

T2.4 - Software design of a unique Al framework Status & next steps – Extension Period Discussions (M42+)

Prof. Dr. – Ing. Morris Riedel et al. Full Professor, School of Engineering & Natural Sciences, University of Iceland Lead of CoE RAISE WP2 – AI- and HPC-Cross Methods at Exascale 2023-08-28, AHM RAISE, Hveragerði, Iceland

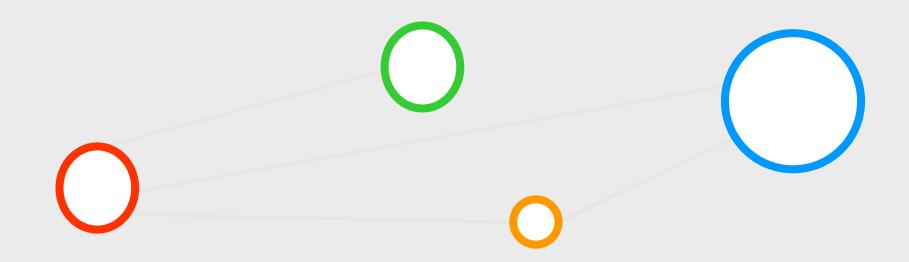

🗧 @ProfDrMorrisRiedel 👖 @Morris Riedel 💽 @MorrisRiedel 😏 @MorrisRiedel

https://www.youtube.com/channel/UCWC4VKHmL4NZgFfKoHtANKg

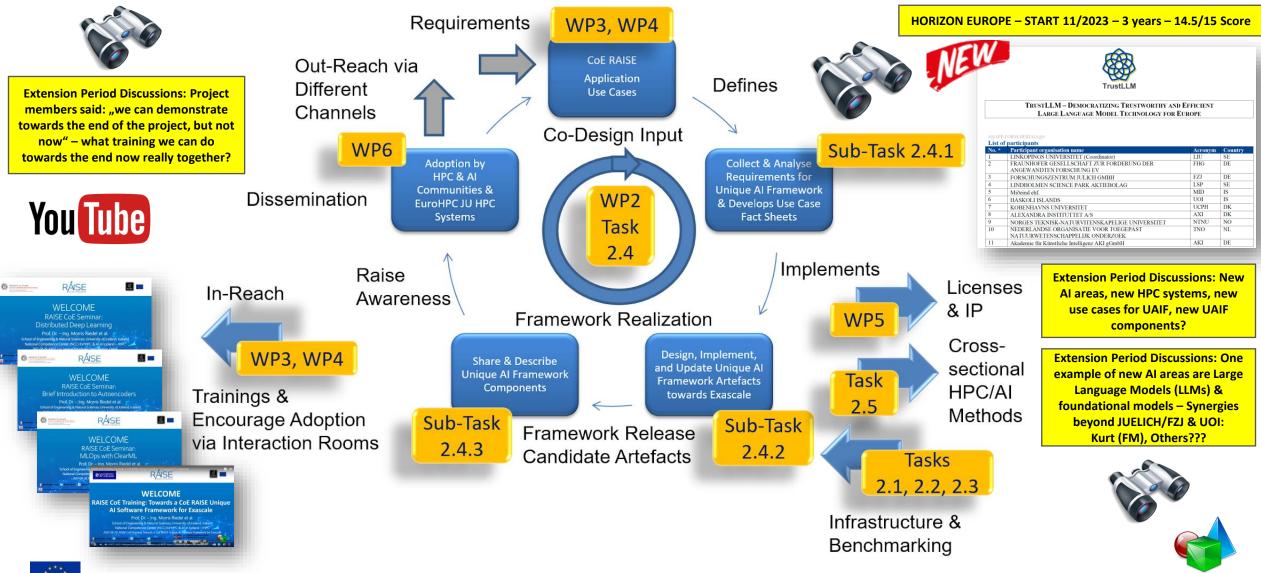
morris@hi.is

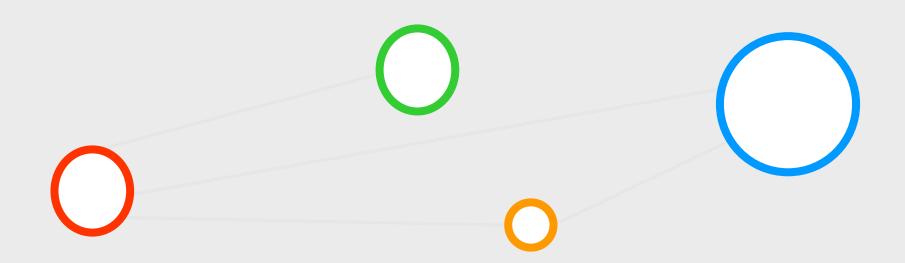
Outline

- Task 2.4 Process
 - TrustLLM as a new UAIF Contribution
- Challenges in using AI Methods on HPC at Scale
 - Review Toolset & Skillset Challenges
- Unique AI Framework (UAIF) Co-Design Process
 - UAIF Co-Design at A Glance
 - Factsheets & Interaction Rooms
- CoE RAISE UAIF Status
 - Current Blueprint
- Adoption Roadmap of the Framework
 - Cooperation with NCCs & EuroHPC JU Hosting Sites
- Summary & Q&A
 - Feedback from NCCs, CoEs


