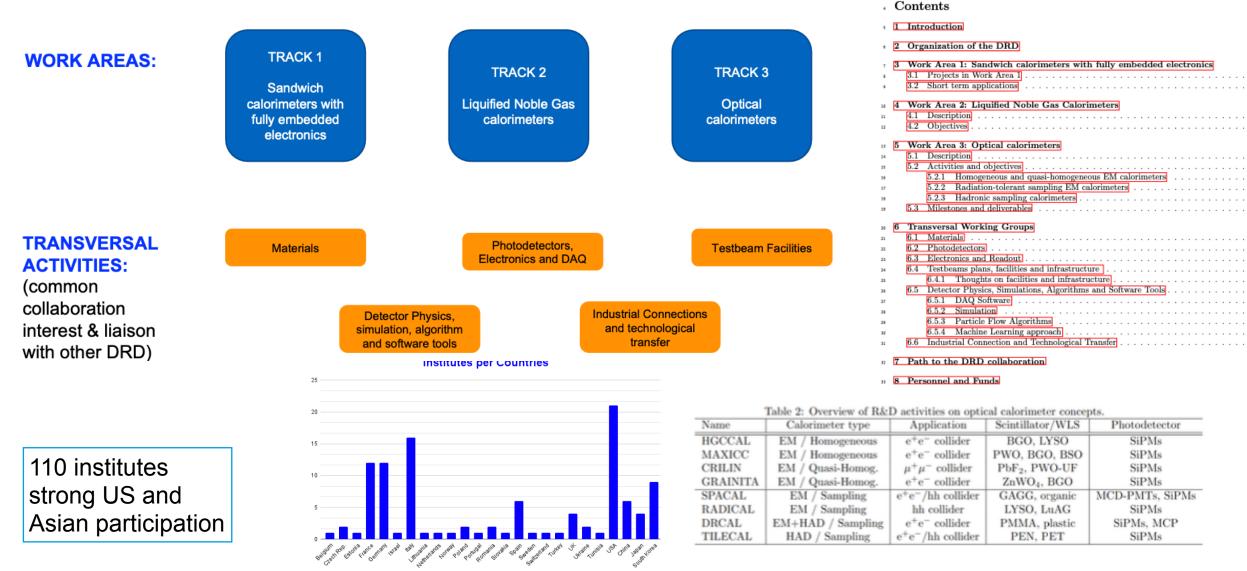
In Touch with Other DRDs

DRD6: Calorimetry

Integrating CALICE, LAr, Dual Readout, CrystalClear Collaborations

TF Convenors: Roberto Ferrari (INFN Pavia (IT), Roman Poeschl (Université Paris-Saclay (FR))

Proposal status: Draft underway for submission in July


• Aim at 20p, first fairly complete version circulating in the community

Community Meeting: 2nd meeting reviewing input on April 20: https://indico.cern.ch/event/1246381/

DESY. Detector Roadmap | Felix Sefkow | July 2023

DRD6: Structure and Community

Many technologies in each "box", several communities

DRD 6: Calorimetry

July 6, 2023

DRD7: Electronics

Transversal Activity

Electronics

- DRDT 7.2 Develop technologies for increased intelligence on the detector
- DRDT 7.3 Develop technologies in support of 4D- and 5D-techniques
- DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity
- DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies

Criteria

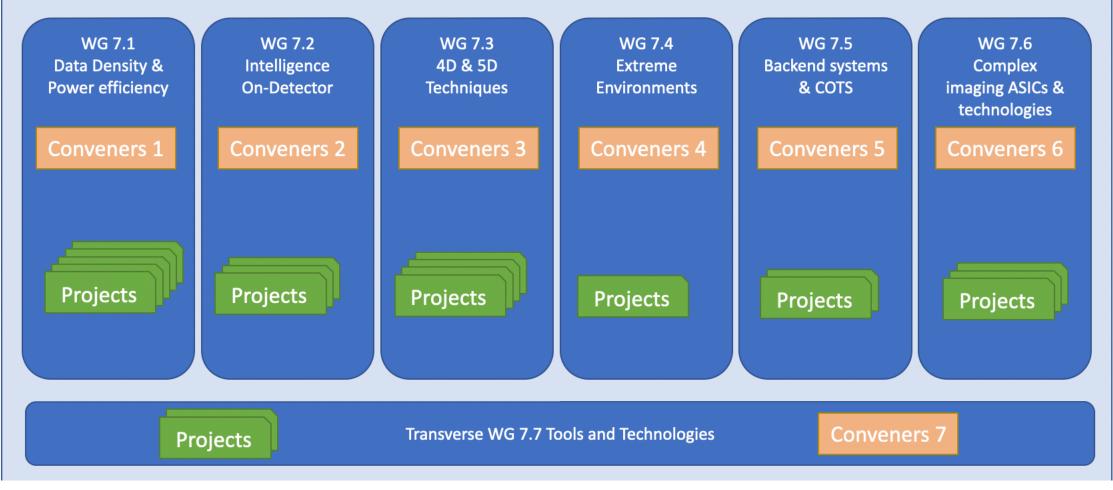
- Address novel, ambitious, and transformative topics (consistent with the priorities of the Detector R&D Roadmap), with an appropriate risk appetite
- Adequate resources, skills, partners, structure

