

Task 3.5: AI for wetting hydrodynamics

Andreas Demou, Nikos Savva The Cyprus Institute

> Raise AHM Iceland, August 28, 2023

Industry

Pesticide deposition Coating processes Wetting agents

Technology

instepnanopower.com

Display technologies

Surface design

Surface cleaning Waterproofing Water harvestina

• Energy

Oil recovery Fuel cells Mechanical Energy harvesting

Advalutix

et al. 2016 Nature

• Industry

Pesticide deposition Coating processes Wetting agents

- Technology
 - Inkjet printing Microfluidic & lab-on-a-chip devices Display technologies
- Surface design
 - Surface cleaning Waterproofing Water harvesting
- Energy
 - Oil recovery Fuel cells Mechanical Energy harvesting

instepnanopower.com

• Industry

Pesticide deposition Coating processes Wetting agents

- Technology MIT Media Lab
 Inkjet printing
 Microfluidic & lab-on-a-chip devices
 Display technologies
- Surface design

Surface cleaning • Waterproofing Water harvesting

• Energy

Oil recovery Fuel cells Mechanical Energy harvesting

• Industry

Pesticide deposition Coating processes Wetting agents

- Technology
 Inkjet printing
 - Microfluidic & lab-on-a-chip devices Display technologies
- Surface design
 - Surface cleaning Waterproofing •— Water harvesting
- Energy
 - Oil recovery Fuel cells Mechanical Energy harvesting

instepnanopower.com

biolinscientific.com

et al. 2016 Nature

 Industry vheeler lab Pesticide deposition Coating processes Advalutix Wetting agents Technology MIT Media Lab Inkjet printing sil-tronix-st.com Microfluidic & lab-on-a-chip devices Display technologies Surface design iof.fraunhofer.de Surface cleaning • Waterproofing • Water harvestina • • Energy Oil recovery Fuel cells biolinscientific.com instepnanopower.com Mechanical Energy harvesting

 Industry vheeler lab Pesticide deposition Coating processes Advalutix Wetting agents Technology MIT Media Lab et al. 2016 Nature Inkjet printing sil-tronix-st.com Microfluidic & lab-on-a-chip devices Display technologies Surface design of fraunhofer.de Surface cleaning • Waterproofing • Water harvestina • • Energy Oil recovery • Fuel cells biolinscientific.com instepnanopower.com Mechanical Energy harvesting

 Industry vheeler lab Pesticide deposition Coating processes Advalutix Wetting agents Technology MIT Media Lab et al. 2016 Nature Inkjet printing sil-tronix-st.com Microfluidic & lab-on-a-chip devices Display technologies Surface design of fraunhofer.de Surface cleaning • Waterproofing • Water harvestina • • Energy Oil recovery • Fuel cells biolinscientific.com instepnanopower.com Mechanical Energy harvesting •

AI modelling - Fourier Neural Operator (FNO)

Learn contact line dynamics in a data-driven manner, by considering the mapping:

 $G = (aux. data) \rightarrow \{Solution\}$

Key idea: A neural operator can approximate G through the Fourier space.

Completed work Modelling thin-film data

Assumptions

- strong surface tension
- negligible inertial effects
- small contact angles

Non-dimensional governing PDE

$$\partial_t h + \boldsymbol{\nabla} \cdot \left[h(h^2 + \lambda^2) \boldsymbol{\nabla} \nabla^2 h \right] = 0$$

Boundary conditions along the contact line C (ν is the unit outward normal on C)

Thickness vanishes: $h|_{\mathcal{C}} = 0$ Contact angle: $|\nabla h|_{\mathcal{C}} = -h_{\nu} = \vartheta_*$ Kinematic BC: $(\partial_t c - \lambda^2 \nabla \nabla^2 h|_{\mathcal{C}}) \cdot \boldsymbol{\nu} = 0$

Contact line $c(t_i)$ is discretised with 128 points and time t_i is discretised uniformly.