O PyTorch

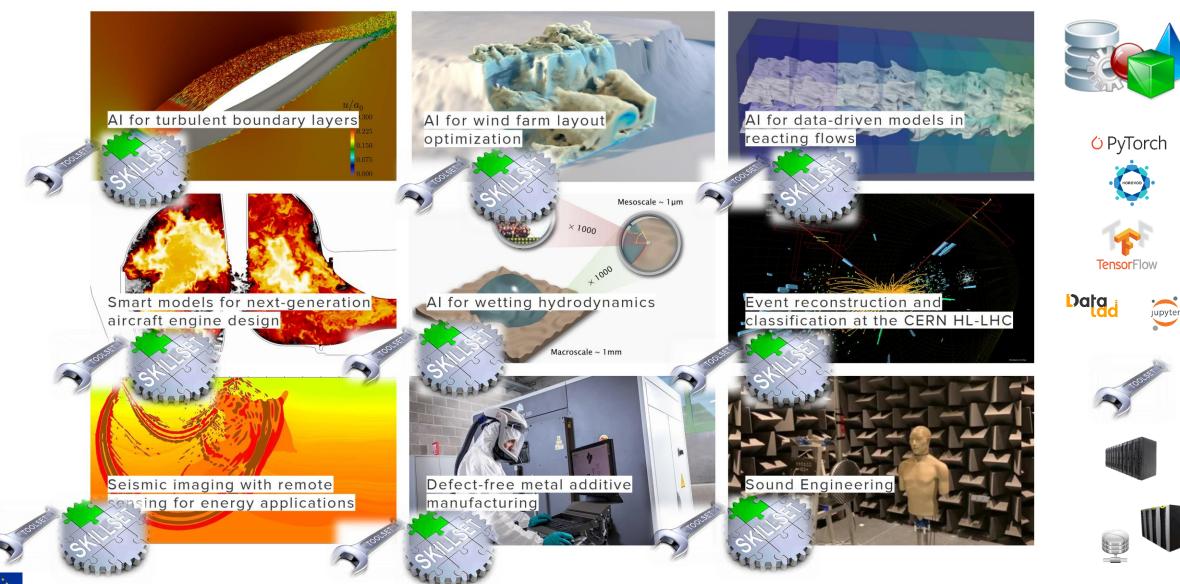
Data


T2.4 Process



Task 2.4 Process – Focus on Adoption & New Stakeholders RA

Challenges in using AI Methods on HPC at Scale



Compute & Data-driven Use Cases – Complex Challenges

2023-08-28 T2.4 - Software design of a unique AI framework - Status and next steps

Example: TensorFlow

- Can we create an automated module checker for the SW Framework RAISE?
- > Specific versions of TensorFlow require specific versions of underlying HPC modules or other AI frameworks to work in specific versions together
- > Python versions must be correct as well
- > E.g., differences in Python 3.8.x and 3.9.x
- Support AI developers for many other tools like PyTorch, Horovod, Ray Tune, etc.

Requirements Gathering Process – Version Challenges

P Build from source Tenso	rFlow× +							- 0	
← → C @ https://www.tensorflow.org/install/source								lii\ 🖻	
1 TensorFlow	Install		sources 👻 More 🕇		Q Search	D0201 0.4.2	🕀 English 👻	GitHub Sign	
₹ Filter		GPU	2.7, 0.0 0.0		000 4.0	042010.4.2		On this page Setup for Linux and macOS	
Install TensorFlow		Version	Python version	Compiler	Build tools	cuDNN	CUDA	Install Python and the TensorFlow	
Packages		tensorflow-2.8.0	3.7-3.10	GCC 7.3.1	Bazel 4.2.1	8.1	11.2	package dependencies	
pip Docker		tensorflow-2.7.0	3.7-3.9	GCC 7.3.1	Bazel 3.7.2	8.1	11.2	Install Bazel Install GPU	
		tensorflow-2.6.0	3.6-3.9	GCC 7.3.1	Bazel 3.7.2	8.1	11.2	support (optional, Linux	
Additional setup GPU support		tensorflow-2.5.0	3.6-3.9	GCC 7.3.1	Bazel 3.7.2	8.1	11.2	only) Download the	
GPU device plugins		tensorflow-2.4.0	3.6-3.8	GCC 7.3.1	Bazel 3.1.0	8.0	11.0	TensorFlow source code	
Problems		tensorflow-2.3.0	3.5-3.8	GCC 7.3.1	Bazel 3.1.0	7.6	10.1	Configure the build	
Build from source		tensorflow-2.2.0	3.5-3.8	GCC 7.3.1	Bazel 2.0.0	7.6	10.1	Sample session	
Linux / macOS		tensorflow-2.1.0	2.7, 3.5-3.7	GCC 7.3.1	Bazel 0.27.1	7.6	10.1	Configuration options	
Windows SIG Build 🗾		tensorflow-2.0.0	2.7, 3.3-3.7	GCC 7.3.1	Bazel 0.26.1	7.4	10.0	Build the pip package	
		tensorflow_gpu-1.15.0	2.7, 3.3-3.7	GCC 7.3.1	Bazel 0.26.1	7.4	10.0	TensorFlow 2.x	
Language bindings								GPU support TensorFlow 1.x	
Java 🖾 Java (legacy) 🛇		tensorflow_gpu-1.14.0	2.7, 3.3-3.7	GCC 4.8	Bazel 0.24.1	7.4	10.0	Bazel build	
c		tensorflow_gpu-1.13.1	2.7, 3.3-3.7	GCC 4.8	Bazel 0.19.2	7.4	10.0	options	
Go 🖾		tensorflow_gpu-1.12.0	2.7, 3.3-3.6	GCC 4.8	Bazel 0.15.0	7	9	Build the package	
		tensorflow_gpu-1.11.0	2.7, 3.3-3.6	GCC 4.8	Bazel 0.15.0	7	9	Install the package	
		tensorflow_gpu-1.10.0	2.7, 3.3-3.6	GCC 4.8	Bazel 0.15.0	7	9	Docker Linux builds	
		tensorflow_gpu-1.9.0	2.7, 3.3-3.6	GCC 4.8	Bazel 0.11.0	7	9	CPU-only	
		tensorflow_gpu-1.8.0	2.7, 3.3-3.6	GCC 4.8	Bazel 0.10.0	7	9	GPU support	
		tensorflow_gpu-1.7.0	2.7, 3.3-3.6	GCC 4.8	Bazel 0.9.0	7	9	Tested build configurations	
		tensorflow_gpu-1.6.0	2.7, 3.3-3.6	GCC 4.8	Bazel 0.9.0	7	9	Linux macOS	

