
Working Group 1: ggF Cross Section Update

Conveners:

(EXP) Jonathon Langford, Haider Abidi, Robin Hayes (TH) Stephen Jones, Alexander Huss

Overview

Goal: accurately reflect changes in TH uncertainty since YR4

iHixs2: Dulat, Lazopoulos, Mistlberger 18

 N^3LO_{HTL} - use iHixs2 Dulat, Lazopoulos, Mistlberger 18 (done) $\delta(1/m_t)$ - NNLO QCD w/ m_T use Czakon et al. 21 (requested & confirmed; awaiting input) $\delta(t,b,c)$ - Not yet in literature ($m_q \sim 0$, $m_b \& m_t$) (not likely for current update) $\delta(EW)$ - gg-channel light-quark contributions use Becchetti et al 20. (requested; awaiting input) $\delta(PDF-TH)$ - estimate with individual sets, separate comparison to aN^3LO

Timeline

•	Sep 22	Identify results of interest to WG
•	Nov 22	Authors summarise work at general assembly + Assess $\delta(t,b,c)$ and $\delta(\mathrm{EW})$ outlook + Community feedback
	Dec 22	Initial exploratory runs of iHixs (N^3LO_{HTL})
	Dec 22	Initial meeting with aN^3LO authors (Cridge)
	Mar 23	Request Czakon et al. 21 results for updating $\delta(1/m_t)$ Request Becchetti et al 20. results for updating $\delta(\rm EW)$
	Apr 23	Begin full runs of iHixs (N 3 LO $_{HTL}$) Ask aN 3 LO and other PDF authors for input/study of δ (PDF – TH)
0	Jun 23 awaiting input	WG1: ggF meeting + Presentation of results from each group + Initial combination + Community feedback
ф	Aug 11	Update twiki & fully document all input/choices
ф	Sep 23	WG note with studies (e.g. PDFs, EW TH uncert,)

iHixs2 — Run 3 Update

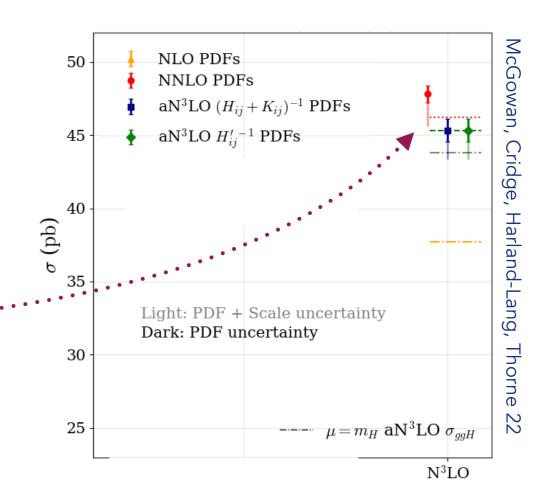
$$\delta\sigma_{PP\to H+X} = \delta(\text{PDF}+\alpha_S) + \delta(\text{theory})$$

$$\delta(\text{theory}) = \delta(\text{scale}) \left(+ \delta(\text{PDF-TH}) \right) + \delta(\text{EWK}) + \delta(t,b,c) + \delta(1/m_t)$$

updated predictions: (similar tables for \sqrt{s} = 7, 8, 13, 14 TeV)

