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Introduction

> Task 4.1: Event reconstruction and classification
at the CERN HL-LHC

> We work on four different but related efforts

> Al-based particle flow reconstruction algorithm,
MLPF (Machine-learned Particle-Flow) [1] (in
collaboration with CMS)

> Traditional GPU-accelerated clustering algorithm,
CLUE (CLUstering of Energy) (in collaboration with
CMS)

> HW benchmarking based on Al-models for HEP
> Data challenges for the Exascale era
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[1] J. Pata et al. Eur. Phys. J. C (2021) 81: 381 (https://link.springer.com/article/10.1140/epjc/s10052-021-09158-w)

[2] https://doi.org/10.3389/fdata.2020.591315
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What is event reconstruction? ASE

Center of Excellence

> Event reconstruction attempts to solve the inverse problem of particle-detector interactions,
l.e., going from detector signals back to the particles that gave rise to them

> Particle-flow (PF) reconstruction takes tracks and clusters of energy deposits as input and
gives particle types and momenta as output
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New CoE RAISE Open Data RAISE

Center of Excellence

> https://www.coe-raise.eu/od-pfr 3D visualization of a single event
> An extensive open dataset of |ph sics events with full b
GEANTA4 [1] simulation, suitable for PF reconstruction, e NP
available in the EDM4HEP [2] format , ;;
> ~2.5 TB before pre-processing — e
> The dataset contains // .
> Reconstructed tracks, calorimeter hits and clusters STy A ,:"'\L
> We use these as inputs > i
s 3 A - '
> All generator particles "';’ _ % '_ z\"
> We use these as targets * ,;;" . \ “ %)
> V,. ) .-. .-\.\z"'

> Reconstructed particles by the Pandora algorithm [3,4,5]
> We use these as a baseline for comparison

> A mixture of tt, qq, ZH and WW events
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https://www.coe-raise.eu/od-pfr
https://inspirehep.net/literature/593382
https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_03026/epjconf_chep2021_03026.html%20,%20%20https:/github.com/key4hep/EDM4hep
https://iopscience.iop.org/article/10.1088/1742-6596/396/2/022034
https://www.sciencedirect.com/science/article/pii/S0168900212011734?via%3Dihub
https://link.springer.com/article/10.1140/epjc/s10052-015-3659-3

Jet and MET in ttbar + PU10 test data RASE

Center of Excellence

» For all test samples MLPF outperforms PF in Jet and MET reconstruction in terms of response width (quantified by
median and interquartile range (IQR))

> MLPF also outperforms PF in terms of fraction of reconstructed jets (nr"’“’j‘"“/ngmund_mth jots)

> Very similar results are seen in ZH and WW events
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Improvement in training from HPO

RAISE

Center of Excellence

> HPO significantly improved model performance for both the GNN-based and the transformer-based MLPF models
> GNN outperforms transformer
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QSVR for model

performance
prediction




Hypertuning workflow

> Current STOTA hypertuning algorithms

rely on early stopping

> Stopping criterion: ranking according
to a single metric (e.g., validation loss)

» Potential problem: loss curves are not
linear

> Idea 1. Use a non-linear stopping
criterion
> For instance, an SVR model, inspired by [1]

> [dea 2: Use quantum computing to fit
Quantum-SVR (QSVR)
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Swift-Hyperband

RAISE

Center of Excellence

> Fast-Hyperband is not suitable for use with Quantum-SVRs
> Introducing: Swift-Hyperband — a new approach to combine performance

prediction with Hyperband

Fast-Hyperband

Multiple decision points

inside each round Trains many
SVRs

Estimates o for every SVR '

Not suitable for
Sequential Q-SVRs
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Swift-Hyperband
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»> One extra decision in each round
(dashed vertical lines)

> First, some trials are fully trained to
define a threshold and to fit (Q)-SVR
performance predictors

> Other trials are then partially trained

> If their predicted performance is
worse than the threshold, they are
stopped immediately
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Algorithm Comparison

RAISE

> Simulated results using datasets of existing learning curves
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Distributed Swift-Hyperband RASE

Center of Excellence

> Run on the DEEP-EST Extreme Scale Booster at FZJ

> Head node coordinates the workflow (1 CPU)

> Multiple GPU worker nodes for training trials

> Quantum Annealer for training the performance predictors
> Implemented using MPI| and dwave-ocean-sdk

— = |deal Speedup
® Swift-Hyperband Speedup (R=100)

1 2 3 4 5 6 7 8
#GPU workers
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Distributed Swift-Hyperband RASE

Center of Excellence

> Run on the DEEP-EST Extreme Scale Booster at FZJ

> Head node coordinates the workflow (1 CPU)

> Multiple GPU worker nodes for training trials

> Quantum Annealer for training the performance predictors
> Implemented using MPI| and dwave-ocean-sdk

Hyperband Bracket

3.5 Different trials Decision points
3.0 A
Sos
k5 2
0] S
L% 2.0
Target epoch
1.5 -
— = |deal Speedup
1.0 1 ® Swift-Hyperband Speedup (R=100) e ]
s 2 & - 2 € g £ Zb 4'0 60 éD 100
#GPU workers Resources (usually epochs)
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Distributed Swift-Hyperband RASE