Requirements Gathering Process – Module Challenges

[riedel10dp-dam01 ~1\$ module spider cudn

Example of Setups

- Many different versions / combinations
- E.g. FZJ JSC DEEP-EST HPC System

	cuDNN:
	Description: The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks.
ς	Versions: cuDNN/7.4.1.5-CUDA-9.2.88 cuDNN/7.5.1.10-CUDA-10.1.105 cuDNN/7.6.4.38-CUDA-10.2.89 cuDNN/8.0.2.39-CUDA-11.0 cuDNN/8.3.1.22-CUDA-11.3 cuDNN/8.3.1.22-CUDA-11.5
	For detailed information about a specific "cuDNN" module (including how to load the modules) use the module's full name. For example:
	<pre>\$ module spider cuDNN/7.6.5.32-CUDA-10.2.89</pre>
	<pre>[riedel1@dp-dam01 ~]\$ module spider tensorflow</pre>
	TensorFlow:
	Description: An open-source software library for Machine Intelligence
A GPUs.	wh open-source soltware library for machine intelligence
	Versions:
	TensorFlow/1.12.0-GPU-Python-2.7.15

Loren (peun dolor el anel, con adpiscing el L. Phasellus el odo faulbue accument ul vel inclus	utiectus
lacinia congue lacus, id ultrior	
fferous quis.	
Vivamus dolor justo, laculla	Loren lpsum doior alt arreit, consectatur
lampus, preturn non lartor.	adiplacing elit. Phaseillus el ocio ut lectue
odio, bibendum ao congue	Saustaus accumpen ut veil loctus. Nuno
erce. Meuris formentum, sil	lacitis corgue lacue, id utifices fells
sodales, lactus lao aliquet r	rhoneus quis.
torior libero eu dolor.	Vivamus dolor juste, iaculis id fermontum
Peleniesque habitant moti	tempus, prelium non lottor. Nulla neque
senecka et netus et makes	odio, bibendum ac congue vol, dictum et
ac turple operates. Sed puty	eros. Mauris fermentum, nisi ac lacinia
ligule interdam eulemod.	sodales, loctus loo aliquet nisi, ut ultrices
	tortor libero-eu dolor.
	Pallentesque habitant morbi trislique
	senectus el retus el malescada ferres
	ac turpis egestze. Sed publinar ga
N Y Z	ligula interdum aulamod.
U	-

	[liedeligap-damoi -]; module spidel censolliow
dell@dp-dam01 ~}\$ module spider nccl	
CC.:	TensorFlow:
Description: The NVIDIA Collective Communications Library (NCCL) implements multi-GFU and multi-node collective communication primitives that are performance optimized for NVIDIA GFUs. Versions: NCCL/2.4.6-1-CUDA-9.2.88 NCCL/2.4.6-1-CUDA-10.1.105 NCCL/2.4.6-20DA-10.1.105	Description: An open-source software library for Machine Intelligence Versions: TensorFlow/1.12.0-GPU-Python-2.7.15 TensorFlow/1.12.0-GPU-Python-3.6.6
NCCL/2.4.8 NCCL/2.7.3-CUDA-10.2.89 NCCL/2.8.3CUDA-11.0 NCCL/2.10.3-LCUDA-11.3 NCCL/2.10.3-LCUDA-11.3 NCCL/2.11.4-CUDA-11.3	TensorFlow/1.13.1-69U-Fython-3.6.8 TensorFlow/2.2.0-69U-Fython-3.6.8-1 TensorFlow/2.3.1-Fython-3.8.5 TensorFlow/2.5.0-Fython-3.8.5 TensorFlow/2.6.0-CUDA-11.5
r detailed information about a specific "NCCL" module (including how to load the modules) use the module's full name. r example:	For detailed information about a specific "TensorFlow" module (including how to load the modules) use the module's full name For example:
\$ module spider NCCL/2.7.3-1-CUDA-10.2.89	<pre>\$ module spider TensorFlow/2.2.0-GFU-Fython-3.6.8-1</pre>
edel1@dp-dam01 ~]\$ module spider cuda	
UDA: Description: CUDA (formerly Compute Unified Device Architecture) is a parallel computing platform and programming model created by NVIDIA and implemented by the grap to the virtual instruction set and memory of the parallel computational elements in CUDA GPUs. Versions:	
CUDA/9.2.88 CUDA/10.1.105 CUDA/10.2.89 CUDA/11.0 CUDA/11.0.207 CUDA/11.3 CUDA/11.5	
or detailed information about a specific "CUDA" module (including how to load the modules) use the module's full name. or example:	
\$ module spider CUDA/11.0.207	

Example: Detailed Knowledge of Modules Necessary

Modules

- > Vary heavily between different HPC systems
- > 2-3 Days/Months spend by researchers for getting the right environment / HPC system
- ➤ Goal: UAIF simplify setup of components
- > E.g., automated job script generator for right module setup
- > E.g., re-usable scripts

	Deep_DDP	important bug fix	3 months ago
	Deep_DeepSpeed	Deepspeed in Deep	6 months ago
#!/usr/bin/env bash	Deep_HeAT	Jureca additions	5 months ago
	Deep_Horovod	Deep modifications for Horovod and fex bu	6 months ago
<pre># Slurm job configuration</pre>	Deep_TensorFlow	initial TF push	5 months ago
#SBATCHnodes=1	HELPER_Scripts	fix tqdm bug	4 months ago
#SBATCH ntasks-per-node=4	Lureca_DDP	latest fixes	1 month ago
#SBATCHcpus-per-gpu=20 #SBATCHaccount=hai so2sat	🗅 Jureca_DeepSpeed	latest fixes	1 month ago
#SBATCHoutput=output.out	Lureca_Graphcore	added Graphcore dir and fixed Irank in CASES	2 months ago
#SBATCHerror.er	🗅 Jureca_HeAT	latest fixes	1 month ago
#SBATCHtime=6:00:00	🗅 Jureca_Horovod	latest fixes	1 month ago
#SBATCHjob-name=BENTF2 #SBATCHgres=gpu:1partition=booster	🗅 Jureca_LibTorch	initial libtorch push	1 month ago
#SBATCHgres-gpu.ipartition=booster	Dureca_RayTune	Update Jureca_RayTune/create_jureca_env.sh	3 months ago
#load modules	Duwels_DDP	Update README.md	3 months ago
ml Stages/2020 GCC/9.3.0 OpenMPI/4.1.0rc1	Luwels_Turbulence	merge	9 months ago
ml Horovod/0.20.3-Python-3.8.5		Update PARAMETER_TUNING/Autoencoder/	3 months ago
<pre>ml TensorFlow/2.3.1-Python-3.8.5 #activate my virtualenv #source /p/project/joaiml/remote_sensing/rocco_sec</pre>	dona/ben_TF2/scrip	ts/env_tf2_juwels_booster/bi	n/activate
<pre>#export relevant env variables</pre>			

