GLA2011 WORSHOP SOFREGAZ's experience in tank building and process

JYVÄSKYLÄ – June 7th 2011

Jérôme Sialelli

FEW WORDS ABOUT SOFREGAZ

ACTIVITIES AND SERVICES

Engineering company specialized in natural gas.

- Feasibility studies
- Basic & Detailed Engineering
- Project Management Consulting
- Procurement / sourcing
- Construction Supervision
- Commissioning & start-up

LNG RECEIVING TERMINAL BILBAO SPAIN

ALL THROUGH THE "NATURAL GAS CHAIN"

Gas treatment (Gas gathering system, Gas Oil Separation Plant, Sweetening, Drying, Extraction, separation and storage of C2+, ...)

LNG RECEIVING TERMINAL
HAZIRA INDIA

LNG

Peak shaving
Small Scale Natural Gas Liquefaction
LNG import terminals

GAS TREATMENT WAFA LIBYA

Transmission systems – Pipelines and pumping and compression stations

COMPRESSION STATION S3-S6 IRAN

LNG CHAIN

EXPERIENCE IN LARGE LNG STORAGE

In the last 10 years SOFREGAZ has successfully completed as Joint Venture member 8 EPC contracts including 11 LNG tanks with a cumulated capacity of 1,450,000 m³.

PROJECT	Storage Qty	Unit Vol (m3)	Total Vol (m 3)	Year of completion
SHANGHAI Peak Shaving (China)	1 (Full cont. above ground)	20,000	20,000	2000
BILBAO Rec. Ter. (Spain)	2 (Full cont. above ground)	150,000	300,000	2004
HAZIRA Rec. Ter. (india)	2 (Full cont. above ground)	160,000	320,000	2005
GUANGDONG Rec. Ter.(China)	3 (Full cont. above ground)	160,000	480,000	2006/2007
FOS CAVAOU Rec. Ter. (France)	3 (Full cont. above ground)	110,000	330,000	2009

LNG TANK TYPE

- Single containment
 - Inner shell contains liquid & vapour
- Double containment
 - Inner shell contains liquid & vapour
 - Outer shell contains liquid only
- Full containment
 - Inner shell contains liquid only
 - Outer shell contains liquid & vapour

TYPICAL LNG FULL CONTAINMENT TANK

LNG STORAGE: IN GROUND TECHNOLOGY

LNG STORAGE: MEMBRANE TECHNOLOGY

Typical GTS membrane (GTT license)

LNG TANK TYPE: REFERENCES & TRENDS

- **Technology developed by GEOSTOCK SAIPEM**
- Pilot Plant in Pyongtaek in South Korea tested with liquid N2
- No industrial plant

PRELIMINARY SCHEME OF LARGE BELOW GROUND LIQUID ARGON STORAGE FOR LAGUNA PROJECT

LAGUNA PROJECT

SPECIFIC ASPECTS OF A LARGE LIQUID ARGON STORAGE (100 kt)

☐ STORED PRODUCT: ARGON compared to LNG

	ARGON	LNG
Boiling point at 1 atm (°C)	minus 186	Around minus 160
Liquid density (kg/m3)	1,400	Around 450
Product purity	High purity < 1 ppb	Mixture of N2 (<3% vol), C1 (>90% vol), C2+, CO2 (< 50 ppm)
Operation	One single filling	Cycle of filling and emptying
Safety	Inert gas	Flamable

- □ INTERNAL WALL SURFACE TREATMENT
- □ CONSTRUCTION IN A CONFINED IN AN UNDERGROUND CAVITY
- □ DRYING, FIRST COOLING AND FILLING OPERATION
- □ BOIL OFF GAS HANDLING
- □ PURIFICATION & FILTRATION
- □ INSTALLATION & MAINTENANCE OF INTERNAL INSTRUMENTATION

ABOVE GROUND FILLING FACILITIES

TRANSFER LINE FROM GROUND TO BOTTOM

IN THE CASE OF FULL CONTAINMENT LIQUID ARGON TANK:

☐ CHOICE OF OUTER TANK DESIGN:

METALLIC (Stainless Steel) SELF SUPPORTING	PRE-STRESSED CONCRETE
Concept not used for LNG for large storage.	Common concept for large LNG storage
Limitation is size of plates (length)	From where concrete will be coming; Inside => location of batching plant Outside => How to transport
More flexible for stop & go problems	Need to be more continuous (jumping or sliding forms)

- ☐ CHOICE OF MAIN CONTAINMENT TYPE:
 - METTALIC SELF SUPPORTING (Conventional)
 - MEMBRANES

ARGON BOIL-OFF GAS RELIQUEFACTION & PURIFICATION: SCHEME 1

ARGON BOIL-OFF GAS RELIQUEFACTION & PURIFICATION: SCHEME 2

LARGE LIQUID ARGON STORAGE: Auxiliaries

CONSTRUCTION

MAIN CONSTRAINSTS COMPARED WITH A CONVENTIONAL ABOVE GROUND TANK

- LIMITATION MAXIMUM ACCESS SIZE & WEIGTH FOR MATERIAL
- **□** FEW SPACE FOR STORAGE OF MATERIAL AND LIMITED CONSTRUCTION AREA
- **☐** FEW SPACE FOR CRANES
- **□ VENTILATION & HSE ASPECTS**

CONSTRUCTION SEQUENCE

THANK YOU FOR YOUR ATTENTION