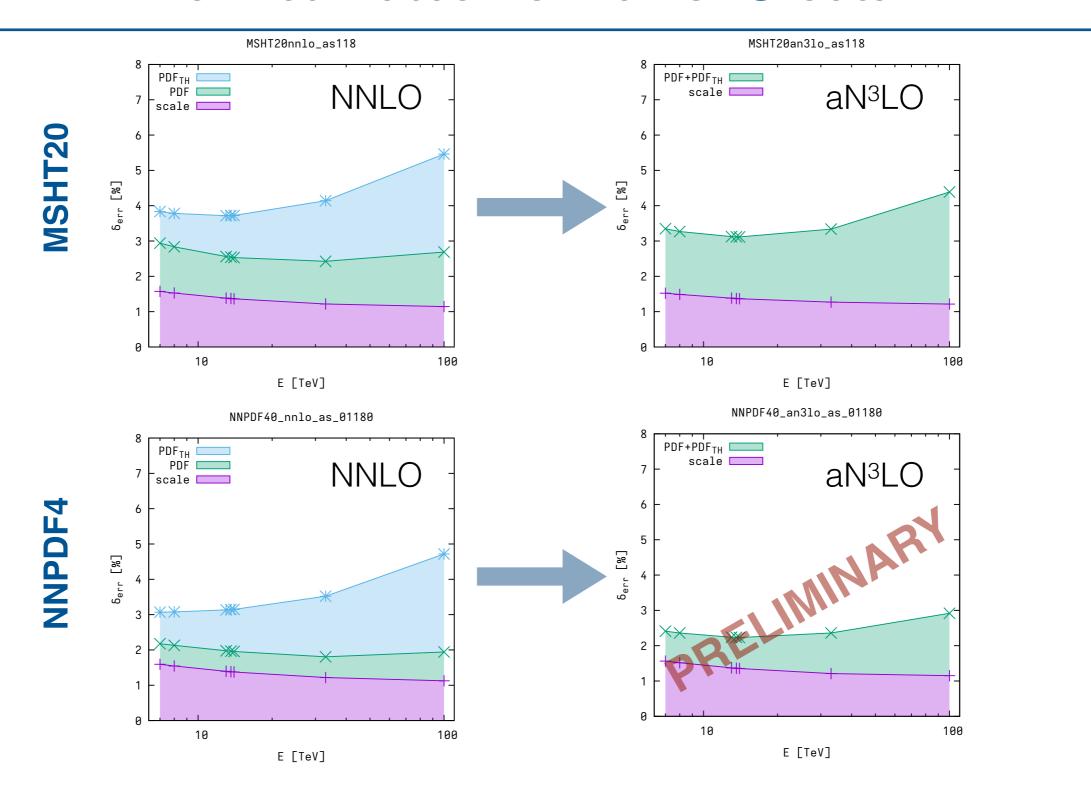
$\sqrt{s} [{ m TeV}]$	$M_{ m H} [{ m GeV}]$	$\sigma [\mathrm{pb}]$	$\delta({ m theory})$	$\delta(\text{scale})$	$\delta({ m EWK})$	$\delta(t,b,c)$	$\delta(1/m_{ m t})$	$\delta(\text{PDF} + \alpha_s)$	$\delta(\mathrm{PDF})$	$\delta(lpha_s)$	$\delta({ m PDF-TH})$
13.6	120.00	56.03	+3.16% $-5.42%$	$^{+0.31}_{-2.57}\%$	$\pm 1.00\%$	$\pm 0.85\%$	$\pm 1.00\%$	$^{+2.67}_{-2.27}\%$	$^{+1.65}_{+1.65}\%$	$^{+2.11}_{-1.56}\%$ $^{+2.10}_{-2.10}\%$	$\pm 1.21\%$
13.6	122.00	54.40	+3.14% $-5.37%$	$^{+0.30}_{-2.53}\%$	$\pm 1.00\%$	$\pm 0.84\%$	$\pm 1.00\%$	$^{+2.67}_{-2.26}\%$	$^{+1.65}_{+1.65}\%$	-1.55^{-1}	$\pm 1.20\%$
13.6	124.00	52.87	$+3.12\ \%$ -5.33%	+0.31 % -2.57 % +0.30 % -2.53 % +0.29 % -2.50 %	$\pm 1.00\%$	$\pm 0.83\%$	$\pm 1.00\%$	$^{+2.67}_{-2.26}\%$	$^{+1.64}_{+1.64}\%$	$^{+2.10}_{-1.55}\%$	$\pm 1.18\%$
13.6	124.60	52.43	$+3.11\ \%$	$^{+0.28}_{-2.49}\%$	$\pm 1.00\%$	$\pm 0.83\%$	$\pm 1.00\%$	$^{+2.67}_{-2.26}\%$	$^{+1.64}_{+1.64}\%$	$^{+2.10}_{-1.54}\%$	$\pm 1.18\%$
13.6	124.80	52.28	$\pm 3.11 \text{o}$	$^{+0.28}_{-2.49}\%$	$\pm 1.00\%$	$\pm 0.83\%$	$\pm 1.00\%$	$^{+2.\overline{67}}_{-2.26}\%$	+1.64%	$^{+2.10}_{-1.54}\%$	$\pm 1.18\%$
13.6	125.00	52.13	-5.32% $+3.11%$ $-5.31%$	$^{+0.28}_{-2.48}\%$	$\pm 1.00\%$	$\pm 0.83\%$	$\pm 1.00\%$	$^{+2.67}_{-2.25}\%$	+1.64%	$^{+2.10}_{-1.54}\%$	$\pm 1.18\%$
13.6	125.09	52.07	$^{+3.11}_{-5.31}\%$	$^{+0.28}_{-2.48}\%$	$\pm 1.00\%$	$\pm 0.83\%$	$\pm 1.00\%$	$^{+2.67}_{-2.25}\%$	+1.64%	$^{+2.10}_{-1.54}\%$	$\pm 1.18\%$
