ATLAS

\sim Focus on KEK (+Japanese) Activities \sim

Kazunori Hanagaki (KEK)

Run 3 in good progress until July

Luminosity Leveling

- β* and separation leveling now both for ATLAS and CMS
 ATLAS leveling from 1.9E34 to 2.1E34
 - ← Introduction of LAr trigger and NSW (mention later)

Incident on July

- Helium leak at Q1-Q2 interconnection
 - Electrical noise \rightarrow Quench \rightarrow Helium gas leak Q3-Q2
- Recovery was fast
 - Heavy ion collision was possible although we loose p-p runs

Schema of IR8 inner triplet

Q1–Q2 interconnect

Monday evening: decision to **replace** the bellow

Spare bellow – tested to 20 bar

ATLAS KEK/Japan Activities

- Operation
 - Pixel, SCT, (LAr,) TGC, High Level Trigger
 - KEK is not involved in LAr
- Phase-II upgrade
- ♦ (Physics ← coherent with High Level Trigger)

Pixel

- KEK leads DQ (Data Quality) and offline software for long time
 - Y. Takubo (Pixel DQ convener), S. Tsuno (Pixel offline convener)
- ✤ 3 class-3 tasks, and 1 qualification task
 - Development of Pixel-DQ infrastructure,
 - Study of effect of radiation damage on Lorentz angle and dE/dx
 - Pixel monitoring using information of the bytestream errors

SCT

Leading role of operation

 Daiya Akiyama (Waseda U.) joined SCT deputy run coordinator, successful operation achieved

Fraction took by Japanese institutes			Fraction of active strip	98.4%
	on-call shift	35%	DAQ efficiency	99.7%
	remote shift	43%	DQ efficiency	99.7%

- Complete calibration algorithm update campaign (the first major change since Run1)
- Perform and analyze HV/IV scan to evaluate radiation damage
- Develop web-based tool (called PAT) centralizing relevant information (DAQ/DCS/DQ) for daily
- Evaluate data-size limitation for possible high-pileup operation
- Participate in hardware maintenance in USA15/US15

Liquid Ar Calorimeter Digital Trigger

- Commissioning on the digital trigger system completed in 2022.
- Become primary trigger system from 2023.
- Good transverse energy and timing response on 99.77% of 34k
 Super Cells.
- Better trigger efficiency on EM objects with 25% reduction on the trigger rate.
- Also Jet and Missing ET trigger show good performance. Will be used them from 2024.

Endcap Muon Trigger

Japan built, installed and maintains TGC back-end trigger electronics for Run 3 to cope with New Small Wheel (NSW)

Extended detector maintenance is conducted during this EYETS to ensure sufficient time for system upgrade for HL-LHC during LS3

High Level Trigger

- ATLAS Japan has been significantly contributing to Trigger for long time Efficiency
- Muon High-Level Trigger
 - Fast muon-standalone reconstruction algorithm improvement and operation
- Inner Detector Tracking Trigger
- Physics motivated new trigger
 - Track triggers for long-lived particles (disappearing track, large dE/dx track, displaced vertex)
 - HH \rightarrow bbbb, bb $\tau \tau$ triggers with the delayed stream
- Coordination roles in various areas
 - Signature (Muon) and Detector Software (Inner Detector)
 - Release and Validation
 - Trigger Operation
- Hosted TDAQ Week 2023

Phase-II Upgrade

Pixel Module Production Flow

Module Pre-production started

Assembly

Assembly by company

- Flex, cell attachments
- Wire bonding
- Parylene coating preparation

10 modules for parylene coating

Readout test (QC test)

QC testing by Scientists

- Metrology
- Electrical test
- Thermal cycles

X-ray scan to check bump connectivity

60 modules have been assembled and tested. 121 modules will be finished by January.

Silicon Strip Sensor

- Japanese responsibility is to provide a half of barrel sensors
- Production is in good progress
 - 4,996 sensors delivered as of Nov 2023
- Testing results show all sensor satisfy
 - ▶ bow < 200 µ m</p>
 - deficit strip < 0.1%</p>
- Irradiation at CYRIC, Tohoku U for QA

500 nterstrip resistance [M2] 450 400 350 300 250 200 150 100E 50 0 6 8 10 12 14 16 18

Fluence [×10¹⁴ n_{eq}/cm²]

Endcap Muon Trigger for HL-LHC

2nd prototyping starts soon

Make Inner-Outer coincidence

Provide endcap muon trigger

Parts procurement on-going

Synchronizes TGC hit information and send them to the back-end board

- 60 pre-production ongoing
 - 18 already produced
- QA/QC preparation ongoing

Full-production starts next FY

Others

- Other boards prototyped and produced •
- Purchase of ~10⁴ optical fibers started

Timing Alignment Master(TAM) (30)

2nd prototyping

1st prototype

Comments on Production Model of ATLAS Upgrade

- Delay is minimum in our muon end-cap trigger
 - Almost no dependence to other institutes/country
- Serial production is troublesome
 - Very difficult to cover/compensate failure occurred at different site
 - eg. Additional strip sensor production, where module production (and later) yield is lower than expectation
- Huge delay in Pixel
 - Complicated dependence to others, which is difficult to avoid, eg. module production needs FE ASIC
 - Production model requires advanced team to just "wait" due to parallelization. Since there are many reviews, accumulated delay is huge
 - Planning/distribution of more work for advanced team is needed

Conclusions

- Japanese contributions to :
 - Operation
 - Pixel, SCT, LAr trigger, TGC, HLT
 - Phase-II Japanse contributions
 - Pixel in preparation for production
 - Strip sensor production is on-going
 - Muon trigger development in good shape
 - Physics

Silicon Tracker (ITk)

ITk Layout

- Totally new detector
- ••• Area
 - Pixel 2.7m² \rightarrow 13.5m²
 - Strip $62m^2 \rightarrow 165m^2$
- The number of channels
 - Pixel 90M \rightarrow >5G
 - Strip $6M \rightarrow 60M$

500

Pixel size

1000

 $50 \times 400 \,\mu \text{m}^2 \rightarrow 50 \times 50 \,\mu \text{m}^2$

2000

ITk Layout

n **= 2.0**

η **= 3.0**

n = 4.0

3000

2500

3500

- Strip length $20cm \rightarrow 2.4cm$ (shortest)
- \Rightarrow faster data transfer

1500

n = 1.0

- Radiation harder
 - Innermost 1×10¹⁵ n_{eq}/cm²

 $\rightarrow 2 \times 10^{16} n_{eq}/cm^2$