Jet Finding in Julia

Graeme Stewart, Philippe Gras, Atell Krasnopolski

@) = i
N/ S

Julius-Maximilians-
UNIVERSITAT
WURZBURG

HEP and Programming Languages

 |Languages in HEP do evolve - albeit slowly!
* QOriginally we programmed in Fortran for LEP (cf. Jim’s talk on Monday)
* With the LHC a wholesale transition to C++ occurred
* Then supplemented by the addition of Python in specific areas
» Configuration and steering
* Analysis codes
 Machine learning
 However, importantly backed by performant C++ code underneath
* Evaluation of any new language is multi-dimensional

* We wanted to look at some aspects of algorithmic performance and comment on language
ergonomics for different language implementations on a non-trivial problem in HEP

Jet Finding as a Test Case

* Find a non-trivial HEP algorithm

e Should not be so simple as to add little
information over general metrics

o Should not be so complex that
Implementation takes a very long time

» Jet finding is a good example of a
“goldilocks” algorithm

 The goal is to cluster calorimeter energy
deposits into jets

* AntiKt clustering, used by Fastdet, is
popularly used because it is an infrared and
co-linear safe [arXiv:0802.1189]

https://arxiv.org/abs/0802.1189

p, [GeV]

The Algorithm In Brief 3

10
5
T
1. Define a distance parameter R (we use 0.4, which is LHC is typical) s R
1. This is a “cone size” e
2. For each active pseudo-jet i (=particle, cluster) TR
1. Measure the geometric distance, d, to the nearest active o T 4 2 0 2 ‘
seudo-jet j,iIf d < R (else d=R . L
P jet ; () ——____ Thereis a parallelisation
2. Define the metric distance, di-, as opportunity here
1. di;=d *min(Jet; pt?p, Jet; pt?p)
2. N.B. this favours merges with high pt jets, giving stability Algorithm:
against soft radiation b=-1 AntiKt
3. Choose the jet with the lowest d; p=0 Cambridge/Achen

1. If this jet has an active partner j, merge these jets p=1 Inclusive Kt

2. If not, this is a final jet \

4. Repeat steps 2-3 until no jets remain active - | o
This piece is serial(ish) This algorithm due to

— — Fastdet [arXiv:1111.6097]

Different Strategies

Tiled Implementation

* We look at two strategies for implementing this algorithm For a jef centred in the circle, only blue
tile neighbours need to be considered

 N2Plain: A basic implementation of the algorithm,
essentially just implementing the flow on the previous
slide, all jets considered in a global pool

 N2Tiled: A tiled implementation of the algorithm,
where the (rapidity, phi) plane is split into tiles of size R

* So that only neighbouring tiles need to be y
considered when calculating distances s
: : : : / N
* The tiled algorithm involves more bookkeeping, but K 4)
reduces the work needing done L

* [he basic algorithm does more calculations, but these
are more amenable to parallelisation b

Implementations

 Thereis a benchmark C++ implementation, used almost ubiquitously in HEP,
FastJet (who originally developed the algorithm)

 We initially developed new implementations in Python and Julia

* With the Python code in two flavours: pure Python and accelerated Python
(using numpy and numba)

» Presented initial results at the CHEP2023 conference

https://fastjet.fr
https://indico.jlab.org/event/459/contributions/11540/

Initial Results

e Standard sample 100 of Pythia8 events pp 13TeV, jet pt>20GeV, multiple trials
 Benchmark is C++ N2Tiled strategy at 324pus/event (1.00)
* All benchmarks repeated multiple times, jitter is < 1%

 Event read time and also jit time for Numba and Julia is excluded

Implementation N2Plain N2Tiled
C++ (FastJet) 17.6 1.00
Python (Pure) 966 222
Python (Accelerated) 53.4 178
Julia 4.00 1.12

* Python implementations were really not competitive, so we didn’t try to further improve them
* We also found that the ergonomics of the accelerated Python is suboptimal cf. pure Python or Julia

