

GLA2011

The cryogenic systems of the LHC experiments

Johan Bremer on behalf of TE/CRG, ATLAS collaboration and CMS collaboration

Content

Cryogenic system for the ATLAS magnets

Cryogenic system for the CMS magnet

Cryogenic system for the ATLAS Liquid argon calorimeter

2

GLA2011

Large Hadron Collider

GLA2011 3

ATLAS

4

GLA2011

ATLAS Central Solenoid

Cold mass:

Current:

Field:

Stored energy

5.5 tons

7.7 kA

2 T

39 MJ

ATLAS Barrel Toroid

Cold mass

Current

Field

Stored energy

370 tons

20.5 kA

1 T (peak 4 T)

1.6 GJ

ATLAS End-Cap Toroid

Cold Current Field Stored energy 160 tons each 20.5 kA 1 T (peak 4 T) 0.25 GJ each

Basic flow scheme of the refrigerating system

6 kW @ 4.5 K

20 kW @ 60K

PCS of ATLAS Toroids

GLA2011

PCS of ATLAS Solenoid

GLA2011 10

Design & measured heat loads

Thermal loads at 4.5 K

	Thermal loads at 4.5 K	
	design	measured
	sta [.]	tic
Barrel toroid	660 W	510 W
Both End-Cap toroid	360 W	290 W
Central solenoid	50 W	17 W
Pump	650 W	670 W
infrastructure	450 W	215 W
Total	2170 W	1702 W
	dyn	amic
Barrel toroid (2 hr)	350 W	360 W
Both End-Cap toroid (2 hr)	220 W	140 W
Central solenoid (20 min)	20 W	25 W
Total	590 W	525 W
Liquefaction load		2) g/s = 10.8 g/s (design) .2) q/s = 12.3 g/s (measured)

GLA2011 11

Full system fast dump

Consolidation/Conclusion

Consolidations foreseen for:

Winterstop 2011:

installation of two compressor stations in the MR compressor chain;

Long shutdown 2013:

installation of extra helium storage volume in experimental underground area:

· Solenoid can (for some time) be driven independently from toroid system;

Conclusions:

ATLAS magnet system operational since 2008:

- Fast dumps only triggered by equipment failure (current lead valve, communication with PLC, not by failing pump)
- Slow dump caused by non-availability of refrigerator system works correctly
- Recuperation time after fast-dump now about 3 days;

CMS

CMS solenoid

Cold mass
Current
Field
Stored energy

234 tons 18.1 kA 3.8 T 2.7 GJ

CMS basic flow scheme

Thermal load going into 4.2 K system
Thermal load on thermal screen system (60K - 80 K)
Liquefaction load

800 W 4500 W 2x2 g/s

CMS basic flow scheme

Fast Dump recovery

Consolidation/Conclusion

Consolidation

The two compressor stations (low and high pressure) will be backed-up by a complete redundant system.

Conclusion:

- Fast dumps only triggered by equipment failure (for example current lead valve);
- · Slow dump caused by non availability of refrigerator system works correctly;
- Recuperation time after fast-dump about 3.5 days;

Argon calorimeters

Argon calorimeters

Equipped End-Cap cryostat

Electromagnetic barrel

Absorber

Cryostat cold wall

External ring

Cooling loop

Internal ring

Cryostat rail

Presampler sector
(in its housing)

Presampler modules

Cryostat diameter 4.3 meter

length 3 meter
Argon volume 19 m³
Detector weight 219 t
Heat load 2.5 kW

Cryostat diameter 4.3 meter length 6.5 meter

Argon volume 40 m³
Detector weight 120 t
Heat load 1.9 kW

GLA2011

Functional requirements (1)

- Maximum temperature gradients during cool down (< 6K..45K)
- No argon gas bubble formation in liquid bath
- Temperature distribution in argon bath < 0.6K
- Temperature stability not well defined in TDR
- Argon purity < 1000 ppb O₂ equivalent (volume)

Functional requirements (2)

Safe continuous operation of the ATLAS LAr cryogenic system:

- Foresee that calorimeters shall not be emptied over their lifetime
- Foresee an emergency evacuation of the argon (in case emptying is needed)
- Foresee that End-Cap calorimeters can be displaced longitudinally over 12 meters to give access to the inner part of the ATLAS detector
- Foresee that no condensing (of water) will find place on the signal feed-throughs

End-Cap cool down

Nitrogen circulation

Nitrogen is circulated through heat exchanges via a nitrogen pump;

The 2-phase nitrogen flow is regulated to the same pressure in all 12 heat exchangers placed in the baths;

Nitrogen re-liquefied by refrigerator;

System backed up by 100 m^3 N_2 storage at the surface;

Normal operation

Each of the cryostats equipped with expansion vessel:

Liquid level in expansion vessel; Expansion vessel placed above level of cryostat; Expansion vessel distanced from cryostat

Argon in expansion vessel is regulated to saturated conditions at 1.25 bar (89.3K). The bath temperature is regulated to 88.3 K, creating a liquid which is subcooled between 3 K and 7 K in the sensitive volume

Cooling principle

Sub-cooled liquid: No boiling (no gas production, no noise) Time to recuperate from cooling failure

Calorimeter cooling stop

No argon gas bubble formation OK

Result 2010 data taking period

C-side end-cap

Homogeneity in space

Barrel Stability in time

A-side end-cap

Endcaps probes→ Very goodstability!(~3.5 mK)

Barrel probes :

mK

Due to the 50 mK step in august (~5 mK without this 2 weeks)

GLA2011 Temperature distribution in argon bath < 0.6K; OK

Result 2010 data taking period

Effect of refrigerator stop on temperature stability of argon baths

Result purity measurements

Results over more than 2 years

(Systematic error approx. 100 ppb)

Precautions taken against failures of services

- If stop of refrigerator, nitrogen supplied via surface. Spare buffer of 10000 liter in experimental cavern
- Electrical power: EDF/EOS/Diesel 1/ Diesel 2/ UPS
- Compressed air backed-up by nitrogen buffer and by batteries
- Cooling water supply switched to tap water in case of problems with standard cooling water system
- One nitrogen pump is running, two are in stand-by. When supplied via surface, system can even run without pumps
- Warm back-up for each of the PLCs (not really redundant)
- Very slow rise in evacuation vacuum once diffusion pumps are stopped (more than 6 hours till 10^{-4} mbar)

Emergency evacuation of liquid argon

Two 50 m3 permanently cooled argon storage tanks have been placed in the experimental cavern

Top of tank is situated at a lower level than bottom of calorimeters

In case of emergency calorimeters can be emptied by gravity into these tanks

First collision in cavern: Emptying system successfully operated

End Cap displacements

End-Cap displacement OK

Feed-through anti-condense

Total of 114 signal feed-throughs

Feed-through: pass signal cable from liquid argon bath to room temperature

Each warm flange independently regulated at 20 °C

Heat load per feed-through into liquid argon bath ~ 15 W

After heating failure about 30 minutes down-to dew point

no condensing on the signal feed-throughs OK

Conclusions

Argon calorimeters:

- •The three ATLAS liquid argon cryostats are operational since beginning 2006
- Temperature gradient and stability are well within the foreseen limits
- Emergency system to empty the cryostats is operational
- System to displace full End-Cap cryostats is operational
- Signal feed-through system is functioning well within the foreseen limits

General:

Cryogenic systems for the experiments function well, data-taking with 3,5 TeV beams and luminosity of > $1\ 10^{33}\ cm^{-2}s^{-1}$ ongoing.