13.6	125.20	51.99	$+3.11 \% \\ -5.31 \%$	$^{+0.28}_{-2.48}\%$	$\pm 1.00\%$	$\pm 0.83\%$	$\pm 1.00\%$	$^{+2.67}_{-2.25}\%$	+1.64%	$^{+\bar{2}.\bar{1}\bar{0}}_{-1.54}\%$	$\pm 1.18\%$
13.6	125.30	51.92	$^{+3.10}_{-5.30}\%$	$^{+0.28}_{-2.48}\%$	$\pm 1.00\%$	$\pm 0.83\%$	$\pm 1.00\%$	$^{+2.66}_{-2.25}\%$	+1.64%	$^{+2.10}_{-1.54}\%$	$\pm 1.18\%$
13.6	125.38	51.86	+3.10% $-5.30%$	$^{+0.28}_{-2.48}\%$	$\pm 1.00\%$	$\pm 0.83\%$	$\pm 1.00\%$	$^{+2.66}_{-2.25}\%$	$^{+1.64}_{+1.64}\%$	+2.1007	$\pm 1.18\%$
13.6	125.60	51.70	$+3.10\ \%$	$\begin{array}{c} +0.28 \ \% \\ -2.49 \ \% \\ +0.28 \ \% \\ -2.49 \ \% \\ +0.28 \ \% \\ -2.48 \ \% \\ +0.28 \ \% \\ -2.48 \ \% \\ +0.28 \ \% \\ -2.48 \ \% \\ +0.28 \ \% \\ -2.48 \ \% \\ +0.28 \ \% \\ -2.47 \ \% \\ -2.47 \ \% \\ -2.47 \ \% \\ \end{array}$	$\pm 1.00\%$	$\pm 0.82\%$	$\pm 1.00\%$	$+\overline{2}.\overline{6}\overset{\circ}{6}\overset{\circ}{0}\overset{\circ}{0}$	+1.64%	$-1.54\% \\ +2.10\% \\ -1.54\%$	$\pm 1.17\%$
13.6	126.00	51.41	$^{+3.10}_{-5.29}\%$	$^{+0.27}_{-2.47}\%$	$\pm 1.00\%$	$\pm 0.82\%$	$\pm 1.00\%$	$^{+2.66}_{-2.25}\%$	+1.64%	$^{+2.10}_{-1.54}\%$	$\pm 1.17\%$
13.6	128.00	50.00	$^{+3.07}_{-5.24}\%$	$^{+0.26}_{-2.43}\%$	$\pm 1.00\%$	$\pm 0.81\%$	$\pm 1.00\%$	$^{+2.\overline{66}}_{-2.25}\%$	+1.64%	$^{+2.09}_{-1.54}\%$	$\pm 1.16\%$
13.6	130.00	48.65	$^{+3.05}_{-5.19}\%$	$+0.25 \\ -2.39\%$	$\pm 1.00\%$	$\pm 0.80\%$	$\pm 1.00\%$	$^{+2.\overline{660}}_{-2.24}\%$	+1.64%	+2.09% $-1.53%$	$\pm 1.15\%$