Desirable

- Addressing multiple R&D themes in one development
- Involving multiple institutes, preferably supported by more than one funding agency
- Tackling system-level issues
- TF Convenors: Dave Newbold (STFC (GB), Francois Vasey (CERN)

Proposal status: Lol underway for submission in July, with ballpark resource estimates

- call for expressions of interest launched, deadline end of June
- second community meeting in September
- full proposal towards end of the year, depends on activities in other DRDs
- relationship defined in "Organisation of DRD7"


Community Meeting: March 14-15: https://indico.cern.ch/event/1214423/timetable/#20230314

DRD7: Structure

Convenors defined

Towards a DRD7 structure

- Collaboration Board: participating institutes
- Steering Committee: to be appointed
- Technical Committee:WG7.x conveners

TF8: Integration

Broad scope

ntegration	DRDT 8.1	Develop novel magnet systems
	DRDT 8.2	Develop improved technologies and systems for cooling
	DRDT 8.3	Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.
	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects

Scope turned out to be too broad and diverse for a DRD

• given smaller community interest when compared with other DRDs

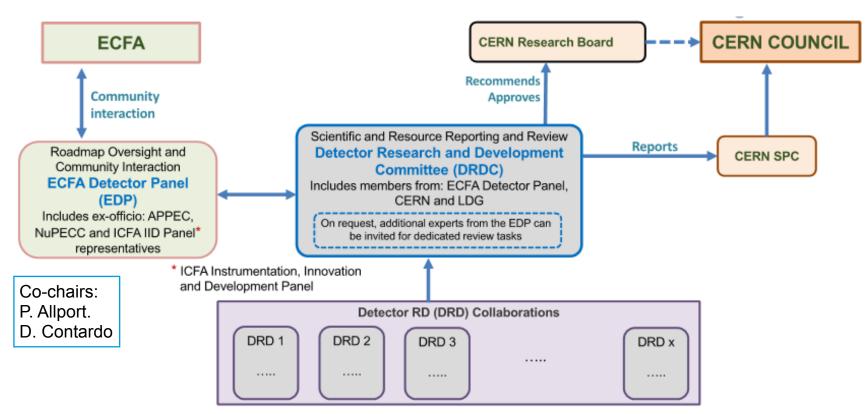
Advanced mechanics, materials and cooling (8.2, 8.3): still being considered for future DRD

• for the time being, include these topics in DRD3 (Solid detectors) and possibly DRD6 (Calo)

Next Steps

Review and Approval Process

Lightweight and commensurate with effort


Scientific and Resource Reporting and Review by a Detector Research and Development Committee (DRDC)

• report via SPC to Council

Assisted by the ECFA Detector Panel (EDP):

 the scope, R&D goals, and milestones should be vetted against the vision encapsulated in the Roadmap

Funding Agency involvement via dedicated Finance Review Committees

resources awarded to and held by institutes

Thomas Bergauer (HEPHY, Vienna) kindly accepted to become chair person of the DRDC

- Experts are being invited as members to the committee
- Hope to complete in the next week(s)

DRDC will play the role of the LHCC for the old RD collaborations

- Mandate is being worked on
- Idea: keep it light-weight, e.g. 2 meetings per year rather than 4

MoUs

In preparation

CERN considers multilateral collaborations for research purposes like experiments

- Was already the case for the R&D Collaborations
- Basis: CERN general conditions applicable to the execution of experiments ("GC")
- <u>https://cds.cern.ch/record/2728154/files/General-Conditions_CERN_experiments.pdf</u>

