

30.

Task 3.5: AI for wetting hydrodynamics

Andreas Demou, Nikos Savva The Cyprus Institute

> Raise AHM Iceland, August 28, 2023

AI modelling - Fourier Neural Operator (FNO)

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

Learn contact line dynamics in a data-driven manner, by considering the mapping:

 $G = ($ aux. data $) \rightarrow$ {Solution}

Key idea: A neural operator can approximate *G* through the Fourier space.

Completed work Modelling thin-film data

Governing Equations

RASE

Assumptions

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

- strong surface tension
- negligible inertial effects
- small contact angles

Non-dimensional governing PDE

 $\partial_t h + \nabla \cdot \left[h(h^2 + \lambda^2) \nabla \nabla^2 h \right] = 0$

Boundary conditions along the contact line C (ν is the unit outward normal on C)

Thickness vanishes: $h|_{\mathcal{C}} = 0$ Contact angle: $|\nabla h|_{\mathcal{C}} = -h_{\mathcal{V}} = \vartheta_*$ Kinematic BC: $(\partial_t \mathbf{c} - \lambda^2 \mathbf{\nabla} \nabla^2 h \big|_{c}) \cdot \mathbf{\nu} = 0$

Different data-driven approaches

RÁSE

Contact line $\bm{c}(t_i)$ is discretised with 128 points and time t_i is discretised uniformly.

Auto-regressive approach

Input: *{c*(*t*1)*, c*(*t*2)*, ..., c*(*t*10)*, ϑ∗*(*t*1)*, ϑ∗*(*t*2)*, ..., ϑ∗*(*t*10)*}* Output: $c(t_{11})$, i.e. subsequent solution

AI-assisted, hybrid approach

Droplet velocity normal to the contact line, u_{ν} ,

$$
u_{\nu} = \bar{u}_{\nu} + G(c, \bar{u}_{\nu}) \quad \text{with} \quad \bar{u}_{\nu} = \frac{\theta^3 - \vartheta_*^3}{3 \ln \lambda}
$$

 $\{c(t_i), \bar{u}_{\nu}(t_i)\}$ Output: *G*(*c*, *ū*_ν)

Different data-driven approaches

Contact line $\bm{c}(t_i)$ is discretised with 128 points and time t_i is discretised uniformly.

Auto-regressive approach Input: *{c*(*t*1)*, c*(*t*2)*, ..., c*(*t*10)*, ϑ∗*(*t*1)*, ϑ∗*(*t*2)*, ..., ϑ∗*(*t*10)*}* Output: $c(t_{11})$, i.e. subsequent solution **AI-assisted, hybrid approach** Droplet velocity normal to the contact line, u_{ν} , $u_{\nu} = \bar{u}_{\nu} + G(c, \bar{u}_{\nu})$ with $\bar{u}_{\nu} = \frac{\theta^3 - \theta^3}{2 \ln 3}$ *∗* 3 *|*ln*λ|* $\{c(t_i), \bar{u}_{\nu}(t_i)\}$ *θ* data-driven, implicit in *t x* = *c*

Output: $G(c, \bar{u}_{\nu})$ –

AI-assisted approach - Out of distribution

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

Under review in **Data-centric Engineering** (Cambridge University Press)

Reviewer: "This paper is absolutely excellent. It is well-written and convincing. It should be accepted."

On-going work Modelling CFD data

Data generation - Direct Numerical Simulations

Code: Basilisk

- random heterogeneities, from a 7-parameter functional form
- 10–50 dimensionless times, snapshot saved every 0.1 time units
- adaptive mesh refinement, local grid size between 1*/*2 ⁵ *−* 1*/*2 8

Dataset:

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

- 300 DNS cases
- 80,000 contact line snapshots

RASE

RASE Reduced-order model Cox (J. Fluid Mech. 1986) Analysis near the contact line reveals • *λ*, slip length, scales with ∆*x* • *σ* surface tension; *µ* viscosity $\sqrt{ }$ \setminus $u_v^{COX} = \frac{\sigma}{u}$ *F* (*ϑ∗*) *− F* (*θ*) • *Q^o* and *Qⁱ* are unspecified \mathcal{L} $\overline{1}$ *µ* $\ln\left(\frac{\lambda}{r_0}\right) + \frac{Q_o}{f(\theta)} - \frac{Q_i}{f(\vartheta_*)}$ • *F* and *f* are known