c.f. previous extrapolated numbers: (differences: PDF4LHC 15 \rightarrow 21)


2	ggF (N3LO QCD + NLO EW)								
3	MH	XS			tainty				
4		Interpolation	Theory			PDF+αs	PDF	αs	
5	[GeV]	[pb]	pos [%]	neg [%]	Gauss [%]	[%]	[%]	[%]	
6	120.00	5.611E+01	+4.7	6.9	±4.0	±3.2	±1.9	±2.6	
24	125.00	5.223E+01	+4.6	6.7	±3.9	±3.2	±1.9	±2.6	
25	125.09	5.217E+01	+4.6	6.7	±3.9	±3.2	±1.9	±2.6	
26	125.10	5.216E+01	+4.6	6.7	±3.9	±3.2	±1.9	±2.6	
43	130.00	4.875E+01	+4.5	6.6	±3.8	±3.2	±1.8	±2.6	

Estimate for PDF-TH & aN3LO PDFs

numbers for $\sqrt{s} = 13.6 \,\mathrm{TeV} \,\,\&\,\, M_{\mathrm{H}} = 125.09 \,\mathrm{GeV}$


$$\textbf{baseline:} \quad \delta(\text{PDF-TH}) = \pm \frac{1}{2} \left| \sigma_{PP \to H+X}^{(2), \text{ EFT, NNLO}} - \sigma_{PP \to H+X}^{(2), \text{ EFT, NLO}} \right|$$

- PDF4LHC21 no NLO set available
 - \Rightarrow switch to PDF4LHC15 just for δ (PDF-TH) estimate (robust w.r.t. PDF var.)
 - \hookrightarrow PDF4LHC15 $\pm 1.18\%$
 - \hookrightarrow MSHT20 $\pm 1.43\%$
 - \hookrightarrow CT18 $\pm 1.03\%$
 - \hookrightarrow NNPDF3.1 $\pm 0.92\%$
 - \rightarrow NNPDF4 $\pm 0.18\%$
- c.f. actual shift from NNLO \rightarrow aN³LO PDFs
 - \hookrightarrow MSHT20 -5% ·····
 - \rightarrow NNPDF4 -0.15% (PRELIMINARY) source of differences still under study.
 - * difference for $\sigma^{(3)}(aN^3LO)$: 5 %

proposal: stick with baseline using PDF4LHC15, report numbers for aN3LO set(s).

Error Estimates from aN3LO sets

Inclusion of NNLO $m_{\rm t}$

iHixs:
$$\hat{\sigma}_{ij} = R_{LO}C^2 \left[\sigma_{ij}^{LO, EFT} + \sigma_{ij}^{NLO, EFT} + \sigma_{ij}^{NNLO, EFT} + \sigma_{ij}^{N^3LO, EFT} \right] + \delta \sigma_{ij}^{LO, (t,b,c)} + \delta \sigma_{ij}^{NLO, (t,b,c)} + \delta \sigma_{ij}^{NNLO, (t,b,c)} + R_{LO}C^2 \delta \sigma_{ij}^{Res}.$$