Based on GC, a template MoU will be provided based on experience with "small" experiments

- Try to keep things simple and the MoUs as uniform as possible across DRD collaborations
 - adapted only where necessary to the specific needs of a given DRD collaboration

Special properties of DRD collaborations with respect to small experiments

- Working groups: reflect internal structure of the collaboration
 - Collaborators and their funding agencies sign up for one or several working groups
- Work packages: resource-loaded time-limited units of work, possibly across working groups
 - Collaborators and their funding agencies may sign up for work packages

Guiding principle

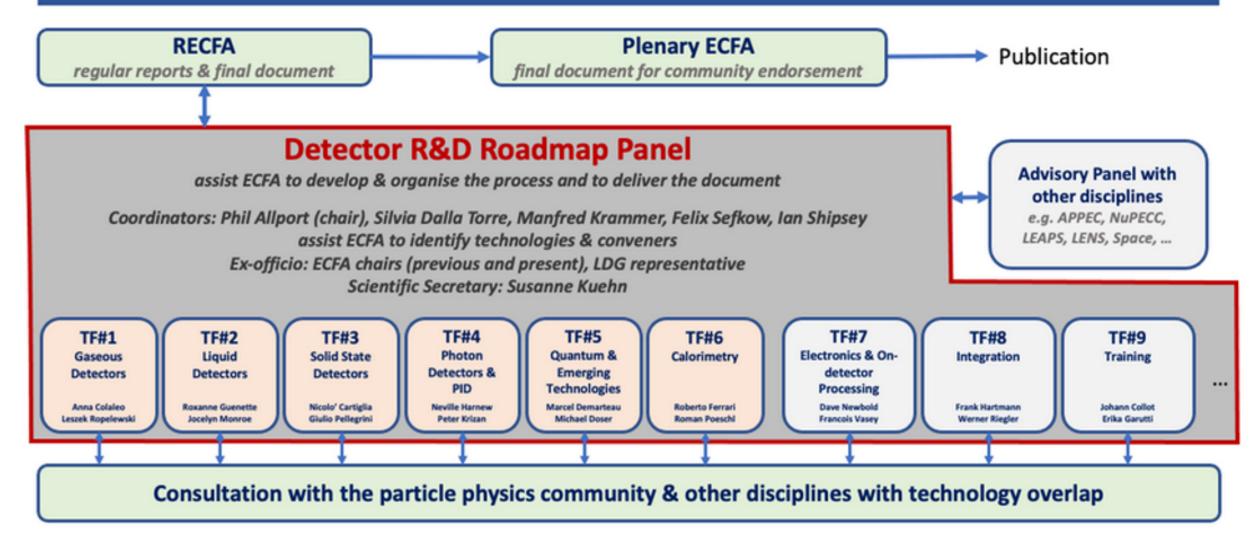
- Reduce signature cycles to a minimum
- Still make funding agencies agree if they undergo a commitment