Auto-regressive approach

Input: $\{ \boldsymbol{c}(t_1), \boldsymbol{c}(t_2), ..., \boldsymbol{c}(t_{10}), \vartheta_*(t_1), \vartheta_*(t_2), ..., \vartheta_*(t_{10}) \}$

Output: $m{c}(t_{11})$, i.e. subsequent solution

Al-assisted, hybrid approach

Droplet velocity normal to the contact line, $u_{
u}$,

$$u_{\nu} = \bar{u}_{\nu} + G(\boldsymbol{c}, \bar{u}_{\nu}) \quad \text{with} \quad \bar{u}_{\nu} = \frac{\theta^3 - \vartheta_*^3}{3 |\ln \lambda|}$$

Input: { $\boldsymbol{c}(t_i), \bar{u}_{\nu}(t_i)$ } Output: $G(\boldsymbol{c}, \bar{u}_{\nu})$

Contact line $c(t_i)$ is discretised with 128 points and time t_i is discretised uniformly.

Auto-regressive approach

Input: $\{ \boldsymbol{c}(t_1), \boldsymbol{c}(t_2), ..., \boldsymbol{c}(t_{10}), \vartheta_*(t_1), \vartheta_*(t_2), ..., \vartheta_*(t_{10}) \}$

Output: $m{c}(t_{11})$, i.e. subsequent solution

Al-assisted, hybrid approach

Droplet velocity normal to the contact line, $u_{
u}$,

$$u_{\nu} = \bar{u}_{\nu} + G(\mathbf{c}, \bar{u}_{\nu}) \quad \text{with} \quad \bar{u}_{\nu} = \frac{\theta^3 - \vartheta_*^3}{3 |\ln \lambda|}$$
Input: $\{\mathbf{c}(t_i), \bar{u}_{\nu}(t_i)\}$ data-driven, implicit in t
Output: $G(\mathbf{c}, \bar{u}_{\nu})$

Auto-regressive approach - Tests

Auto-regressive approach - Tests

Auto-regressive approach - Tests

Al-assisted approach - Tests

Al-assisted approach - Tests

Al-assisted approach - Out of distribution

Under review in **Data-centric Engineering** (Cambridge University Press)

Reviewer: "This paper is absolutely excellent. It is well-written and convincing. It should be accepted."

On-going work Modelling CFD data

Code: Basilisk

- random heterogeneities, from a 7-parameter functional form
- 10–50 dimensionless times, snapshot saved every 0.1 time units
- adaptive mesh refinement, local grid size between $1/2^5 1/2^8$

Dataset:

- 300 DNS cases
- 80,000 contact line snapshots

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F\left(\vartheta_{*}\right) - F\left(\theta\right)}{\ln\left(\frac{\lambda}{r_{0}}\right) + \frac{Q_{o}}{f\left(\theta\right)} - \frac{Q_{i}}{f\left(\vartheta_{*}\right)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- Q_o and Q_i are unspecified
- F and f are known

Analysis near the contact line reveals $u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F(\vartheta_{*}) - F(\theta)}{\ln\left(\frac{\lambda}{r_{\nu}}\right) + \frac{Q_{0}}{f(\theta)} - \frac{Q_{1}}{f(\theta)}} \right)$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- Q_o and Q_i are unspecified
- F and f are known

Obtaining heta assuming quasi-static dynamics

Given $m{c}$, obtain $m{ heta}$ from the slope of the solution to the Young–Laplace eqn

 $-\sigma \boldsymbol{\nabla} \cdot \hat{\boldsymbol{n}} = \Delta p, \quad \hat{\boldsymbol{n}}$ the surface unit normal

 Δp is constant specified by the volume constraint.

→ Using the open source code, **Surface Evolver** (SE). Repeated calls to SE during training/testing through a dedicated Python interface.

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F\left(\vartheta_{*}\right) - F\left(\theta\right)}{\ln\left(\frac{\lambda}{r_{0}}\right) + \frac{Q_{o}}{f\left(\theta\right)} - \frac{Q_{i}}{f\left(\vartheta_{*}\right)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- Q_o and Q_i are unspecified
- F and f are known

Cox (J. Fluid Mech. 1986)

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F\left(\vartheta_{*}\right) - F\left(\theta\right)}{\ln\left(\frac{\lambda}{r_{0}}\right) + \frac{Q_{o}}{f\left(\theta\right)} - \frac{Q_{i}}{f\left(\vartheta_{*}\right)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- Q_o and Q_i are unspecified
- F and f are known