#exp #export CUDA VISIBLE DEVICES="0,1,2,3"

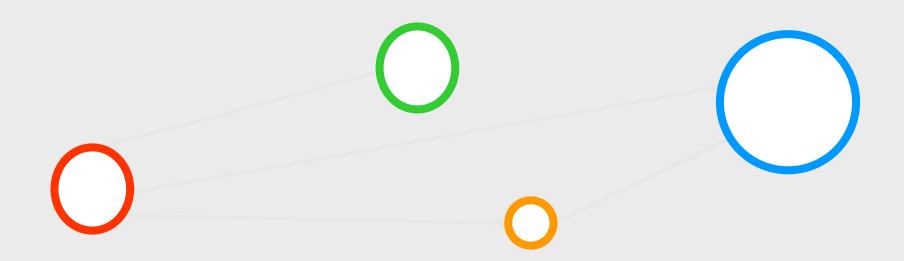
#run Python program srun --cpu-bind=none python -u train hvd keras aug.py

Already available for the community: https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai-for-hpc-oa

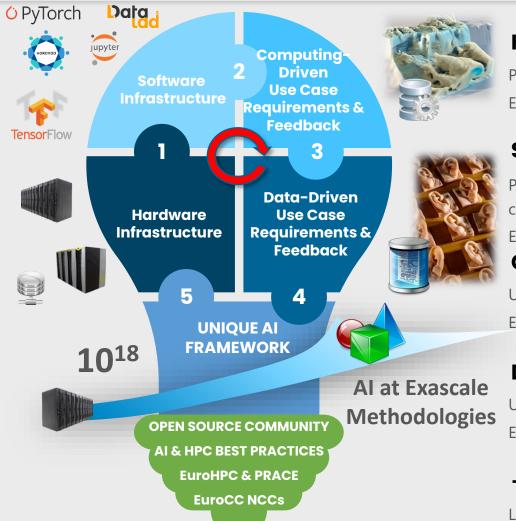
Requirements Gathering Process – Time Efforts Challenges

Example of Setups

- Tried many varieties of kernels
- Developers /PIs / PhD Students loose ~3-4 hours average by trying new HPC machine just to get new modules right and/or setup kernels that work with modules
- Selected debug/solution tools not known always, e.g., nvidia-smi, really scalable components, etc.
- Note: Jupyter framework itself seems not to be the problem, rather complex hardware/software configurations


JÜLICH Forschungszentrum	TING						Last login: 14:13:14 2022-03-29
Porsenungszentrum GENIKE	Start Links						m.riedel@fz-juelich.de
Configurations Please give each of your configuration This way you can run multiple instance Supported characters are a-z, 0-9 and	is a name es at the same time	~					
JupyterLab Name your JupyterLab Add ne	ew JupyterLab						
Name	Version	System	Account	Project	Partition	Details	Actions
jupyterlab_1	JupyterLab 2 (2020b)	DEEP	riedel1	joaiml	dp-dam	▶ Details	Start delete
jupyterlab_2	JupyterLab 2 (2020b)	DEEP	riedel1	joaiml	ml-gpu	▶ Details	Start delete
jupyterlab_3	JupyterLab 2 (2020b)	DEEP	riedel1	joaiml	ml-gpu	► Details	Start
jupyterlab_4	JupyterLab 2 (2020b)	DEEP	riedel1	joaiml	ml-gpu	► Details	Start

<pre>import os os.environ['CUDA_VISIBLE_DEVICES'] = "0,1,2,3"</pre>	
<pre>device_lib.list_local_devices()</pre>	
# lood deta (X_train, y_train), (X_test, y_test) - mnist.load_data()	
<pre>y_train = to_categorical(y_train) y_test = to_categorical(y_test)</pre>	Select Kernel Setect kernel for YCC_80_ANR_Modelipynb*
<pre>rum_classes = y_test.shape[1]</pre>	d_kernel v
<pre>f #(for Boardies woods def boardies woods) </pre>	Start Preferred Kernel dLernel_students dLkernel_students3 dLkernel_students4 dLkernel2
# build the model model = basellem_model() # fit the model model.fit(X_train, y_train, validation_data-(X_test, y_test), epochs-10, batch_size-200, verbose-2)	dl_kernel3 dl_kernel4 dl_kernel5
# Final evaluation of the model scores - model.venNute(t.text, y.text, verbose=0) print("Baseline Error: X.2PXX" X (100-scores[1]*100))	dl_kernel6 dl_kernel7
	dl_kernel8 kernel_assignment
	Octave-6.1.0
	PyDeepLearning-1.0
	PyParaView-5.8.1
	PyQuantum-1.1


Unique Al Framework (UAIF) Co-Design Process

Unique Al Framework (UAIF) Co-Design Process at a Glance RASE

Hardware Infrastructure

Prepare & Document available production systems at partners' HPC centers Examples: JUWELS (JUELICH), LUMI (UOICELAND), DEEP Modular Prototypes, JUNIQ (JUELICH), etc.

Software Infrastructure

Prepare & Document available open source tools & libraries for HPC & AI useful for implementing use cases

Examples: DeepSpeed and/or Horovod for interconnecting N GPUs for a scalable deep learning jobs **Computing-driven Use Cases Requirements & Feedback**

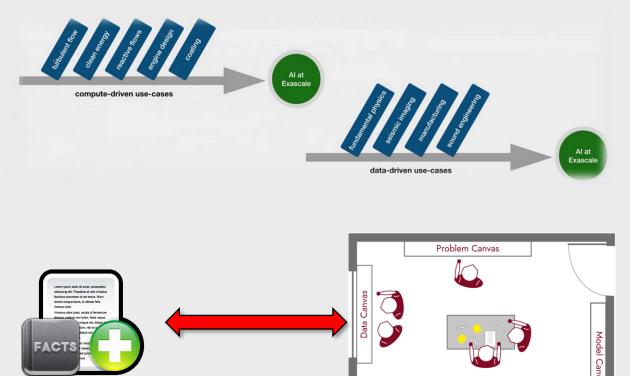
Use cases with emphasize on computing bring in co-design information about AI framework & hardware Examples: Use feedback that TensorFlow does not work nicely, so WP2 works with use cases on pyTorch