Summary

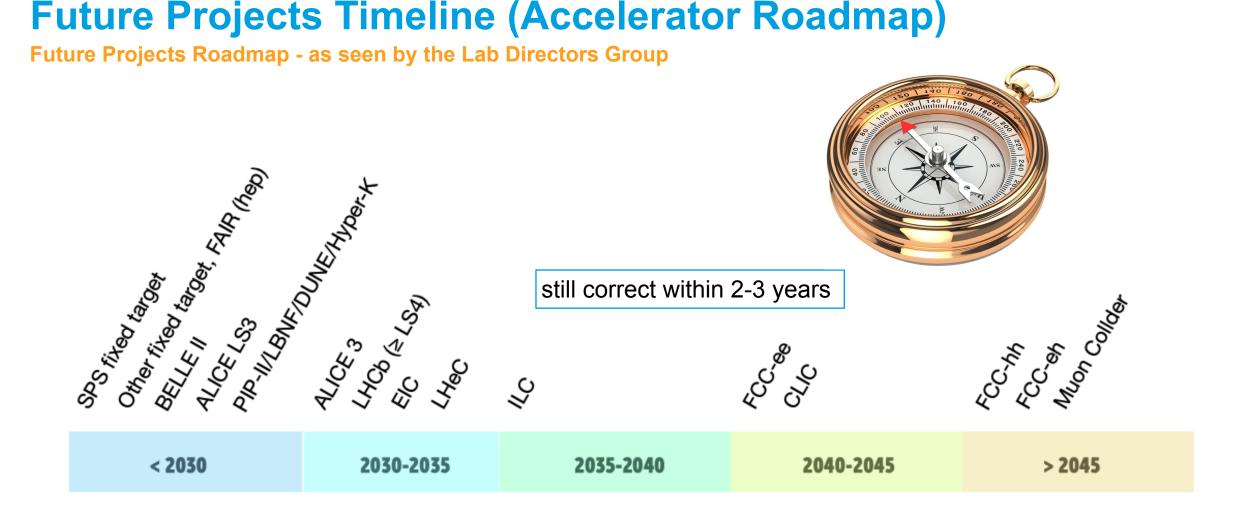
Formation of DRDs is timely

- given big HL-LHC upgrades are finishing, and in view of future collider scenarios
 Impressive response by the R&D community
- formidable amount of work being done overall on schedule
- structure and combine the efforts, uncover synergies

Strengthen the link between physics needs and technology development

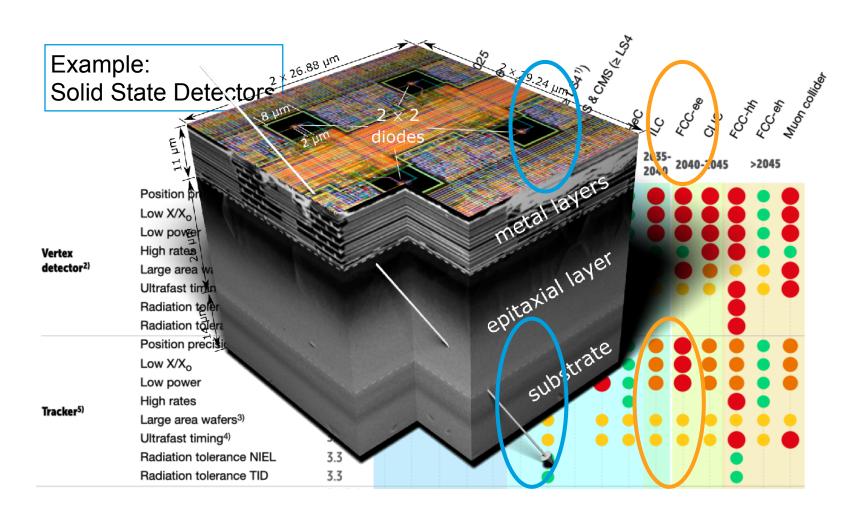

- nothing more motivating than that for the instrumentation scientist
- align detector R&D with European Strategy

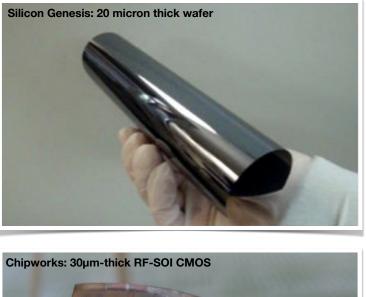
Unique moment and opportunity for our field

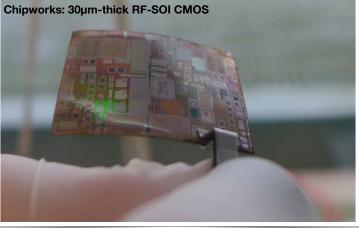

• to keep the momentum, initially positive feedback from funding agencies will have to materialise