* The impressive result of the N2Plain algorithm in Julia can be attributed to an SoA layout and SIMD
optimisations

Ergonomics Experience

 C++ FastJet code is actually very like C

* Well written, but some definite tricky parts (pointers to pointers)
* Python

* Pure Python code is rather easy to use and reason about

 Numba/numpy accelerated code becomes unwelildy as the problem needs to be cast
INto a numpy array layout

* Also numba acceleration doesn’t work for quite a few things
e Julia
* As easy as pure Python for the basic implementation parts
* Particularly nice to use of broadcast syntax in places

 Reimplements the C++ for the tiled case, though no pointers makes reasoning (and
safety) better

Improvements!

« After CHEP we profiled the codes again

"""Find the lowest value 1in the array, returning th
find_lowest(dij, n) = begin

* We realised that there was significant time spent in

the tiled algorithm in searching for the minimum d;; best =1~
ainbounds dij_min = dij[1]
» Although this needs to search over all jets, it is ; e Then] < 615 min
amenable to parallelism with a divide and conquer best = newmin 7 here : best
dij_min = newmin ? dij[here] : dij_min
approach end

dij_min, best

e Chunk the array in pieces, find the minimum d;; end

In each part, then compare parts This code is x5 faster

than findmin ()!
28 ps vs. 131 us

* slight rewrite to use ternary operators (See backup)

T —— P——

* And that realising this optimisation was easy...

o apply the @turbo macro from LoopVectorisation.|l

https://github.com/graeme-a-stewart/julia-playground/blob/main/argmax/argmin.ipynb

Other Algorithm Attempts

» Given that the use of SoA appeared to be so successful in the N2Plain case, wanted to try something
similar in the tiled case

* Tried two different ways of doing this
* Implement an SoA of jets for each tile
* This turned out to be quite slow!

 The main problem here was that allocating any collections for >500 tiles was just a killer for the
overall time budget of ~200s ps/event

 Have a global SoA structure for jets, with a simple linked list for the contents of each tile
* This was faster than the per-tile SoA
» But it was still slower than the original linked list N2Tiled

* In the end, the tiled algorithm is so successful at reducing work that the parallelisation advantage of
SoA was leached away

* Also, the coding of this was hard - definitely losing the ergonomic edge (although | didn’t know about
StructArrays.jl when | was doing this, that would have helped)

See strategies N2TiledSoAGlobal and
N2TiledSoATile at JetReconstruction.jl@15bfd5

T ——

10

https://github.com/JuliaHEP/JetReconstruction.jl/tree/15bfd59b3eeb6a94cc0ee7043550ade6c5738c3e

Input Generated Events (Pythia 8, pp CoM=13TeV, Jet p: > 20GeV

Current Performance

 Had been benchmarking the code with a
sample of 100 13TeV pp events generated by
Pythia3

* Average initial particles 413

0 100 200 300 400 500 600 700 800

* Important to test performance at other working
points

 Generated additional samples over various
ranges from <n> =43 ... 632

* Plus a few heavy ion events (see backup)

