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HEP and Programming Languages
• Languages in HEP do evolve - albeit slowly!

• Originally we programmed in Fortran for LEP (cf. Jim’s talk on Monday)

• With the LHC a wholesale transition to C++ occurred

• Then supplemented by the addition of Python in specific areas

• Configuration and steering

• Analysis codes

• Machine learning


• However, importantly backed by performant C++ code underneath

• Evaluation of any new language is multi-dimensional


• We wanted to look at some aspects of algorithmic performance and comment on language 
ergonomics for different language implementations on a non-trivial problem in HEP
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Jet Finding as a Test Case
• Find a non-trivial HEP algorithm

• Should not be so simple as to add little 

information over general metrics

• Should not be so complex that 

implementation takes a very long time

• Jet finding is a good example of a 

“goldilocks” algorithm

• The goal is to cluster calorimeter energy 

deposits into jets

• AntiKt clustering, used by FastJet, is 

popularly used because it is an infrared and 
co-linear safe [arXiv:0802.1189]
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https://arxiv.org/abs/0802.1189


The Algorithm in Brief
1. Define a distance parameter R (we use 0.4, which is LHC is typical)


1. This is a “cone size”

2. For each active pseudo-jet i (=particle, cluster)


1. Measure the geometric distance, d, to the nearest active 
pseudo-jet j, if d < R (else d=R)


2. Define the metric distance, dij, as


1. dij = d ・min(Jeti pt2p, Jetj pt2p)


2. N.B. this favours merges with high pt jets, giving stability 
against soft radiation


3. Choose the jet with the lowest dij

1. If this jet has an active partner j, merge these jets

2. If not, this is a final jet


4. Repeat steps 2-3 until no jets remain active
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There is a parallelisation 
opportunity here

This piece is serial(ish) This algorithm due to 
FastJet [arXiv:1111.6097]

Algorithm:

p=-1 AntiKt

p=0  Cambridge/Achen

p=1  Inclusive Kt



Different Strategies
• We look at two strategies for implementing this algorithm


• N2Plain: A basic implementation of the algorithm, 
essentially just implementing the flow on the previous 
slide, all jets considered in a global pool


• N2Tiled: A tiled implementation of the algorithm, 
where the (rapidity, phi) plane is split into tiles of size R

• So that only neighbouring tiles need to be 

considered when calculating distances

• The tiled algorithm involves more bookkeeping, but 

reduces the work needing done

• The basic algorithm does more calculations, but these 

are more amenable to parallelisation
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Tiled Implementation 
For a jet centred in the circle, only blue 
tile neighbours need to be considered 

y
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Implementations
• There is a benchmark C++ implementation, used almost ubiquitously in HEP, 

FastJet (who originally developed the algorithm)

• We initially developed new implementations in Python and Julia

• With the Python code in two flavours: pure Python and accelerated Python 

(using numpy and numba)

• Presented initial results at the CHEP2023 conference
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https://fastjet.fr
https://indico.jlab.org/event/459/contributions/11540/


Initial Results
• Standard sample 100 of Pythia8 events pp 13TeV, jet pt>20GeV, multiple trials

• Benchmark is C++ N2Tiled strategy at 324μs/event (1.00)


• All benchmarks repeated multiple times, jitter is < 1%

• Event read time and also jit time for Numba and Julia is excluded


• Python implementations were really not competitive, so we didn’t try to further improve them

• We also found that the ergonomics of the accelerated Python is suboptimal cf. pure Python or Julia


• The impressive result of the N2Plain algorithm in Julia can be attributed to an SoA layout and SIMD 
optimisations 
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Implementation N2Plain N2Tiled

C++ (FastJet) 17.6 1.00

Python (Pure) 966 222

Python (Accelerated) 53.4 178

Julia 4.00 1.12



Ergonomics Experience
• C++ FastJet code is actually very like C

• Well written, but some definite tricky parts (pointers to pointers)


• Python

• Pure Python code is rather easy to use and reason about

• Numba/numpy accelerated code becomes unweildy as the problem needs to be cast 

into a numpy array layout

• Also numba acceleration doesn’t work for quite a few things


• Julia

• As easy as pure Python for the basic implementation parts

• Particularly nice to use of broadcast syntax in places


• Reimplements the C++ for the tiled case, though no pointers makes reasoning (and 
safety) better
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Improvements!
• After CHEP we profiled the codes again

• We realised that there was significant time spent in 

the tiled algorithm in searching for the minimum dij


• Although this needs to search over all jets, it is 
amenable to parallelism with a divide and conquer 
approach


• Chunk the array in pieces, find the minimum dij 
in each part, then compare parts


• And that realising this optimisation was easy…

• slight rewrite to use ternary operators


• apply the @turbo macro from LoopVectorisation.jl
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This code is x5 faster 
than findmin()!