Back-up

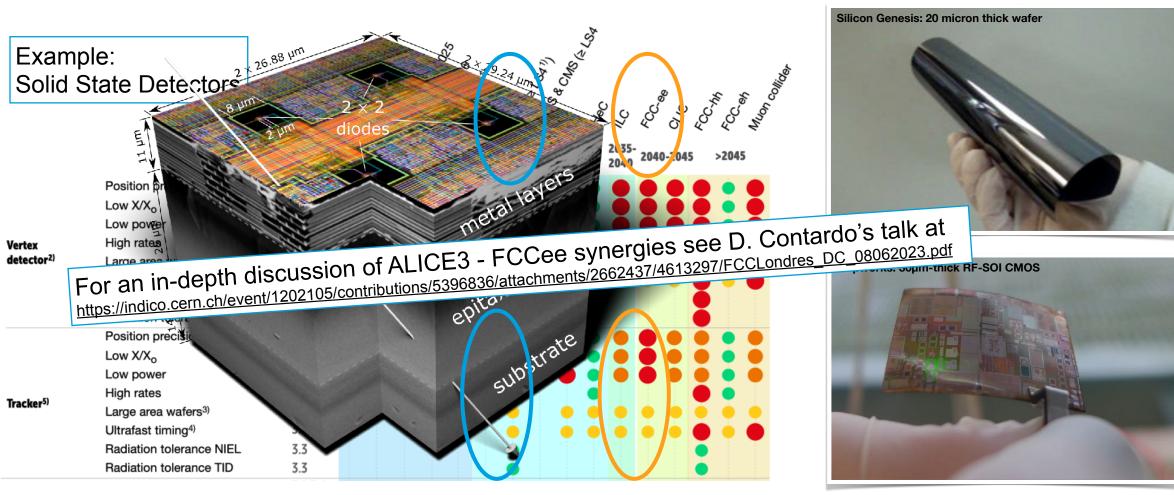
Organization to structure the consultation with the community


Information on the full process: <u>ECFA Detector R&D Roadmap</u>


The dates shown in the diagram have low precision, and are intended to represent the earliest "feasible start date" (where a schedule is not already defined), taking into account the necessary steps of approval, development and construction for machine and civil engineering.


Synergies, Stepping Stones, R&D collaborations

Looking Across the Fence, and Beyond Tomorrow



Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 9

Must happen or main physics goals cannot be met 🛑 Important to meet several physics goals 😑 Desirable to enhance physics reach 🔵 R&D needs being met

Synergies, Stepping Stones, R&D collaborations

Looking Across the Fence, and Beyond Tomorrow

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 9

Must happen or main physics goals cannot be met 🛑 Important to meet several physics goals 😑 Desirable to enhance physics reach 🤵 R&D needs being met

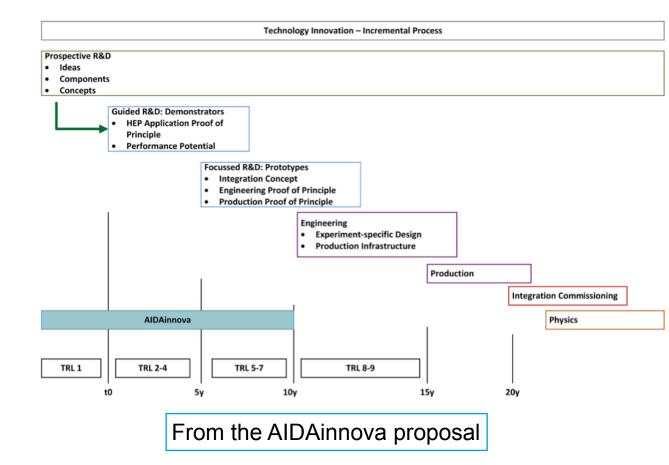
Categories of R&D

And Sources of Funding

1. Strategic R&D via DRD Collaborations (long-term strategic R&D lines)

vision

(address the high-priority items defined in the Roadmap via the DRDTs)


2. Experiment-specific R&D

(with very well defined detector specifications) focus (funded outside of DRD programme, via experiments, usually not yet covered within the projected budgets for the final deliverables) agility

3. "Blue-sky" R&D

(competitive, short-term responsive grants, nationally organised)

Transitions Blue-sky \rightarrow Strategic \rightarrow Specific expected Cross-fertilisation desired

Detector Roadmap: Strategic Recommendations

General Needs of the Field

- GSR 1 Supporting R&D facilities
- GSR 2 Engineering support for detector R&D
- GSR 3 Specific software for instrumentation
- GSR 4 International coordination and organisation of R&D activities
- GSR 5 Distributed R&D activities with centralised facilities
- GSR 6 Establish long-term strategic funding programmes
- GSR 7 Blue-sky R&D
- GSR 8 Attract, nurture, recognise and sustain the careers of R&D experts
- GSR 9 Industrial partnerships
- GSR 10 Open Science

DESY.

Capture many of the guiding principles of AIDA projects

Aim: Propose mechanisms to achieve a greater coherence across Europe to better streamline the local and national activities and make these more effective.

Give the area greater visibility and voice at a European level to make the case for the additional resources needed for Europe to maintain a leading role in particle physics with all the associated scientific and societal benefits that will flow from this.

R&D Collaborations