- start with iHixs prediction and systematically incorporate new results
- exact top mass at NNLO Czakon, Harlander, Klappert, Niggetiedt 21

$$\delta\sigma_{ij}^{\text{NNLO, (t)}} = \boxed{\sigma_{ij}^{\text{NNLO, approx.}}} - \left[C_{\text{QCD}}^2 R_{\text{LO}} \sigma_{ij}^{\text{EFT}}\right]_{\alpha_S^4} \quad \text{for} \quad (ij) \in \{(gg), (gq)\}$$

iHixs gives access to each part:

 \hookrightarrow substitution $\sigma_{ij}^{\mathrm{NNLO,\,approx}} \to \sigma_{ij}^{\mathrm{NNLO,\,exact}}$ straightforward (computation of "exact" already as a difference to EFT \leadsto compatibility checks)

Inclusion of mixed QCD-EW

iHixs:
$$\hat{\sigma}_{ij} = R_{LO}C^2 \left[\sigma_{ij}^{LO, EFT} + \sigma_{ij}^{NLO, EFT} + \sigma_{ij}^{NNLO, EFT} + \sigma_{ij}^{N^3LO, EFT} \right] + \delta \sigma_{ij}^{LO, (t,b,c)} + \delta \sigma_{ij}^{NLO, (t,b,c)} + \delta \sigma_{ij}^{NNLO, (t,b,c)} + R_{LO}C^2 \delta \sigma_{ij}^{Res}.$$

- start with iHixs prediction and systematically incorporate new results
- inclusion of EW corrections by Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer 20 iHixs formula based on factorization hypothesis:

$$C = C_{\text{QCD}} + \lambda_{\text{EWK}} \left(1 + \frac{\alpha_S}{\pi} C_{1w} + \dots\right).$$

 \hookrightarrow iHixs uses $C_{1w} = 7/6$ as estimated from the $M_V \to \infty$ limit

 \hookrightarrow full result gives: $C_{1w} = -1.7 \; (\mu_R = M_{\rm H}/2) \; C_{1w} = -2.1 \; (\mu_R = M_{\rm H})$

but note: $\delta(EW) \sim \pm 1\% \iff \text{vary } C_{1w} \text{ by factor in range } [-3, 6]$

proposal: incorporate new result with an additional correction term (1st step)

$$\delta \sigma_{ij}^{\text{EW}} = \sigma_{ij}^{\text{EW}} - \left[C^2 R_{\text{LO}} \sigma_{ij}^{\text{EFT}} \right]_{\alpha_s^3 \alpha^2}$$

and define error estimates on correction factor (beyond light quarks, gg channel, ...)

Community Input / Requests

1) BSM scan with non-SM Higgs Mass

Assuming step size and range ($m_H = [10,3000] \text{ GeV}$) of Report 4

Higgs Mass range	step size	# of points	addendum
[10,150] GeV	5 GeV	29 points	
[150,500] GeV	10 GeV	35 points	+ M _H =125.09 GeV
[500,3000] GeV	50 GeV	50 points	

[•] Total 115 points for M_H=[10,3000] GeV.

2)
$$\sigma(gg \rightarrow H) = \sigma_{tt} + \sigma_{tb} + \sigma_{bb}$$
 breakdown

Corrections can have different K-factors

Useful for BSM studies with different t/b weighting

Can run iHixs2 with same setup; unlikely to have most recent
$$\delta(1/m_{\rm t})$$
 or $\delta({\rm EW})$

but: HTL not valid above $2m_t$ how were the cross sections computed/provided in the past?

$$\sigma(gg \to H) = \sigma_{tt} + \sigma_{tb} + \sigma_{bb}$$
 $K_{tt} \sim 1.68$
 $K_{tb} \sim 0.97$
 $K_{bb} \sim 1.20$

- \Rightarrow up to 20 30% differences in NLO cxn [m_b : scheme/scale dep.?]
- ⇒ not possible to use SM-like cxns in many BSM cases for different weighting of top and bottom loops

Talk: M. Spira (19th General Assembly)

iHixs2 outputs partially decomposed information; would still rely on on support from the authors of the code

