

RAISE All-Hands Meeting in Iceland Task 4.1: Event reconstruction and classification at the CERN HL-LHC

August 29th, 2023 **Eric Wulff¹, Maria Girone¹, David Southwick¹, Juan Pablo García Amboage¹,** Arnis Lektauers² ¹CERN 2RTU

at the CERN HL-LHC

Introduction

➢ We work on four different but related efforts

➢ Task 4.1: Event reconstruction and classification

- ➢ AI–based particle flow reconstruction algorithm, *MLPF (Machine-learned Particle-Flow)* [1] (in collaboration with CMS)
- ➢ Traditional GPU-accelerated clustering algorithm, *CLUE (CLUstering of Energy)* (in collaboration with CMS)
- ➢ HW benchmarking based on AI-models for HEP
- ➢ Data challenges for the Exascale era

Using MLPF in CMSSW.

Event reconstruction using MLPF

What is event reconstruction?

- ➢ Event reconstruction attempts to solve the inverse problem of particle-detector interactions, i.e., going from detector signals back to the particles that gave rise to them
- ➢ Particle-flow (PF) reconstruction takes tracks and clusters of energy deposits as input and gives particle types and momenta as output

New CoE RAISE Open Data

➢ <https://www.coe-raise.eu/od-pfr>

- ➢ An extensive open dataset of physics events with full GEANT4 [\[1](https://inspirehep.net/literature/593382)] simulation, suitable for PF reconstruction, available in the EDM4HEP [[2](https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_03026/epjconf_chep2021_03026.html%20,%20%20https:/github.com/key4hep/EDM4hep)] format
- \ge ~2.5 TB before pre-processing
- \triangleright The dataset contains
	- ➢ Reconstructed tracks, calorimeter hits and clusters
		- \triangleright We use these as inputs
	- ➢ All generator particles
		- \triangleright We use these as targets
	- \triangleright Reconstructed particles by the Pandora algorithm $[3,4,5]$ $[3,4,5]$ $[3,4,5]$ $[3,4,5]$
		- \triangleright We use these as a baseline for comparison
- \triangleright A mixture of $t\bar{t}$, $q\bar{q}$, ZH and WW events

Jet and MET in ttbar + PU10 test data

- ➢ For all test samples MLPF outperforms PF in Jet and MET reconstruction in terms of response width (quantified by median and interquartile range (IQR))
- > MLPF also outperforms PF in terms of fraction of reconstructed jets $\binom{n_{reco\,jets}}{n_{ground-truth\,jets}}$
- ➢ Very similar results are seen in ZH and WW events

Jets resolution MET resolution

Improvement in training from HPO

- ➢ HPO significantly improved model performance for both the GNN-based and the transformer-based MLPF models
- ➢ GNN outperforms transformer

QSVR for model performance **prediction**

➢ Potential problem: loss curves are not linear

➢ Stopping criterion: ranking according

- ➢ Idea 1: Use a non-linear stopping criterion
	- ➢ For instance, an SVR model, inspired by [1]
- ➢ Idea 2: Use quantum computing to fit Quantum-SVR (QSVR)

Hypertuning workflow

rely on early stopping

CoE RAISE AHM in Iceland – August 2023 – Eric Wulff Credit to Juan Pablo García Amboage, CERN Technical Student

- ➢ Introducing: *Swift-Hyperband* a new approach to combine performance prediction with Hyperband
- ► Fast-Hyperband is not suitable for use with Quantum-SVRs

Swift-Hyperband

Swift-Hyperband

- ➢ One extra decision in each round (dashed vertical lines)
- ➢ First, some trials are fully trained to define a threshold and to fit (Q)-SVR performance predictors
- ➢ Other trials are then partially trained
- ➢ If their predicted performance is worse than the threshold, they are stopped immediately

Algorithm Comparison

➢ Simulated results using datasets of existing learning curves

Distributed Swift-Hyperband

- ➢ Run on the DEEP-EST Extreme Scale Booster at FZJ
- ➢ Head node coordinates the workflow (1 CPU)
- ➢ Multiple GPU worker nodes for training trials
- ➢ Quantum Annealer for training the performance predictors
- ➢ Implemented using MPI and dwave-ocean-sdk

Distributed Swift-Hyperband

- ➢ Run on the DEEP-EST Extreme Scale Booster at FZJ
- ➢ Head node coordinates the workflow (1 CPU)
- ➢ Multiple GPU worker nodes for training trials
- ➢ Quantum Annealer for training the performance predictors
- ➢ Implemented using MPI and dwave-ocean-sdk

Distributed Swift-Hyperband

- ➢ Run on the DEEP-EST Extreme Scale Booster at FZJ
- ➢ Head node coordinates the workflow (1 CPU)
- ➢ Multiple GPU worker nodes for training trials
- ➢ Quantum Annealer for training the performance predictors
- ➢ Implemented using MPI and dwave-ocean-sdk

