LAr Purification Studies and a Novel Recirculation System

Konstantinos Mavrokoridis

k.mavrokoridis@liverpool.ac.uk

GLA2011, Jyvaskyla, Finland 09.06.11

Talk Outline

Why argon purity matters

Effects of various contaminations on gas argon scintillation light

Purification chemicals - How do they work?

Summary of a set of experiments performed to determine the efficiency of the purification chemicals

The 40L LAr Liverpool Cell

- Construction
- A novel recirculation pump and LAr purification
- Effects of O₂ contamination on LAr scintillation light

Why Purity Matters

The ionised electrons produced in a liquid argon detector such as the ArDM must be able to drift over a distance longer than a metre, without substantial capture by electronegative impurities (i.e O_2 , H_2O , CO_2 , N_2)

Typically better than 1 ppb purity is required

Purest argon gas in the market (N6 cylinder) contains 1 ppm impurities

Therefore purification cartridges and recirculation systems have to be employed

Argon Gas Scintillation

Scintillation light from argon has two distinct decay times - a slow component, T2 (triplet), and a fast component, T1 (singlet). The slow component, T2, can be used as a measure of Argon purity. The purest gas argon has a T2 of about 3200 ns (J. W. Keto et al, PRL, 1974).

Effect of various impurities on GAr

scintillation light

--H₂O was found to be very marginally the worst impurity followed by CO₂ and O₂.
--N₂ was found to be the most benign impurity within argon gas.

--Birks law type function fit y=m1/(1+m2*x); m1=2878ns, m2=0.24

Correlation of the slow component decay time to partial pressure of impurities within 1 bar ppb argon gas

The Argon Purification Chemicals (a)

Molecular Sieves

Size/Steric Exclusion

Molecules small enough to pass through the pores are adsorbed while larger molecules are not

Molecular sieves can be graded to capture molecules with sizes between 3 Å and 10 Å

Thermodynamic Selectivity

A measure of preferential absorption of certain molecules over others when all molecules can enter the pores.

Is achievable because the adsorption of a particular gas is favourable over another on the accessible cationic sites within the crystal.

Molecular sieves can be used to purify argon based on the size/steric exclusion and thermodynamic selectivity properties

The Argon Purification Chemicals (b)

Copper

Copper reacts strongly with oxygen forming copper oxide.

Phosphorous pentoxide

P₄O₁₀ reacts exothermically very strongly with water producing orthophosphoric acid.

$$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$$

Hazardous upon skin contact and inhalation

Adsorption of H₂O, N₂, Ar

Measurements of the enthalpy of adsorption, total capacity, and effective surface area of interaction, for argon gas, nitrogen gas and water vapour on a range of molecular sieves and anhydrous complexes were performed.

The BET (Brunauer, Emmett, Teller) isotherm describes adsorption and provides a route to measuring both the average enthalpy of adsorption and the effective surface area of the adsorber (e.g. activated charcoal)

Combination	Enthalpy of adsorption (kJ/mol)	Surface area (m ²)	Maximum capacity (%wt)
N ₂ and activated carbon	9.1	65836	37
Ar and activated carbon	11.1	62451	42
N ₂ and 3A Mol. sieve	10.9	26264	23
Ar and 3A Mol. sieve	11.4	29477	27
N ₂ and activated alumina	10.2	17330	13
Ar and activated alumina	11.1	16309	16
H ₂ O and calcium sulphate	48.4	4520	6
H ₂ O and 3A Mol. sieve	46.3	22785	14
H ₂ O and cobalt chloride	45.0	3275	3
H ₂ O and magnesium sulphate	45.1	3799	4

Adsorption results for the BET isothermal experiment

Efficiency of Cu and P₄O₁₀ at removing O₂ and H₂O

Efficiency of copper at room temperature and -130 °C at removing 1 mbar O₂ partial pressure impurity in 1 bar N6 argon gas

Efficiency of Cu and P₄O₁₀ at removing O₂ and H₂O

P₄O₁₀ at RT and -130 °C removing 0.5 mbar H₂O partial pressure impurity in 1bar N6 argon gas

Cu and P₄O₁₀ mixture at RT and -130 °C removing 0.5 mbar and 0.05 mbar respectively O₂/H₂O partial pressure impurity in 1bar N6 argon gas

Within 30 hours the slow component decay time increased from 70 to 1650ns corresponding to \sim 3 ppm O₂ equivalent impurity

The Liverpool LAr Cell -Schematic

250 L LAr bath 40 L LAr target

- Bellow pump powered by an external geared motor
- Heat load loses ~115 W
- Boiling rate ~12 l/min
- Loosing about 20 L in 24hassumming 10cm thick polyethylene lid

Construction of the Liverpool LAr Cell

Left: Rolling the stainless steel sheet

Right: Machining the top flange

Construction by Kevin McCormick

The Liverpool LAr Cell -Construction

Wrapped with Mylar reflector to minimize radiation losses

All the welding performed using argon gas to avoid oxidation and achieve UHV

The 40 L Target Vessel and Recirculation System

Development of a novel one way recirculation system using metal balls and a bellow

Scalable design

Purification Cartridge

Metal bellow

LAr feedthrough

The Liverpool LAr Cell– The Purification Cartridge

- **○** 3A,4A,13X Molecular Sieves for removing, N₂,H₂O,CO₂
- Copper for removing O_2 (2Cu+ O_2 → 2CuO)

Filling the purification cartridge within an argon bag in order to avoid reaction with air molecules

The Liverpool LAr Cell – Light

Readout

Development of cryogenic voltage divider

Cryogenic 8-inch
Hamamatsu R5912-02MOD
PMT (~2500 GBP)

Capacitor LAr level meter

The Liverpool LAr Cell – The WLS Coated Reflectors

TPB coated 3M foil under a UV lamp

Shifts 128 nm → 430 nm

TPB coated PMT under a UV lamp

The Liverpool LAr Cell- Assembled

Closing the detector

LAr Recirculation and Purification Test

Within 4 days continuous re-circulation at rate of 27 litres/hour, the slow component decay time was increased by 200 ns reaching ~1100 ns

Effect of 0.01 ppm to 100 ppm O₂ impurity on LAr scintillation light

Data collected using an Am-241 alpha source

Birks law type function fit y=m1/(1+m2*x); m1=1097ns, m2=0.28

Correlation of the LAr slow component decay time with part per million O₂ impurity

Summary & Conclusions

Effect of various impurities on the GAr scintillation –correlation of slow component decay time to ppm equivalent impurity level

Purification Chemicals -How they work

-Molecular Sieves, Cu and P₄O₁₀

Efficiency of the chemicals at removing O2, H2O and N2 found to be high

The Liverpool LAr Cell:

- -- Construction of a novel cryogenic recirculation pump,
- --Successful operation of the pump with a recirculation rate of 27L/hour over four days
- --Successful purification of LAr over 4 days recirculation -slow component of LAr increased by 200 ns reaching ~1100 ns
- --Slow component decay time of LAr scintillation light was correlated to ppm O₂ equivalent contamination

Thank You