# Using Julia to Accelerate Monte Carlo Event Generation with Neural Importance Sampling

Tom Jungnickel **Erlangen, 09.11.2023** 



www.casus.science











SPONSORED BY THE

Federal Ministry S of Education and Research KULT





# **Recap: Physical background**



# Event generation for strong-field QED scattering processes





 $W(X) := \frac{d\sigma}{dx}$ 





• Weight 
$$W(X) := \frac{d\sigma}{dx}$$

- Unweighting 1.  $W_{i,rel} = \frac{W_i}{W_{max}}$ 2.  $u \sim U[0, 1]$ 3. accept x if  $u < W_{i,rel}$





- $W(X) := \frac{d\sigma}{dx}$ Weight •
- •
- Unweighting 1.  $W_{i,rel} = \frac{W_i}{W_{max}}$ 2.  $u \sim U[0, 1]$ 3. accept x if  $u < W_{i,rel}$
- Unweighting efficiency  $\epsilon := \frac{\mathbb{E}[w_i]}{w_{max}} \leq 1$ •





• Weight 
$$W(X) := \frac{d\sigma}{dx}$$

• Unweighting

1. 
$$W_{i,rel} = \frac{W_i}{W_{max}}$$
  
2.  $u \sim U[0, 1]$   
3. accept x if  $u < W_{i,re}$ 

- Unweighting efficiency  $\epsilon := \frac{\mathbb{E}[w_i]}{w_{\max}} \leq 1$
- Using a proposal

$$\tilde{w}_i = \frac{w_i}{g(x_i)}$$

 $w(x) \approx cg(x)$ 





• Weight 
$$W(X) := \frac{d\sigma}{dx}$$

• Unweighting

1. 
$$W_{i,rel} = \frac{w_i}{w_{max}}$$
  
2.  $u \sim U[0, 1]$   
3. accept x if  $u < W_{i,re}$ 

- Unweighting efficiency  $\epsilon := \frac{\mathbb{E}[w_i]}{w_{\max}} \leq 1$
- Using a proposal

$$\tilde{w}_i = \frac{w_i}{g(x_i)}$$
  
 $w(x) \approx cg(x) \Leftrightarrow \frac{w(x)}{g(x)} \approx c$ 

W;





• Weight 
$$W(X) := \frac{d\sigma}{dx}$$

• Unweighting

1. 
$$W_{i,rel} = \frac{w_i}{w_{max}}$$
  
2.  $u \sim U[0, 1]$   
3. accept x if  $u < W_{i,rel}$ 

 $\sim$ 

Wi

- Unweighting efficiency  $\epsilon := \frac{\mathbb{E}[w_i]}{w_{\max}} \leq 1$
- Using a proposal

$$w_i = \frac{1}{g(x_i)}$$
$$w(x) \approx cg(x) \Leftrightarrow \frac{w(x)}{g(x)} \approx c \Leftrightarrow \epsilon \approx 1$$





# The classical approach - VEGAS



Adapting a grid by minimizing the variance in each bin



# The classical approach - VEGAS



Adapting a grid by minimizing the variance in each bin

# The problem with VEGAS

#### Adaption of ghost peaks for non coordinate aligned targets





# The problem with VEGAS

#### Adaption of ghost peaks for non coordinate aligned targets







### **Recap: Neural Networks**





# **Recap: Neural Networks**







Change network parameters to reduce the loss



# Enhancing efficiency through neural networks

#### **Neural Importance sampling**



Transform a part of the input data in each layer

[T. Müller et al., ACM Transactions on Graphics (ToG) 38.5 (2019)]



# Enhancing efficiency through neural networks

#### **Neural Importance sampling**

Sci Post



SciPost Phys. 8, 069 (2020)

# Transform a part of the input data in each layer

[T. Müller et al., ACM Transactions on Graphics (ToG) 38.5 (2019)]

Exploring phase space with Neural Importance Sampling

Enrico Bothmann, Timo Janßen, Max Knobbe, Tobias Schmale and Steffen Schumann



# **Flux.jl** Julia meets Al

Just a few lines of code to train your first model



# **Flux.jl** Julia meets Al





dim = 2 bins = 10 cl1 = CouplingLayer(dim, 1, bins) cl2 = CouplingLayer(dim, 1, bins) ml = MaskLayer([false, true]) model = Flux.f32(Chain(cl1, ml, cl2) |> gpu)



# **Flux.jl** Julia meets Al











### **Parallelization**



# Getting started without writing kernels thanks to broadcasting

• Single calculation on CPU:





#### Using Julia to Accelerate Monte Carlo Event Generation with Neural Importance Sampling Tom Jungnickel, CASUS/HZDR

# **Parallelization** Getting started without writing kernels thanks to broadcasting

• Single calculation on CPU:

- Parallel computation on GPU:

gk, gp, gp1, gp2, gp3 = generat\_momenta(10^5) .|> gpu







#### Using Julia to Accelerate Monte Carlo Event Generation with Neural Importance Sampling Tom Jungnickel, CASUS/HZDR 22

# **Parallelization** Getting started without writing kernels thanks to broadcasting

• Single calculation on CPU:

• Parallel computation on GPU:

| gk,  | gp,   | gp1,  | gp2, | gp3 = | generat | _momenta(10^5) | . > | gpu |
|------|-------|-------|------|-------|---------|----------------|-----|-----|
| dσpT | . (gk | , gp, | gp1, | gp2,  | gp3)    |                |     |     |







# Results

# Sampling two gaussians in 5d

#### Work in progress!



#### Proposal from VEGAS



# Results

# Sampling two gaussians in 5d

#### Work in progress!



#### Proposal from VEGAS



#### **Proposal from NIS**



### Results



# Sampling the strong-field Compton process



Using Julia to Accelerate Monte Carlo Event Generation with Neural Importance Sampling Tom Jungnickel, CASUS/HZDR





- network tuning
- application to the strong-field trident process (5d)

![](_page_25_Picture_4.jpeg)

### Acknowledgements

#### CASUS CENTER FOR ADVANCED SYSTEMS UNDERSTANDING

#### Collaborators

- Uwe Hernandez Acosta
- Klaus Steiniger
- Michael Bussmann
- Simeon Ehrig
- Anton Reinhard

![](_page_27_Picture_0.jpeg)

# www.casus.science

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

![](_page_27_Picture_4.jpeg)

![](_page_27_Picture_5.jpeg)

![](_page_27_Picture_6.jpeg)

SPONSORED BY THE

Federal Ministry of Education and Research KUI

![](_page_27_Picture_9.jpeg)