Conclusions & Next Steps

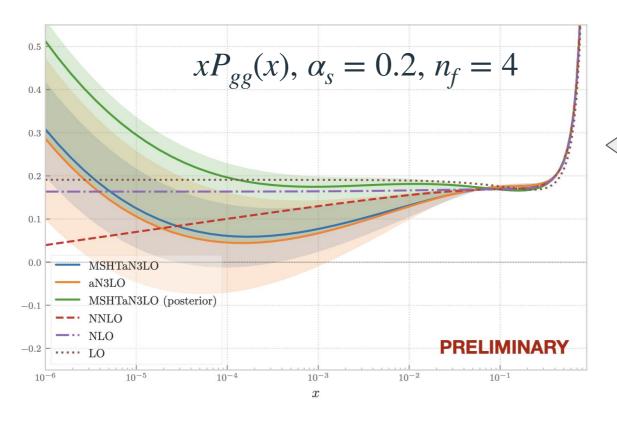
Status

N ³ LO QCQ (iHixs)	DONE
NNI O OCD w/mt	AWAITING INPUT (CONFIRMED 5/04/2)

QCD-EW gg AWAITING INPUT (CONFIRMED 17/05/23)

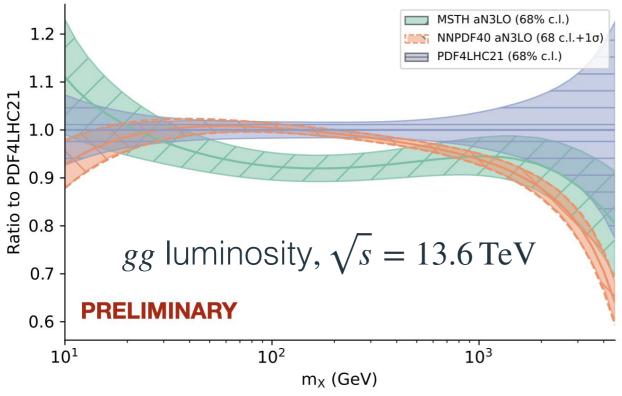
aN³LO PDFs **DONE (PROPOSAL + ongoing LH study)**

Initially asked feasibility of computations for all points on twiki Settled with each group on reduced range of computations (will need to interp.) Requested any available results on 05/06/23 for initial combination


Next Steps

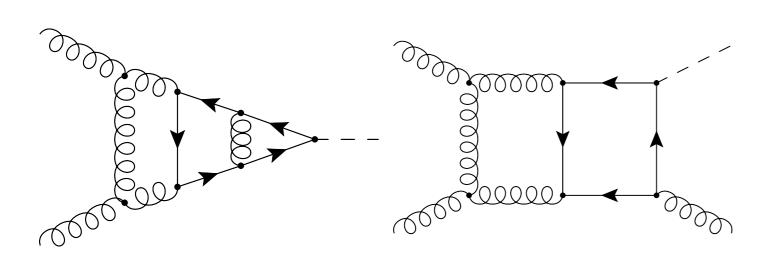
Re-ping groups and share details of how their numbers will be combined Produce initial combination based on numbers in their publications (for validation)

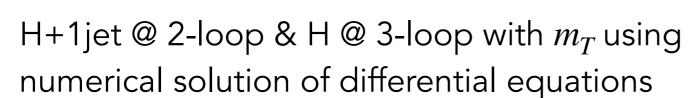
Comments and Questions?


Backup

aN3LO PDFs Comparison

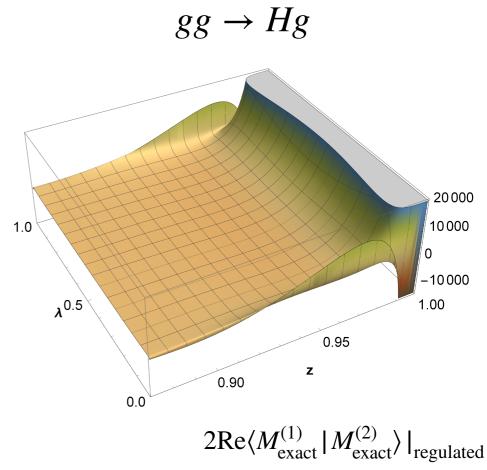
MSHT (prior) ~ NNPDF


MSHT (posterior) shifts within uncertainty band (absorbs some low-x logs?)