28 µs vs. 131 µs


(See backup)

https://github.com/graeme-a-stewart/julia-playground/blob/main/argmax/argmin.ipynb


Other Algorithm Attempts
• Given that the use of SoA appeared to be so successful in the N2Plain case, wanted to try something 

similar in the tiled case

• Tried two different ways of doing this


• Implement an SoA of jets for each tile

• This turned out to be quite slow!


• The main problem here was that allocating any collections for >500 tiles was just a killer for the 
overall time budget of ~200s μs/event


• Have a global SoA structure for jets, with a simple linked list for the contents of each tile

• This was faster than the per-tile SoA

• But it was still slower than the original linked list N2Tiled

• In the end, the tiled algorithm is so successful at reducing work that the parallelisation advantage of 

SoA was leached away

• Also, the coding of this was hard - definitely losing the ergonomic edge (although I didn’t know about 

StructArrays.jl when I was doing this, that would have helped)
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See strategies N2TiledSoAGlobal and 
N2TiledSoATile at JetReconstruction.jl@15bfd5

https://github.com/JuliaHEP/JetReconstruction.jl/tree/15bfd59b3eeb6a94cc0ee7043550ade6c5738c3e


Current Performance
• Had been benchmarking the code with a 

sample of 100 13TeV pp events generated by 
Pythia8

• Average initial particles 413


• Important to test performance at other working 
points

• Generated additional samples over various 

ranges from <n> = 43 … 632

• Plus a few heavy ion events (see backup)
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Julia Jet Finding
• Tiled algorithm strategy 

is very good and scales 
well


• Only at the lowest 
particle densities is the 
plain strategy better

• e+e- Z: 37% faster

• e+e- H: 25% faster
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N2Plain: FastJet and Julia
• N2Plain scales a lot better in 

Julia

• Structure of arrays and 

LoopVectorisation 
optimisation


• For e+e- Z pole events 
13.5% faster


• To be fair to fastjet, one 
would not use this algorithm 
for N >~ 80

• So not a regime to target 

for optimisation
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N2Tiled: FastJet and Julia
• Small advantage for Julia at 

higher particle densities

• This grows with density as the 

optimised dij finding is more 
significant


• However, the codes are pretty 
close

• Main conclusion is that Julia 

reaches C++ speed

• Still would like to understand 

why without @turbo Julia is 
running a bit slower than FastJet
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Preparing for Release - What is Done
• The Julia version here is fast enough to merit a release

• Even if it’s only a small fraction of what FastJet implements


• First make the interface for both implementations uniform:


• For the type T, we only require that the appropriate methods for E-p 4-vectors are 
defined

• pt2(), phi(), rapidity(), px(), py(), pz(), energy() 

• Works fine with LorentzVectorHEP and JetReconstruction.PseudoJet


• Improved testing against FastJet as a reference (Anti-kT, Cambridge/Achen, 
Inclusive-kT)
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Preparing for Release - Still TODO
• Write proper documentation

• Tidy up a few inconsistencies

• Return consistent sequence merging history

• Remove internal data member from PseudoJet


• Implement a “Best” strategy, dynamically switching based on <n>

• Fix plotting backend
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Conclusions
• Jet finding was an excellent example to try in Julia

• Performance was finally somewhat better than FastJet, which is known to be 

highly optimised

• Ergonomics of Julia were a lot better

• No pointers: better memory safety and easier reasoning

• Much easier to profile and to apply optimisations via macros

• Tooling for debugging is a lot better

• Much more flexible for users of the package to use their own datatypes


• Release of the package is rather close now

Should happen alongside a wrapped version of the FastJet C++
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Backup
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Multi-threading

19

Performance 

Cores

Efficiency 

Cores

Scaling is pretty 
good!



Very High Particle Densities (Heavy Ions)

• Suboptimal scaling of 
Julia N2Plain at very 
high densities to be 
understood

• Not that it’s actually a 

practical strategy at 
these particle 
densities
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findmin() vs fast_findmin()
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