Center of Excellence

> Run on the DEEP-EST Extreme Scale Booster at FZ)

> Head node coordinates the workflow (1 CPU)

> Multiple GPU worker nodes for training trials

> Quantum Annealer for training the performance predictors

> Implemented using MPI and dwave-ocean-sdk
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tuning and

generalization
of CLUE




Heterogeneous CLUE Algorithm RAISE

Center of Excellence

8 CMSSW Application Framework A e
> Task: to improve the memory xﬁ
management efficiency and CLUE (CLUstering of Energy) Sta“da'°';fa'::i:zga°" pas f .
multi-thread computing RS
P€ rformance GPU implementation of a fast GPU implementation of e
parallel clustering algorithm pixel detector reconstruction ﬁ'fé o
for high granularity from raw data up to tracks RN g{
calorimeters in high-energy and vertices o géf: -
physics R U T
\. J SPETIR L
. . Memory Management
RAPIDS Memory Manager
(RMM) Caching Allocator Asynchronous Allocator Synchronous Allocator
——
S T AT alpaka (Abstraction Library for Parallel Kernel Acceleration)
CPU (OpenMP, TBB) g:;fcucngvlgi’) FPGA

17




CLUE Performance Optimization

CLUE Data Structures

Application profiling with Nsight Compute VecArray
‘8BEB oo cEn o coes 85 CEEE) m_data[maxSize] m_size
LayerTiles
I m_data[nColumns * nRows] ...
e e,
m_data[maxTilesDepth] m_size
m_data[maxTilesDepth] m_size
m_size
nColumns * nRows < mam
m_data[maxTilesDepth] m_size
m_data[maxTilesDepth] m_size
_

RAISE

Center of Excellence

Memory
coalescing and
threadlocking
Issues

Solution: use
Structure of Arrays
(SoA)

instead of

Array of Structures
(AoS)




N-Dimensional CLUE RASE

> Generalization of the original algorithm,
making it N-dimensional
> The original algorithm was designed to work in 2

dimensions, with the data distributed in parallel
layers

> CLUE takes the coordinates of the points and their
weight, which represents their energy, and
calculates the energy density of each point

> Development of Python API







Conclusions and future work ASE

Center ol f Excellence

> An extensive open dataset of physics events has been released on the
CoE RAISE Open Data website

> MLPF outperforms PF in both particle level and event-level physics
performance metrics

> Swift-Hyperband is a new HPO algorithm that integrates performance
prediction with Hyperband

> Swift-Hyperband can run in a hybrid Quantum-Classical workflow
manner

> Next steps:
> Focus MLPF efforts on CMS datasets again

> Together with WP2, submitted abstract to the Quantum Technologies in Machine
Learning conference (QTML) which will take place at CERN 19t to 24t of November

> Implement a Swift-ASHA with the aim of solving the straggler issues inherent to
Hyperband
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Bonus slide




Hot spring hike RAISE

Center of Excellence

> https://www.alltrails.com/trail/iceland/southern/reykjadalur-
hot-spring-thermal-river

, , Hot spring
» A car would be nice to get to the start of the hike

> Hike took ~2h15m for me, including a ~20 minutes bath in Start of hike

the river and stopping to take photos on the way .
Hotel Ork
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Deep Learning for particle flow reconstruction RAISE

Center of Excellence

Physics simulation Dataset creation Al training Trained model
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N

M

A

1 neutral
% hadron
"

Data pre- ‘
processing ‘

Data selection

'

CMS Simulation Preliminary
Xl tt+PU, /s = 14 TeV

\' Machine-Learned Particle Flow recounts

Event

reconstruction

. Charged hadrons - HFEM

7 ; it . Neutral hadrons Electrons
CMS Collision event MLPF event reconstruction [1!

[1] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M., Girone, M. (2022). Machin626

CoE RAISE AHM in Iceland — August 2023 — Eric Wulff Learning for Particle Flow Reconstruction at CMS. Retrieved from



http://arxiv.org/abs/2203.00330

Jet and MET in ttbar test data RASE

Center of Excellence

> For all test samples MLPF outperforms PF in Jet and MET reconstruction in terms of response width
(quantified by median and interquartile range IQR)

> MLPF also outperforms PF in terms of fraction of reconstructed jets ("™ T L o round—truch jets)
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Jet and MET in WW test data RASE

Center of Excellence

> For all test samples MLPF outperforms PF in Jet and MET reconstruction in terms of response width
(quantified by median and interquartile range IQR)

> MLPF also outperforms PF in terms of fraction of reconstructed jets ("™ T L o round—truch jets)
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Jet and MET in ZH test data RASE

Center of Excellence

> For all test samples MLPF outperforms PF in Jet and MET reconstruction in terms of response width
(quantified by median and interquartile range IQR)

> MLPF also outperforms PF in terms of fraction of reconstructed jets ("™ T L o round—truch jets)
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Improvement in training from HPO RAISE

Center of Excellence

GNN-based model, cluster-based CLIC dataset v1.3.0, tt, qq GNN-based model, cluster-based CLIC dataset v1.3.0, tt, qq
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Algorithm Comparison

RAISE

Center of Excellence

> Simulated results using datasets of existing learning curves
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Algorithm Comparison

> Simulated results using datasets of existing learning curves
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