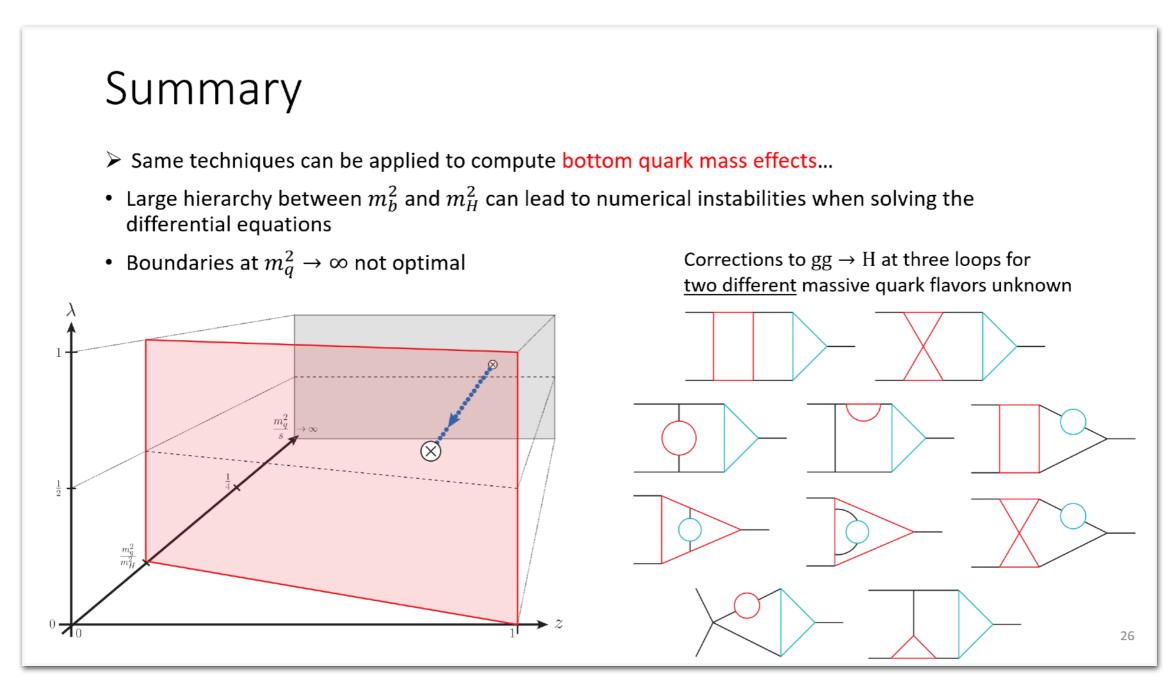
Followup studies:

- Understand origin of differences (impact from prior → posterior? treatment of MHO uncertainties & other N3LO inputs? difference in methodology? ...)
- Compare evolution of toy PDFs
- Cross-section level comparisons
- ..