Data-driven Use Cases Requirements & Feedback

Use cases with emphasize on data bring in co-design information about AI framework & hardware Examples: Deployment blueprint by using AI training on cluster module & inference/testing on booster

\rightarrow UNIQUE AI FRAMEWORK (UAIF)

Living design document & software framework blueprint for HPC & AI also with pretrained AI models


Unique Al Framework (UAIF) Co-Design Process Approaches RASE

Fact Sheets

- Foster initial understanding
- Living document & each Fact Sheet per WP3/WP4 Use Case
- > (Experience from many other EU projects)

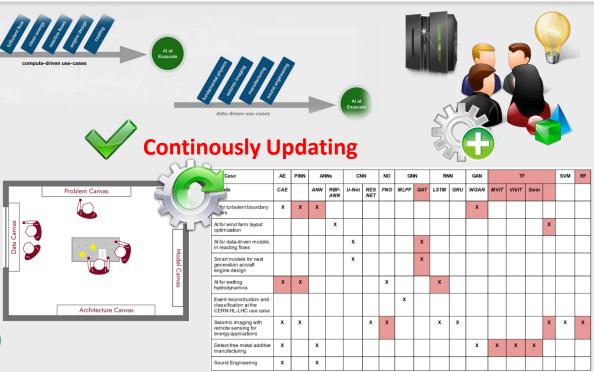
Selected Contents

- Short Application Introduction
- Clarify Primary Contacts
- Codes/Libraries/Executables
- > HPC System Usage Details
- Specific Platforms & 'where is what data'?
- Machine/Deep Learning Approaches of Interest

Driven by Prof. Matthias Book & Prof. Helmut Neukirchen

Architecture Canvas interaction room process

Interaction Room Status & Discussions – WP3/WP4 Overview

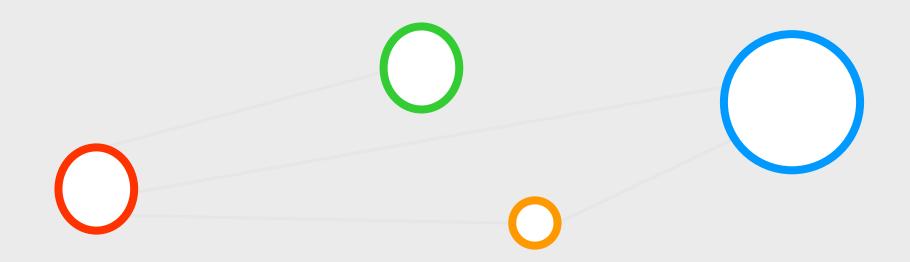


> WP3 (third round IRs)

- > T3.1: Turbulent Flow \rightarrow Done (2023-06-05)
- ► T3.2: Clean Energy → Done (2023-04-11)
- ► T3.3: Reactive Flows → Done (2023-05-09)
- > T3.4: Engine design \rightarrow Done (2023-05-09)
- ► T3.5: Coating → Done (2023-04-24)

> WP4 (third round IRs)

- ► T4.1: Fundamental physics → Done (2023-04-28)
- \land > T4.2: Seismic imaging \rightarrow September?
 - ► T4.3: Manufacturing → Done (2023-05-02)
 - ► T4.4: Sound engineering → Done (2023-04-21)
- > 3rd iteration of Interaction Rooms \rightarrow schedule



- » Next round Interaction Rooms for Adoption
 - Carve out more details on AI/HPC methods
 - Contribute to the Unique AI Framework
 - > Update our HPC/AI Methods Matrix

COE RAISE UAIF Status

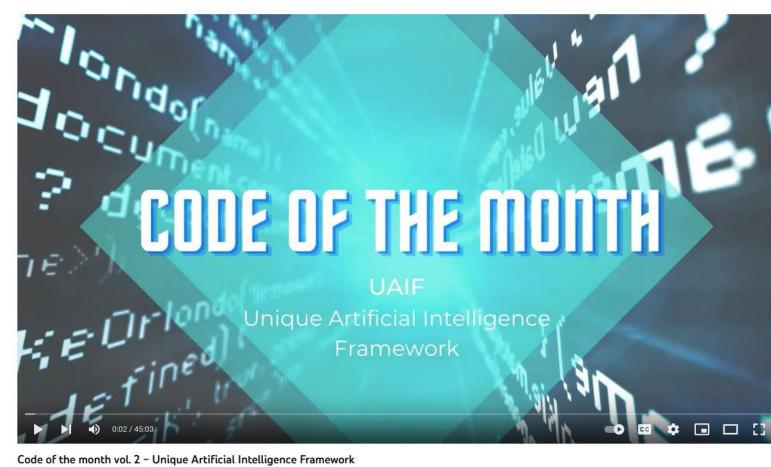

Realization of SW Framework

CASTIEL Code of the

put the tools in the

PhzDLL, etc.?

Extension Period Discussions: LAMEC = Load AI Modules, Environments, and Containers – How far can we go? How many systems to add? What happens at M43? Sustainability? Calls?



Continously

Updating!

Realization of SW Framework – YouTube RAISE Channel

Thanks to Lin, Eray, Johannes, Arnar, ... GREAT WORK!!!

Continously Updating!

44 views 2 days ago

COE RAISE

↑ Subscribed

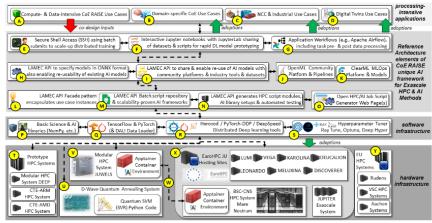
CoE RAISE follows the rules of open science and publishes its results open-access when they are ready for wider application. All developments of CoE RAISE are being integrated into the Unique Al Framework (UAIF), which will not only contain the trained models but also documentation on how to use them on current Petaflop and future Exascale HPC, prototype, and disruptive systems. The developments toward the Unique Al Framework are continuously progressing. Show more

RÁISE

Realization of SW Framework – Interactive Website

RASE

Newsletter


About News Research Network Services Events Media

Unique Al Framework

- (UAIF) -

CoE RAISE follows the rules of open science and publishes its results open-access when they are ready for wider application. All developments of CoE RAISE are being integrated into the Unique AI Framework (UAIF), which will not only contain the trained models but also documentation on how to use them on current Petaflop and future Exascale HPC, prototype, and disruptive systems. The UAIF developed by CoE RAISE works with processing-intensive applications of a wide variety of scientific and engineering domains.

