

Actuator and control considerations

J. Emery LHC BWS CONS ad hoc meeting new design kick off meeting 13.06.2023

Actuator and control considerations

- 1) actuator specification tentative
- 2) system orientation (H&V vs 45deg)
- 3) motor & encoder, control feedback

Actuator specification tentative

- Basic parameters and failures from the legacy system (table below)
- State of the art from the industry and in other laboratories
- Wishes to augment the usage of the system

Parameter	Value	unit	Source	bottom line
Wire top speed	1	m/s	legacy system	FB: 3 pts per ~1mm => 3.75 m/s FT: 3 pts per ~200um => 0.75 m/s
Stroke	133	mm	Legacy system	Beam pipe diameter (90mm) + ferrites covering
Wire position accuracy	5	um	beam size at FT	150um/3pts/10 => 5um (direct measure or calibration)
Bakeout temperature min.	150	degC	Legacy motor limit	300 degC for Neg activation
Lifetime target cycles	25k ->	cycles	OP data 2.5kcycle/year	OP design 25kcycle, but B2V1 issue at ~8kcycle
Reliability target		Low	er probability of: - mechani - vacuum - scanner - failures of e	ical obstruction (2x in operation) leak (2x with different bellows in operation) staying in (1x 2 scanners staying in) electronics power stage (2-3 in operation)
Serviceability		In-situ scanne	er exchange without moving t	the tank (B2!), review the insertion guides

Actuator specification tentative

	Run 1	Run 2	total	start time	end time
LHC.BWS.5L4.B2H1	12772	1807	14579	01/12/2014 14:31	16/05/2023 18:44
LHC.BWS.5L4.B2V1	6400	1589	7989	26/02/2015 09:54	16/05/2023 18:44
LHC.BWS.5L4.B2V2	5754	25	5779	22/04/2015 13:03	24/03/2023 09:14
LHC.BWS.5R4.B1H1	780	1658	2438	23/01/2015 15:36	16/05/2023 18:44
LHC.BWS.5R4.B1V1	407	1281	1688	23/02/2015 09:09	16/05/2023 18:44
LHC.BWS.5R4.B1V2	10484	340	10824	12/05/2015 15:10	24/03/2023 09:12

Qualitative comparison of the motion orientation H-V and 45° for the Beam Wire Scanner linear system

	H - V	45 deg	Risk assessment	action / mitigation
C-wire length	1	1.41 x	More mass & resistivity, natural frequency changes	Adapt the wire tension and/or check deflection and calibrate
Forks length	~Beam pipe	Beam pipe + forks aperture	Longer cantilever increases the deflection and risk to elongate the c-wire. More mass to move.	Optimize fork design to increase stiffness while lowering the mass.
Stroke length (= ~wire exposition)	~beam pipe	Beam pipe + forks aperture	Overall wire stay longer in the beam pipe, more exposed to RF heating	Increase of the nominal speed and adapt trajectory to equal the time the wire stay in the vacuum chamber
Wire speed	1	1.41 x	Higher nominal speed required to touch beam at same transverse speed. Means more power requirement, more stress to the mechanism, larger wire deflection?	Change of motion trajectories to use longer stroke to reach the top speed with less stress (at the cost of longer c- wire exposition). Study wire position determination/calibration
Gravitational acceleration	0 (H) 9.81 (V)	4.905	Same acceleration for both planes better compared to H - V case	-
Force / acceleration on the c-wire	100% Perpendicular to the wire length	70.7% perpendicular 29% longitudinal (pulling the wire from its side)	Weight of the c-wire is low. Experience with fast rotational going much faster (20m/s). But no experience with longitudinal acceleration!	Experimental test and qualification on samples to be conducted for this configuration

Qualitative comparison of the motion orientation H-V and 45° for the Beam Wire Scanner linear system

Motion study to equal the time the carbon wire stays in the beam pipe during the scan for all orientation options (H-V & 45). To satisfy this constraint, the 45 option requires a higher acceleration and top speed (41%). This correspond also to the necessary speed increase to touch the beam at the same transverse speed (1m/s).