11

Julia Jet Finding

* Tiled algorithm strategy 1500 |
is very good and scales O Juiia Narited
well

* Only at the lowest
particle densities is the
plain strategy better

e ete- Z: 37% faster

1000 f @

Jet Reconstruction Time ps/event

500 |
* ete H: 25% faster i]
0 F =0 —9 :)) | | ! !
100 200 300 400 500 600

<n> initial particles

12

e N2Plain scales a lot better In
Julia

o Structure of arrays and
LoopVectorisation
optimisation

 For e+e- Z pole events
13.5% faster

* To be fair to fastjet, one

would not use this algorithm
for N >~ 80

* SO not a regime to target
for optimisation

Jet Reconstruction Time us/event

w
o
o
o

2000

1000 |

N2Plain: FastJet and Julia

O
o

Julia N2Plain
Fastjet N2Plain

13

]]
100 200

]]
300 400
<n> Initial particles

]
500

]
600

N2Tiled: FastJet and Julia

 Small advantage for Julia at
higher particle densities @ Julia N2Tiled

O FastJet N2Tiled

400

* This grows with density as the
optimised dij finding is more
significant

300 |

» However, the codes are pretty
close

200 |

e Main conclusion is that Julia

Jet Reconstruction Time us/event

reaches C++ speed 100 . *
./9/
o Still would like to understand - —0
why without eturbo Julia is - L v g _ .

running a bit slower than FastJet <n> initial particles

14

Preparing for Release - What is Done

* The Julia version here is fast enough to merit a release
 Even if it’s only a small fraction of what Fastdet implements

* First make the interface for both implementations uniform:

function tiled jet reconstruct(particles::Vector{T};
p=-1, R=1.0, recombine = +, ptmin = 0.0) where {T}

* For the type T, we only require that the appropriate methods for E-p 4-vectors are
defined

e pt2 (), phi(), rapidity (), px(), py(), pz(), energy/()

e Works fine with LorentzVectorHEP and JetReconstruction.PseudoJet

* Improved testing against FastJet as a reference (Anti-kT, Cambridge/Achen,
Inclusive-kT)

15

Preparing for Release - Still TODO

* Write proper documentation
* Tidy up a few inconsistencies
* Return consistent sequence merging history
 Remove internal data member from Pseudodet
* |Implement a “"Best” strategy, dynamically switching based on <n>

* Fix plotting backend

16

Conclusions

o Jet finding was an excellent example to try in Julia

 Performance was finally somewhat better than FastJet, which is known to be
highly optimised

 Ergonomics of Julia were a lot better
* No pointers: better memory safety and easier reasoning

 Much easier to profile and to apply optimisations via macros

* Jooling for debugging is a lot better

 Much more flexible for users of the package to use their own datatypes

* Release of the package is rather close now

Should happen alongside a wrapped version of the FastJet C++

17

Multi-threading

Multithreaded Jet Finding (Preliminary!)

10
|deal
@ N2Plain Speedup
© N2Tiled Speedup
8
O
>
5
)
L 6 . .
<, Scaling is pretty
= good!
o
N 4
=
2

N Threads

19

Jet Reconstruction Time us/event

Very High Particle Densities (Heavy lons)

107

100

Julia N2Plain
Fastjet N2Plain
Julia N2Tiled
Fastjet N2Tiled

10°
<n> Initial particles

20

10

* Suboptimal scaling of
Julia N2Plain at very
high densities to be
understood

 Not that it’s actually a
practical strategy at
these particle
densities

findmin() vs fast_findmin()

@benchmark for j in 450:-1:1 fast findmin(x, j) end

BenchmarkTools.Trial: 10000 samples with 1 evaluation.
Range (min .. max): 26.250 Us .. 1.311 ms GC (min .. max): 0.00% .. 96.40%

Time (median): 26.875 us GC (median): 0.00%
Time (mean % 0): 28.079 us * 20.770 pus GC (mean * 0): 1.25% & 1.67%

. e

26.2 s Histogram: log(frequency) by time 37 Us

S ————

/
1
<

Memory estimate: , allocs estimate: .

@benchmark for j in 450:-1:1 findmin(@view x[1l:j]) end

BenchmarkTools.Trial: 10000 samples with 1 evaluation.

Range (min .. max): 125.542 s .. 1.908 ms GC (min .. max): 0.00% .. 92.30%
Time (median): 127.250 s GC (median): 0.00%

Time (mean % 0): 131.795 Us * 56.608 Us GC (mean * 0): 1.40% * 3.04%

S - —— - —

126 Us Histogram: log(frequency) by time 148 Us <

Memory estimate: , allocs estimate: .

21