NNLO with full top-quark mass

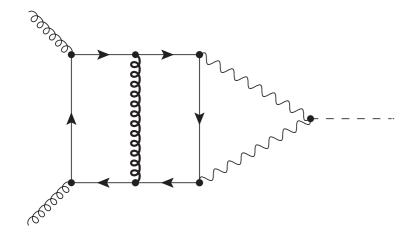
Czakon, Niggetiedt 20;

Czakon, Harlander, Klappert, Niggetiedt 21



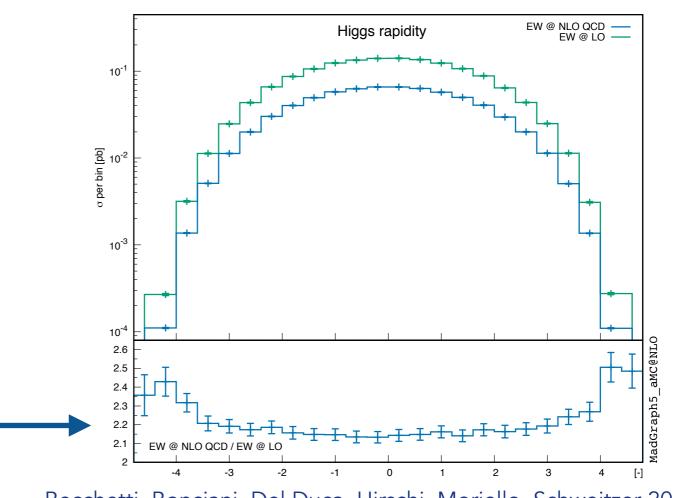
Decreases $\sigma_{\rm tot}$ by $-0.26\,\%$ @ 13 TeV compared to heavy top limit (HTL)

Intricate interplay between mass effects gg (+0.62%), qg (-16%), qq (-15%) Complete NNLO results obtained using STRIPPER framework


What to do with bottom/charm quarks?

Would be very useful to know bottom/charm effects @ NNLO (reduce $\delta(t,b,c)$)
However, technically very challenging to get NNLO results

Slide: Marco (Monday)


Mixed QCD-EW Corrections @ NLO_{QCD}

Challenging calculations

Bonetti, Melnikov, Tancredi 17 Bonetti, Panzer, Smirnov, Tancredi 20

Dominant light-quark mediated contributions computed, rather flat K-factor (for rapidity distribution)

Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer 20

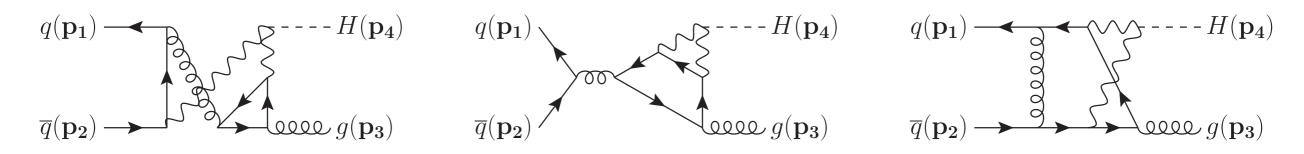
Increases $\sigma_{\rm tot}$ by +5.1 % @ 13 TeV, reduces residual uncertainty $\delta({\rm EW}) \sim 0.6$ % Favouring factorisation of EW corrections: $\sigma = \sigma_{LO} (1 + \delta_{OCD}) \times (1 + \delta_{EWK})$

Compatible with previous estimates:

Soft approx: +5.4%, $M_H \ll M_V$: +5.2%,

Bonetti, Melnikov, Tancredi 18;

Anastasiou, Boughezal, Petriello 09;


 $M_H \gg M_V : +5.4 \%$

Anastasiou, Del Duca, Furlan, Mistlberger, Moriello, Schweitzer, Specchia 19

What to do with the $qg, \overline{q}g, q\overline{q}$ channels?

Previous calculation of QCD-EW corrections only considers dominant gg channel Impact of the quark channels expected to be relatively suppressed (due to large gg lumi), primary impact likely to be $\mathcal{O}(-2\%)$ shift at large/moderate p_T

But: 2-loop $q\overline{q}Hg$ amplitudes known

Bonetti, Panzer, Tancredi 22

Presumably, all-channel QCD-EW estimate is within reach

Proposal:

The sub-group should continue assembling the ingredients required for an update (including the existing QCD-EW corrections), iron out any issues, keep in touch with authors who may produce an improved QCD-EW estimate.