Motion trajectories comparison	H - V	45°	difference
Stroke (mm)	100	141	+41%
Interaction speed (m/s)	1	1.41	+41%
Acc (m/s^2)	31.2	43.9 / 36.7	+41% / +18%
Duration of the wire in the beam pipe (s)	0.16	0.16 / 0.175	0% / +9%

EDMS-2894475

motor & encoder

- Legacy scanners: rotative brushed motor + <u>linear</u> potentiometer feedback
- Hybrid/Hybrid+: rotative brushless motor and resolver + legacy linear potentiometer -for beam tests we are using the resolver as encoder, the <u>pot has large noise</u> with LIU electronics.
- If we move to linear motor for the Hybrid+ or new design, we will need a radiation tolerant encoder for the <u>feedback</u> and the wire position determination.
- The encoder should be without electronics or semiconductor. This excludes standard optical ruler (Heidenhain or other), magnetic rule (RLS) and hall effect (LINMOT).
- One candidate is the <u>Linear Variable Differential Transformer (LVDT)</u> that would be probably suitable for the LIU electronics (with an upgrade of the Firmware). Will be tested on the motor bench

BEAM 1 YETS 22-23 – Prototype B1H2 – 200scans

motor & encoder Linear motor survey EDMS-2819315

	MOVER							STATOR			
Manufacturer	Part Number	length (m)	mass (kg)	Peak force (N)	DC-BUS Voltage (Udc)	BackEMF Vrms/(m/s)	<u>EMF@3m/s</u>	force Cst (N/Arms)	P.N	Stator length	estimated stroke
ETEL	ILF+03-030-KA0W0-A00	0.072	0.1	98.9	600	17.9 / 8.17	53.7	29.5 / 13.4	IWF+030-0256-AA0	0.256	0.184
	ILF+06-030-KB	0.136	0.194	198	600	17.9	53.7	29.5	IWF+030-0256	0.256	0.12
TECNOTION	UM3	0.078	0.084	100		30 / 16	90	36.3 / 19.9	UM150	0.15	0.072
TECNOTION	UL3	0.106	0.25	240		55.5 / 22.5	166.5	68 / 27.5	UL210	0.21	0.104
LINMOT	PS10-70x80-BL-QJ-D01	290	1.36	561	1x230VAC	58.9	176.7	72.1		180	110
IDAM	ULIM4-3P	0.072									-0.072
H2W Technologies											
OMRON											
Kollmorgen (eol?)	IL-06-30-A1(A4)-C4	0.111	0.27	120		9.7 / 4.87	29.1	16.8 / 8.4	MW030-0256-01	0.255	0.1442
Kollmorgen (eol?)	IL06-050-A1(A4)-C4	0.111	0.32	200		16.48 / 8.2	49.44	28.5 / 14.3	MW050-0256-01	0.255	0.144
Parker											
	1										

ETEL for prototyping (standard magnet @~80degC, but customization possible) Offer received from Kollmorgen (but end-of-life is not excluded and no customization for the magnet possible)

LINMOT compatibility with the LIU BWS electronics

- 17.05.2023 Visio with R&D and Sales.
- They wiling to help and provide custom version for us
- But they technology is based on Hall effect sensor (P-N junction, not radiation tolerant by default)
- Small motors are 2 phases with their own electronics
 I have concerns that LIU electronics can work with 2 phases motors....
- Larger motors are 3 phases
- Any option will require an external encoder for the feedback
- We know in vacuum incremental encoder (from the LIU design)
- But an absolute in vacuum encoder is difficult Maybe LVDT in vacuum are existing (to study)

Conceptual design of a linear motor bench (LMB) for motion control development and in-vacuum linear optical encoder test targeting a linear actuator for the Beam Instrumentation Group (V2)

[1] Linear motor survey for the linear wire-scanner: <u>https://edms.cern.ch/document/2819315/1</u>
[2] Optical rule integration into the BWS LHC forks: <u>https://edms.cern.ch/document/2670995/1</u>
+ Magnetic way to use head from RLS "LA11SIC13BKA25DF00" (as on the BAT bench)

[3] Linear motor mover ETEL - ILF+06-030-KB0W0-A00 & ETEL ILF+03-030-KA (2 movers options to test)
[4] Linear motor stator ETEL - IWF+030-0256-AA0 + IWF+030-0128-AA0 (256+128=384mm range)
[5] linear guide MN 15-350-G3-V0 - Guidage linéaire 15/350 mm, Schneeberge (or similar)
[6] MNN 15-G3 - Chariot à guidage linéaire 15 mm, Schneeberger (or similar)