UAIF in the context of the larger European Ecosystem of Projects and Initiatives

A B C D E F G H I J K L M N O P O R S T U V W X Y

A - Compute- and Data-Intensive CoE RAISE Use Cases

Component (A) in Fig. 1 represents the co-design efforts of the UAIF based on compute- and data-intensive use cases. Fact Sheets for each use case have been produced and describe what novel AI methods correlate to available UAIF components. They foster general understanding of the contributions that have been added over time to the UAIF and include scalability and utility for Exascale aspects. Several tasks in WP2 contributed to benchmarking and proof of scalability of selected components of the UAIF on various production and prototype HPC systems in this context. Detailed co-design activities have been performed via the Interaction Room methodology and Mural Boards. During the project and especially in the last reporting period, a clear picture is provided on what components are relevant for the UAIF.

B - Domain-Specific CoE Use Cases

A wide variety of CoEs have been funded in different domain-specific areas providing use cases that leverage simulation sciences or AI/HPC methods to utilize the emerging Exascale computing. At the time of writing, another EuroHPC JU Work Programme (WOPRO) outlining future funding of CoEs addresses the needs of large user communities in four specific areas of application domains. As shown in Fig. 1 (B), the UAIF is recommended to CoEs to adopt the UAIF to prevent AI developers in domain-specific sciences wasting a lot of effort.

C - NCC and Industrial Use Cases

A pan-European network of NCCs has been created under the EuroCC-1 and e and Medium Enterprises (SMEs) to leverage HPC resources made available via represent adoptions of the UAIF by NCCs and the significant potential to gove speed-up and scale-up their applications towards Exascale.

D - Digital Twins (DT) Use Cases

DTs and corresponding workflows as they are developed, e.g., in the Destinat for scientific and engineering HPC users in Europe. Component (D) has been a applications of DTs that are also highly relevant for CoE RAISE, either the DTs use cases in CoE RAISE.

Reference Architecture Elements

E - Secure Shell (SSH) Low-Level Access

This section describes the reference architecture components relevant for the Fig. 1 in the second layer (components (E) – (O)). This covers descriptions of the notebooks high-level access, application workflows, LAMEC API Open Neural

number of Graphical Processing Units (GPUs) that are available on HPC systems

API community platform integration, community platform OpenML interoperability, ClearML MLOps platform interoperability, LAMEC API facade pattern implementation, LAMEC API batch script repository, LAMEC API batch script generator, and open HPC/AI script generator web page(s).

As shown in Fig. 1 (E), the first reference architecture element includes the use of the SSH protocol into the plan, Principally, as a

means to remotely log into HPC systems and submit batch scheduler scripts via the Simple Linux Utility for Resource Management (SLURM) tool, it remains one of the integral access methods for HPC applications. It needs to be provided to researchers. One example of relevance for CoE RAISE is that AI researchers often use batch scripts for distributed training of DL models to leverage the high

 \bigcirc

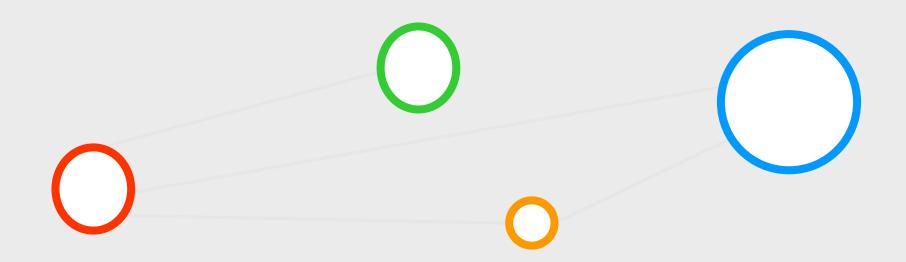
 \bigcirc

 \bigcirc

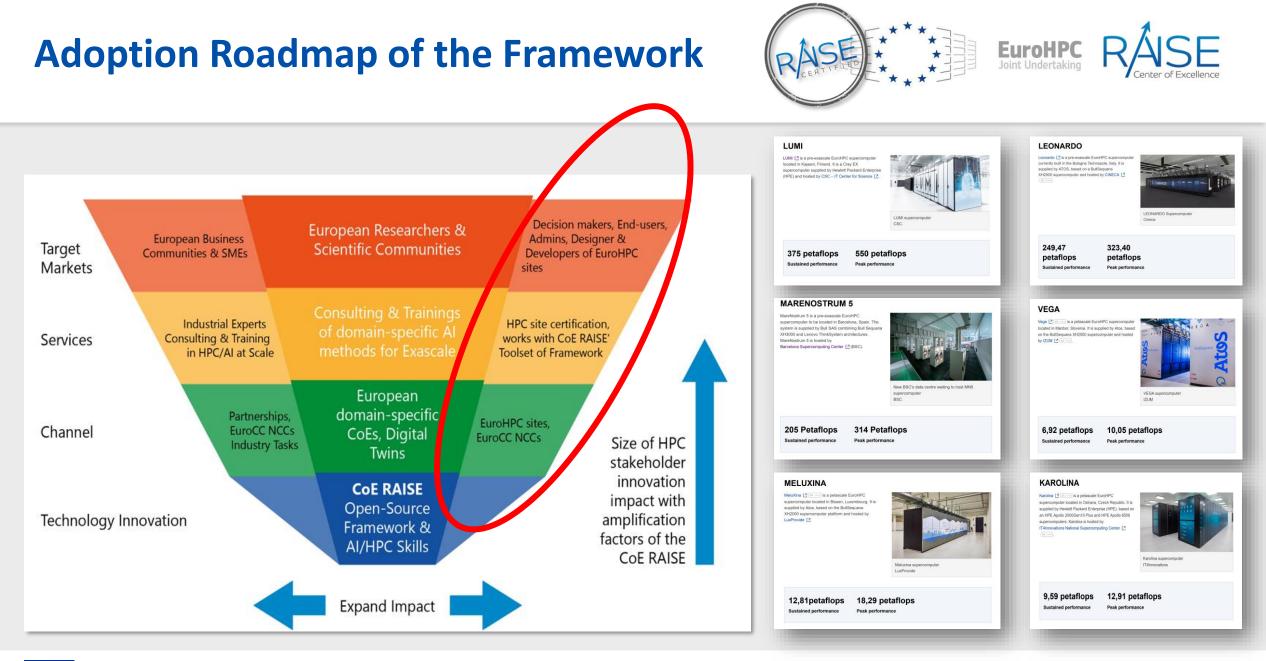
Thanks to Michael &

John, ...