AI model for correcting net transport motion

Net transport captured by first harmonic; contact line evolves such that contact line has no first harmonic

Input: snapshots of first harmonics of *θ* and *ϑ[∗]*

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

Output: snapshots of first harmonics of $u_{\nu}^{DNS} - u_{\nu}^{COX} = u_{c}^{DNS} - u_{c}^{COX} \rightarrow u_{c}^{COX}$

AI model for correcting net transport motion

Net transport captured by first harmonic; contact line evolves such that contact line has no first harmonic

Input: snapshots of first harmonics of *θ* and *ϑ[∗]*

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

Output: snapshots of first harmonics of $u_{\nu}^{DNS} - u_{\nu}^{COX} = u_{c}^{DNS} - u_{c}^{COX} \rightarrow u_{c}^{COX}$

AI model for higher-order corrections

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

Input: snapshots of {*c*, $u_v^{COX} + u_c$ } **Output:** snapshots of $u_{\nu}^{DNS} - (u_{\nu}^{COX} + u_c) \rightarrow \tilde{u}$

AI model for higher-order corrections

AI-assisted approach for CFD - Out of distribution

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

Paper in preparation, to be submitted in the coming weeks.

Future tasks

Gravitational effects

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

RASE

Employ similar workflow:

$$
u_{\nu}=u_{\nu}^{COX}+u_{c}+\tilde{u}
$$

- u_{ν}^{COX} function of (θ, ϑ_*, r) .
- *u^c* for net transport as a function of the first harmonics of (*θ, ϑ∗*) and the gravity vector.
- \tilde{u} for higher-order corrections as a function of $(c, u_{\nu}^{COX} + u_c)$.
- *•* Currently post-processing data from 100 extra DNS for inclined surfaces.
- *•* Further analytical understanding may be necessary.

The inverse problem

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

Given a target droplet path, what heterogenity profile *ϑ[∗]* **can induce it?**

General het. profile given by:

$$
\vartheta_* = \sum_{m,n} a_{m,n} \exp^{ik_m x + ik_n y},
$$

am,n 'design' variables

Optimisation procedure to obtain:

a ∗ m,n = argmin *J*

where *J* is a cost function that depends on *A* and some metric that penalizes non-circular contact lines

Successes enabled by RAISE

Successes enabled by RAISE

- **Research funding**: three successful proposals involving AI for wetting projects 2 EU-funded MSCA ITNs; 1 CY-Funded Excellence Hubs project as PI
- **Computing time grants**: three successful proposals for computing time. 1 under EuroHPC JU*; 2 on the national machine *to be featured in EuroHPC JU's "success stories" webpage
- **Industrial collaboration** with a tribology R&D company in Austria

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

Surface texturing effectively guides lubricant flow CFD simulations infeasible (micron-scale texturing to centi-metre scale drops) Develop reduced-order surrogates to inform texture design

Ørive. enable. innovate.

The CoE RAISE project have received funding from
the European Union's Horizon 2020 –
Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Extra slides

Governing Equations

RASE

Two-phase Stokes

⋆ ⋆ [⋆] [⋆] [⋆] [⋆] [⋆] [⋆] ⋆

$$
\vec{\nabla} \cdot \vec{u} = 0,
$$
\n
$$
\rho \frac{\partial \vec{u}}{\partial t} = -\vec{\nabla} \rho + \vec{\nabla} \cdot \left[\mu \left(\vec{\nabla} \vec{u} + \vec{\nabla} \vec{u}^T \right) \right] + \sigma \kappa \delta_{\Gamma} \vec{n} + \hat{\rho} \vec{g},
$$
\n
$$
\frac{\partial C}{\partial t} + \vec{\nabla} \cdot (\vec{u} C) = 0, \text{ where } C(\vec{x}, t) = \begin{cases} 1 & \text{if } \vec{x} \in \text{liquid,} \\ 0 & \text{if } \vec{x} \in \text{gas.} \end{cases}
$$

Physical properties ξ **calculation:** $\xi(\vec{x}, t) = \xi_1 C(\vec{x}, t) + \xi_2 (1 - C(\vec{x}, t)).$

Boundary conditions: impose local contact angle (chemical heterogeneity) on surface.