[7] LVDT Solartron Metrology S050.0 ~100mm stroke or S100.0 for 200mm stroke

[8] Mag Spring https://shop.linmot.com/E/magnetic-springs.htm

for 11N 210mm stroke: Stator: M01-20x220/210-11 & Slider: ML01-12x290/240-10 [9] 3 axes manual micro-displacement stage (tbd)

EDMS 2868812 | 21.03.2023 | V2 update 12.06.2023 | J.Emery

Linear motor[3, 4]

MagSpring [8]

In vacuum incremental optical encoder based on LIU design

Custom linear optical ruler compatible with LIU IOPS sensor - EDMS 2670995

Resolver at the motor axe

Linear potentiometer

CERN

- Basic specification and experience from the legacy system
- Legacy electronics is problematic and will be upgraded to the injector system for all the CONS options we have today.
- We need to decide which technology to use for
 - Driving the linear mechanism: rotational or linear motors
 - <u>Mechanism guides</u>: outside (bellow based) or inside (PushPull or other ideas)
- We need to decide which <u>encoder for the feedback</u> and for the <u>wire position</u> <u>determination</u> or if we can combine the 2 functions.
- Can we prototype the incremental optical encoder on the linear motor bench?
- All this should fit in the planning for Beam tests (at the latest run2025) for installation during LS3 (2026-2028)

Proposal of action and milestones (draft to be complete)

home.cern

Wire scanner Operational systems ~1980-2021 for all BWS mechanisms

Interaction (wire-beam) position estimation viewed from the motor resolver (in radian)

Stroke=133mm Interaction point=66.5mm Leadscrew=16mm/(2*pi)rad

Interaction point in rad: 66.5*2*pi/16=**26.114**rad

Tested acquisition range: 0.02s (capture) * 0.5m/s = 10mm

How precise is the forks and wire installation?

Mechanism consolidation

Springs removed

Direct drive instead of a belt

Wire-scan cycles LHC consolidation prototype

Motor resolver

Resolution: 14bits (RDC) over 2π [rad] = 0.383 [mRad] Accuracy: $2\pi \div 360 \cdot 18 \div 60[arc/min] = 5.24$ [mRad] Ratio mechanics: $16 \div 2\pi = 2.546$ [mm/rad] Linear resolution: $0.383 \cdot 2.546 = 0.975$ [µm] Linear accuracy: $5.24 \cdot 2.546 = 13.34$ [µm]

But: Resolver to Digital Converter (RDC) have a bandwidth of ~1ms at 14 bits resolution...

Linear potentiometer

LIU BWS electronics on LHC scanners - J. Emery -04.02.2020

Motion control challenges with the linear system

LIU Kinematic unit is ideal from control viewpoint bellow free – low friction

LHC 'intermediate' mechanism has bellows and friction

Successful test with Dspace system with 'constant' position feedback with high power charger (400W)

While LIU controller enables feedbacks only during the motion, due to lower power charger (<100W)

 \Rightarrow Challenge to keep IN position

Force unbalances IN/OUT in H and in V!

JHerranz, NJurado, MHamani – 01.11.2013

BEAM 2 YETS 22-23

- Beam 2 tank moved to the pass way
- B1H1 => Potentiometer damages by transport and exchanged with Jean + new air side connection to avoid resistivity measure errors
- B2H1 & B2V1 & B2V2 C-Wire inspected => no sign of damages

	Machine	position	Orient.	Beam	R after bakeout (kOhm)		
	1	BWSH.A5R4.B1	H1	B1	1.699		
	LHC.B	BWSH.A5R4.B1	H2	B1	1.706		
		BWSV.A5R4.B1	V1	B1	1.877		
		BWSV.A5R4.B1	V2	B1	1.634		
	HC.B2	BWSH.A5L4.B2E	H1	B2	1.6		
		BWSH.A5L4.B2E	H2	B2	1.7		
		BWSV.A5L4.B2E	V1	B2	1.7		
		BWSV.A5L4.B2E	V2	B2	1.65		

LHC hybrid prototype with LIU electronics