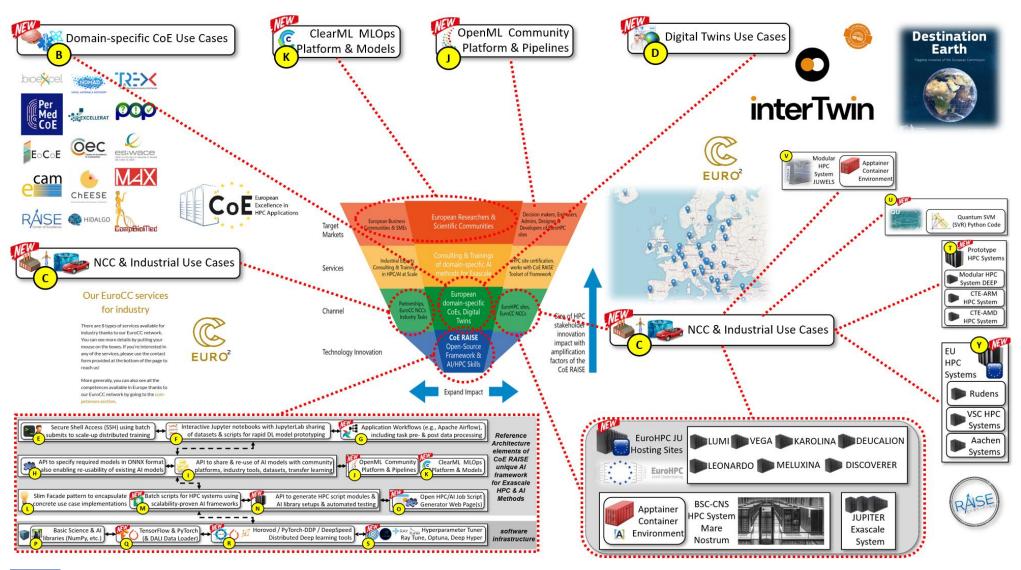
GREAT WORK!!!



Continously Updating!



Adoption Roadmap of the Framework

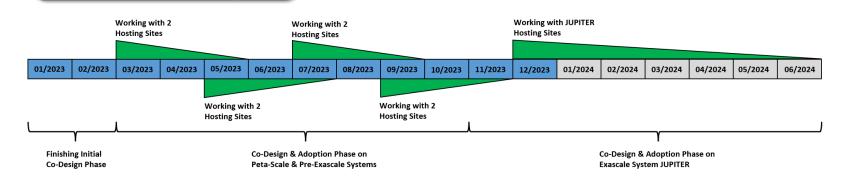


Towards SW Framework Adoptions

NCCs & Industry Hosting Sites – Adoption Plans

[A] Environment

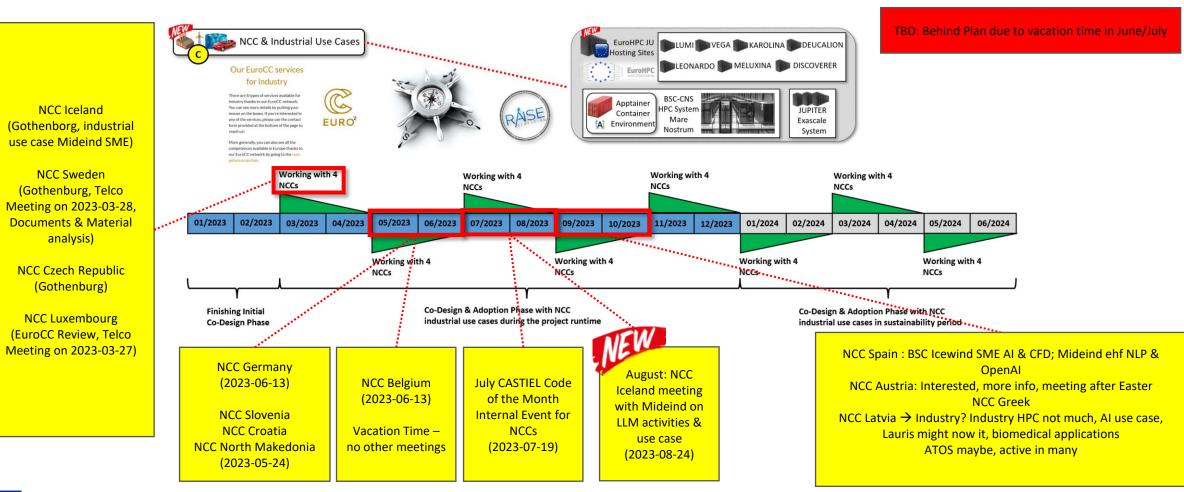
Nostrum


... Morris Riedel • You Professor & Head of Research Group High Productivity Data Processin... 5d • 🕥

Productive meeting of EuroCC NCC Iceland/Croatia/Slovenia at IEEE MIPRO 2023 Conference crafting plans for #AI & #HPC Methods collaboration with COE RAISE and its AI/HPC framework ...see more

NCC Iceland: TrustLLM use Case with SME Mideind ehf on LLM on HPC TrustLLM EuroHPC JU LUMI WEGA KAROLINA DEUCALION Hosting Sites EONARDO MELUXINA DISCOVERER EuroHPO BSC-CNS Apptainer HPC System JUPITER Container Mare Exascale

