

T3.4 — Smart models for next-generation aircraft engine design Status and next steps

<u>Corentin Lapeyre</u>, Victor Coulon (CERFACS) Stéphane Richard, Clément Brunet (SAFRAN HELICOPTER ENGINES) *CoE RAISE All-Hands Meeting August 28-30, 2023 — Hveragerði, Iceland*

- 1. Hydrogen as a future fuel *Modeling perspectives*
- 2. Hydrogen as a future fuel *Design perspectives*
- 3. Next steps

Hydrogen as a future fuel Modeling perspectives

3D Direct Numerical Simulation (DNS)

- 1. Anchored turbulent flame similar to an engine injector configuration
- 2. Relevant topology with a progressive flame folding
- No sub-grid scale model used (turbulence-chemistry interaction well captured)

Mesh: 262 million of cells in a rectangular domain of 17 cm³

Cost: 500 000 CPUh (8 ms physical time)

Hydrogen database description

- ► +90 snapshots of 1280x640x320 cells
- > Hexahedral cells of size $\Delta = 40 \ \mu m$
- ▶ 9 species and 21 reactions to describe chemistry
- ► HDF5 file format

Learning database of ~15 TB

Physical analysis on highly resolved data

- > 3D effects of turbulence (*curvature, strain*) strongly affect the hydrogen flame
- > Thermo-diffusive instabilities/turbulence coupling occurs at *diffusive spatial scales*

Need to model this subgrid scale synergy in LES

64 128 128

32 32

32

64

Input

Deep-Learning for turbulent combustion modeling

> Convolutional Neural Networks (CNN) for computer vision tasks :

- > Well suited for *structured* data fields (Cartesian mesh)
- > Locality and translation equivariance inductive biases (good for diffusive scales!)
- Flame analogous to a highly wrinkled sheet

➤ U-Net architecture⁵:

- > Field-to-field task (2D-3D image segmentation)
- Encoder-decoder structure
- > Aggregation of *multi-scale* information (skip connections)

128

64

64

Output

3×3×3 convolution → + batch normalization + ReLU → Skip connection → Up/ downsampling ×2

Filtering and coarsening

> Large Eddy Simulation (LES) still mandatory for design purposes :

Spatial filtering DNS data using Gaussian kernel (avoid aliasing)

$$\overline{Q(x,t)} = \int_{\mathcal{V}} F_{\Delta}(x-x')Q(x',t)dx'$$

Downsampling the data (coarser grid)

Flame surface density

> Flame surface density is a key parameter in combustion:

- Used for species source term modeling
- \succ Function of variable *c*

f(c)

Off-line predictions of the flame surface

> Infering the *total* flame surface density (FSD) from a *resolved quantity* (here \overline{c})

6. Lapeyre, C. J., et al. (2019). Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255-264.

7. Xing, V., et al. (2021). Generalization capability of convolutional neural networks for progress variable variance and reaction rate subgrid-scale modeling. Energies, 14(16), 5096

Towards *online* **predictions**

Hydrogen as a future fuel Design perspectives

Hydrogen injector for helicopter engine

- Experimental campaign at lab scale
 - > 2 flame types: *anchored* and *lifted*
 - > Exp. led by IMFT
 - Higher pressure-temperature conditions to be tested

Numerical calculation:

- Simplified combustion chamber
- Lab scale operating conditions
- Simulations led by SAFRAN HE (C. Brunet)
- \succ BL resolved at injector wall with 100 μ m cells

First combustor module ignition

First combustor module ignition

A unique database for AVBP-DL

Database at lab-scale

- \checkmark Flame topology prediction validated by experiments \checkmark
- Two flame topology depending on the flow regime

Engine representative conditions

- > New experimental campaign early 2023 at high T and P (ONERA) 🗸
- Simulations of the test rig at real operating conditions
- Combustion chamber & Optimized injector
 - \succ To be done after the injector's optimisation is done \bigotimes
 - Numerical setup to be validated with the two exp. campaigns ()

Numerical database validated by experiments with realistic geometries and operating points for AVBP-DL validation

Next steps

Future work in T3.4

drive. enable. innovate.

The CoE RAISE project have received funding from the European Union's Horizon 2020 – Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