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F\left(\vartheta_{*}\right) - F\left(\theta\right)}{\ln\left(\frac{\lambda}{r_{0}}\right) + \frac{Q_{o}}{f\left(\theta\right)} - \frac{Q_{i}}{f\left(\vartheta_{*}\right)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- Q_o and Q_i are unspecified
- F and f are known

Analysis near the contact line reveals

• λ , slip length, scales with Δx

Net transport captured by first harmonic; contact line evolves such that contact line has no first harmonic

Input: snapshots of first harmonics of θ and ϑ_*

Output: snapshots of first harmonics of $u_{\nu}^{DNS} - u_{\nu}^{COX} = u_{c}^{DNS} - u_{c}^{COX} \rightarrow u_{c}$

Net transport captured by first harmonic; contact line evolves such that contact line has no first harmonic

Input: snapshots of first harmonics of θ and ϑ_*

Output: snapshots of first harmonics of $u_{\nu}^{DNS} - u_{\nu}^{COX} = u_{c}^{DNS} - u_{c}^{COX} \rightarrow u_{c}$

Input: snapshots of $\{c, u_{\nu}^{COX} + u_{c}\}$

Output: snapshots of $u_{\nu}^{DNS} - (u_{\nu}^{COX} + u_c) \rightarrow \tilde{u}$

Input: snapshots of $\{c, u_{\nu}^{COX} + u_{c}\}$

Output: snapshots of $u_{\nu}^{DNS} - (u_{\nu}^{COX} + u_c) \rightarrow \tilde{u}$

Al-assisted approach for CFD - Tests

Paper in preparation, to be submitted in the coming weeks.

Future tasks

Employ similar workflow:

$$u_{\nu} = u_{\nu}^{COX} + u_c + \tilde{u}$$

- u_{ν}^{COX} function of (θ, ϑ_*, r) .
- u_c for net transport as a function of the first harmonics of (θ, ϑ_*) and the gravity vector.
- \tilde{u} for higher-order corrections as a function of $(c, u_{\nu}^{COX} + u_c)$.
- Currently post-processing data from 100 extra DNS for inclined surfaces.
- Further analytical understanding may be necessary.

Given a target droplet path, what heterogenity profile $artheta_*$ can induce it?

General het. profile given by:

$$\vartheta_* = \sum_{m,n} a_{m,n} \exp^{\mathrm{i}k_m x + \mathrm{i}k_n y},$$

 $a_{m,n}$ 'design' variables

Optimisation procedure to obtain:

 $a_{m,n}^* = \operatorname{argmin} J$

where *J* is a cost function that depends on *A* and some metric that penalizes non-circular contact lines

Successes enabled by RAISE

Successes enabled by RAISE

- **Research funding**: three successful proposals involving AI for wetting projects 2 EU-funded MSCA ITNs; 1 CY-Funded Excellence Hubs project as PI
- **Computing time grants**: three successful proposals for computing time. 1 under EuroHPC JU*; 2 on the national machine *to be featured in EuroHPC JU's "success stories" webpage
- Industrial collaboration with a tribology R&D company in Austria

Surface texturing effectively guides lubricant flow

CFD simulations infeasible (micron-scale texturing to centi-metre scale drops) Develop reduced-order surrogates to inform texture design

drive. enable. innovate.

The CoE RAISE project have received funding from the European Union's Horizon 2020 – Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Extra slides

Two-phase Stokes

$$\vec{\nabla} \cdot \vec{u} = 0,$$

$$\rho \frac{\partial \vec{u}}{\partial t} = -\vec{\nabla}\rho + \vec{\nabla} \cdot \left[\mu \left(\vec{\nabla} \vec{u} + \vec{\nabla} \vec{u}^T\right)\right] + \sigma \kappa \delta_{\Gamma} \vec{n} + \hat{\rho} \vec{g},$$

$$\frac{\partial C}{\partial t} + \vec{\nabla} \cdot (\vec{u}C) = 0, \text{ where } C(\vec{x}, t) = \begin{cases} 1 & \text{if } \vec{x} \in \text{liquid}, \\ 0 & \text{if } \vec{x} \in \text{gas.} \end{cases}$$

Physical properties ξ calculation: $\xi(\vec{x}, t) = \xi_1 C(\vec{x}, t) + \xi_2 (1 - C(\vec{x}, t))$.

Boundary conditions: impose local contact angle (chemical heterogeneity) on surface.

