Status and plans with 6m³ at CERN

A. Marchionni, ETHZ *GLA2011, Jyväskylä, Finland, June 2011*

- ☐ Towards a m² scale readout of a double-phase LAr TPC
 - Large Electron Multipliers, Micromegas,...
 - the building block of larger size detectors
- ☐ Test beam exposure of a Liquid Argon TPC Detector at the CERN SPS North Area
 - 0.5-5 GeV/c beam
- **□** Conclusions

@ CERN

GLACIER Roadmap

small test setups for readout devices, electronics

ArgonTube@ Bern 5 m drift, 0.4 ton under assembly

ArDM (RE18), presently @ CERN

1 ton LAr, Cockroft-Walton, LAr recirculation and purification, industrial electronics, safety, optimized for dark matter searches, in operation

full engineering demonstrator for larger detectors + physics

Charge readout in double phase

Test beam exposure of a Liquid Argon TPC Detector at the CERN SPS North Area Abstract #82

D.Autiero^a, A. Badertscher^b, G. Barker^c, Y. Declais^a, A. Ereditato^d, S.Gninenko^e, T. Hasegawa^f, S. Horikawa^b, J. Kisiel^g, T. Kobayashi^f, A.Marchionni^b, T. Maruyama^f, V. Matveev^e, A. Meregaglia^h, J.Marteau^a, K. Nishikawa^f, A. Rubbia^b, N. Spoonerⁱ, M. Tanaka^f, C.Touramanis^j, D. Wark^{k,l}, A. Zalewska^m, M. Zitoⁿ
(a) IPN Lyon (b) ETH Zurich (c) University of Warwick (d) Bern University (e) INR, Moscow (f) KEK/IPNS (g) University of Silesia (Katowice) (h) IPHC Strasbourg (i) University of Sheffield (j) University of Liverpool (k) Imperial College (l) RAL (m) IFJ-PAN, Krakow (n) CEA/SACLAY

New Opportunities in the Physics Landscape at CERN
May 10th-13th 2009
CERN, Geneva, Switzerland

The beam

Tertiary beam at the CERN SPS North Area in the H8 line

- 0.5-5 GeV/c e/ μ / π /p with well defined momenta. The possibility to reach lower momenta (200, 400 MeV/c) is being investigated
- synergy with AIDA (Advanced European Infrastructure for Detectors at Accelerator: neutrino detectors R&D tests on the CERN H8 beamline
- investigating also possibilities at the CERN PS

- Vacuum insulated dewar
- LAr filling starting from a non-evacuated vessel
- Re-condensation of evaporated gas by cryocoolers
- non-evacuated dewar fully equipped with detector
- purge with warm Ar gas (remove water)
- cool with cold Ar gas, while operating GAr recirculation and purification system
- fill with LAr
- LAr recirculation and purification with a LAr pump immersed in LAr

Purity in a non-evacuable 6m³ dewar

Slow component (ns)

Partial pressure of impurity (mbar) in 1 bar ppb argon

A. Curioni et al, arXiv:1009.4073

- purging air with Ar gas (piston effect)
- % level O₂ monitors + 3 PMTs each with a 40 kBq Am source to monitor Ar scintillation light
- Reached **3 ppm** O₂ equivalent via flushing
- Closed gas recirculation and purification under construction → < 1 ppm O₂ equivalent
- Then test in LAr phase

Tentative layout of the detector

Readout area: ≈ 2 m² Drift length: ≈ 1.8 m

Instrumented volume : ≈3.6 m³

Instrumented mass: ≈5 tons

Number of Rings: 45 Diameter Ring: 6 mm

Distance between Ring: 40mm

Number of Pillars: 8

Diameter of Pillars: 40 mm

LEM-TPC readout

Field shapers

Supporting pillars

hydrogenate target inside the detector in order to collect a significant sample of charge exchange events π^- p->n+ π^0

Based on ArDM-1t design

Campaign measurements at CERN NA

3 mm readout pitch, 1.8 – 2.5 m drift length

- Electron, neutral pion, charged pion, proton, muon reconstruction: test particle identification capability
- Electron/ π 0 separation: measurement of electron identification efficiency and residual background from neutral pions
- Calorimetry: calorimetry with low energy particles (0.5-5 GeV/c e/mu/pi)
- Hadronic secondary interactions: study of pion secondary interactions and comparison of the data with MC models
- Precision study of rate effects and space charge

These results will play a fundamental role in future projects involving low energy neutrino beams or sensitive searches for proton decay and complement direct measurements in a low energy neutrino beam

Event simulation

1 GeV π^0

1 GeV electron

Conclusions

- We want to expose a double-phase LAr TPC to a low energy
 (0.5 5 GeV/c) beam in the CERN North Area
- a dewar of ≥ 6 m³ is needed to house a m² scale readout device, which would be the building block of larger detectors
- test of filling and purification of a non-evacuated dewar, fully equipped with the detector
- test of particle identification, calorimetry, hadronic secondary interactions
- study of rate effects and space charge
- results will be important to plan experiments for neutrino oscillations and proton decay searches