Performance tuning and generalization of CLUE

Heterogeneous CLUE Algorithm

➢ Task: to improve the memory management efficiency and multi-thread computing performance

CMSSW Application Framework Standalone Patatrack Pixel CLUE (CLUstering of Energy) Tracking GPU implementation of a fast **GPU** implementation of parallel clustering algorithm pixel detector reconstruction for high granularity from raw data up to tracks calorimeters in high-energy and vertices physics **Memory Management**

CPU (OpenMP, TBB)

GPU (CUDA, HIP, OpenACC, SYCL)

FPGA

CLUE Performance Optimization

CLUE Data Structures

Application profiling with *Nsight Compute*

- ➢ Generalization of the original algorithm, making it N-dimensional
	- ➢ The original algorithm was designed to work in 2 dimensions, with the data distributed in parallel layers
	- ➢ CLUE takes the coordinates of the points and their weight, which represents their energy, and calculates the energy density of each point
- ➢ Development of Python API

Summary

Conclusions and future work

- ➢ An extensive open dataset of physics events has been released on the CoE RAISE Open Data website
- ➢ MLPF outperforms PF in both particle level and event-level physics performance metrics
- ➢ Swift-Hyperband is a new HPO algorithm that integrates performance prediction with Hyperband
- ➢ Swift-Hyperband can run in a hybrid Quantum-Classical workflow manner
- ➢ Next steps:
	- ➢ Focus MLPF efforts on CMS datasets again
	- ➢ Together with WP2, submitted abstract to the *Quantum Technologies in Machine* Learning conference (QTML) which will take place at CERN 19th to 24th of November
	- ➢ Implement a Swift-ASHA with the aim of solving the straggler issues inherent to Hyperband

Bonus slide

Hot spring hike

drive. enable. innovate.

The CoE RAISE project has received funding from the European Union's Horizon 2020 – Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Backup Slides

Deep Learning for particle flow reconstruction

CMS Collision event **MLPF** event reconstruction $^{[1]}$

CoE RAISE AHM in Iceland – August 2023 – Eric Wulff 26 *Learning for Particle Flow Reconstruction at CMS*. Retrieved from<http://arxiv.org/abs/2203.00330> [1] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M., Girone, M. (2022). *Machine*

Jet and MET in ttbar test data

➢ For all test samples MLPF outperforms PF in Jet and MET reconstruction in terms of response width (quantified by median and interquartile range IQR) > MLPF also outperforms PF in terms of fraction of reconstructed jets $\binom{n_{reco\;jets}}{n_{ground-truth\;jets}}$

Jet and MET in WW test data

➢ For all test samples MLPF outperforms PF in Jet and MET reconstruction in terms of response width (quantified by median and interquartile range IQR) > MLPF also outperforms PF in terms of fraction of reconstructed jets $\binom{n_{reco\;jets}}{n_{ground-truth\;jets}}$ Jets resolution MET resolution $\frac{1}{2}$
 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 matched jets CLIC ee \rightarrow WW \rightarrow hadrons CLIC ee \rightarrow WW \rightarrow hadrons PF (M = 1.04, IQR = 0.11, $f_m = 0.91$) \Box PF (M = 0.86, IQR = 1.10) đ MLPF (M = 0.99, IQR = 0.06, $f_m = 0.93$) MLPF (M = 0.99, IQR = 0.96) $\frac{5}{2}$ 7000 ් 0.8 $\begin{bmatrix}\n\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}\n\end{bmatrix}$ 5000 4000 0.4 3000l 2000 0.2 1000 \cap 0.6 0.8 1.0 1.2 1.4 jet p_T reco/gen MET reco/gen

Jet and MET in ZH test data

➢ For all test samples MLPF outperforms PF in Jet and MET reconstruction in terms of response width (quantified by median and interquartile range IQR) > MLPF also outperforms PF in terms of fraction of reconstructed jets $\binom{n_{reco\;jets}}{n_{ground-truth\;jets}}$ Jets resolution MET resolution number of matched jets
 $\frac{a}{b}$
 $\frac{b}{c}$ CLIC ee \rightarrow ZH \rightarrow TT $\frac{2}{9}$ 35000 CLIC ee \rightarrow ZH \rightarrow TT PF (M = 1.03, IQR = 0.17) **PF** (M = 1.01, IQR = 0.06, f_m = 0.97) 01

E 30000

E 25000 MLPF (M = 1.00, IQR = 0.03, $f_m = 0.97$) MLPF (M = 1.00, IQR = 0.12) 20000 1.0 15000 10000 0.5 5000 $0⁰$ 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5 2.0 jet p_T reco/gen MET reco/gen

Improvement in training from HPO

Fast-Hyperband Swift-Hyperband Swift-Hyperband

SVR

 $Q-SVR$

2950

➢ Simulated results using datasets of existing learning curves

Algorithm Comparison

440

Hyperband

Mean loss (lower is better)

Algorithm Comparison ➢ Simulated results using datasets of existing learning curves