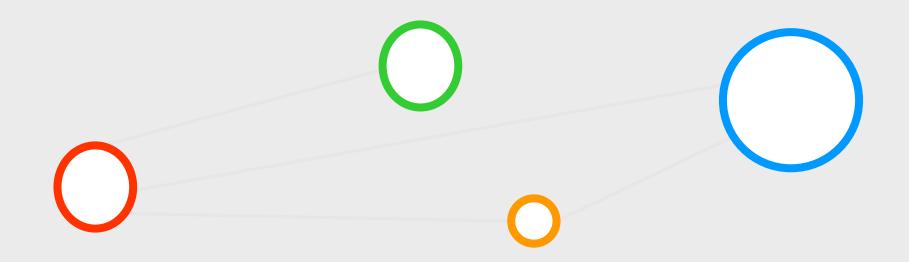
System


922 impressions

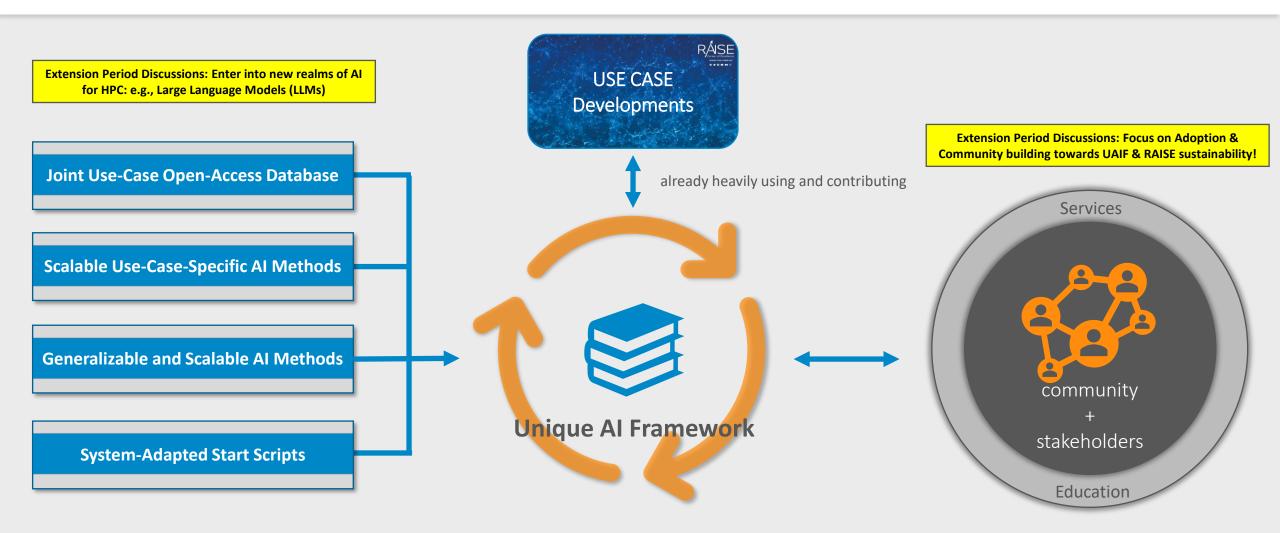
View analytics

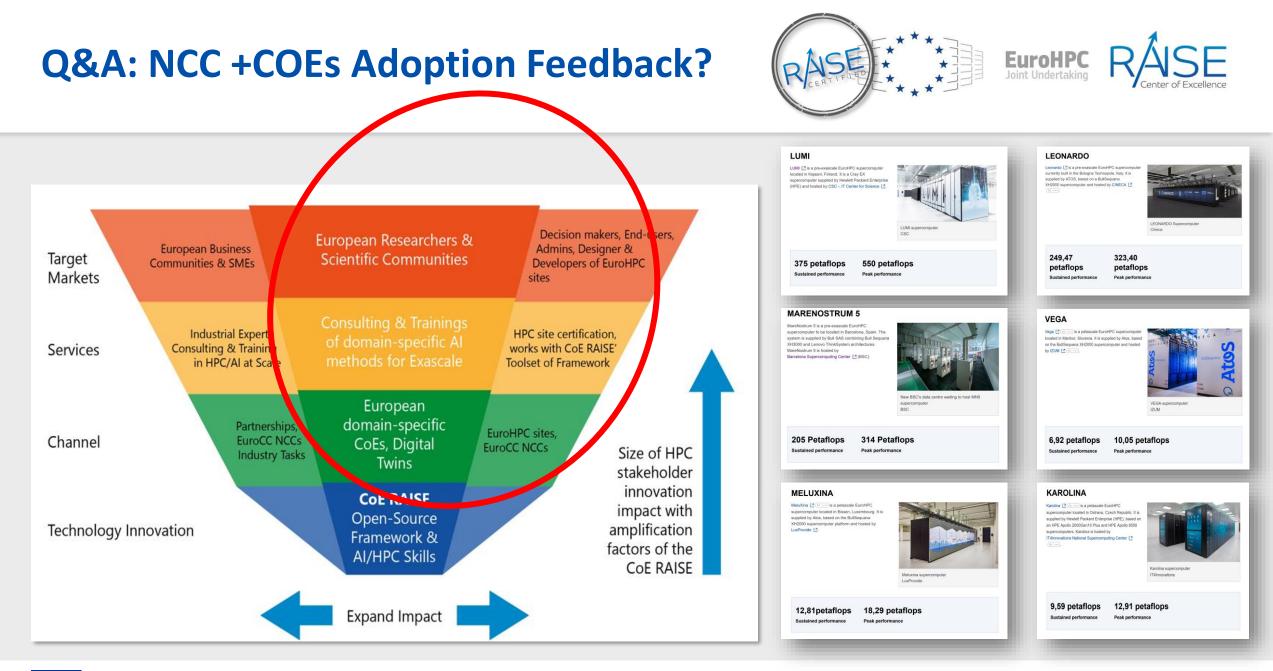
NCCs & Industry Hosting Sites – Adoption Plans

TBD: Computing Time Grants, Karolina, Meluxina


VI

Summary & Q&A





Summary: Unique Al Framework Overview

drive. enable. innovate.

The CoE RAISE project have received funding from the European Union's Horizon 2020 – Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

