
Engaging the HEP community in Julia

Jim Pivarski

Princeton University – IRIS-HEP

November 6, 2023

1 / 25



Let’s start with some numbers. . .

2 / 25



State of language use by particle physicists as of last Friday

13/275 = 5%

1.0

Selected GitHub users by bios containing
"particle physic" or "high energy physic".

Selection criteria would match 20% of users
who fork CMSSW who write bios (only 10% do).

Google returned about 1/4 of estimated matches.

275 matching users with 3981 non-fork repos.
Identified source code files by file extension.

3 / 25



But physicists are more interested in Julia than, say, Rust or Lua

Among “Materials” (PDFs and TXTs) in CERN’s Indico search since January 2022,

63 refer to Julia the programming language

324 refer to people named Julia

4 other/unclear

12 refer to Rust the programming language
(7 of those same documents also refer to Julia)

10 refer to oxidized metal

3 other/unclear

1 refers to Lua the programming language
(it’s used to configure the SIMION charged particle simulator)

4 refer to the LHC User’s Association

4 other/unclear

4 / 25



Similarly, it is increasingly a focus on ACAT and CHEP

ACAT 2022:
▶ Julia: 1 title and 1 abstract

▶ Python: 3 titles and 24 abstracts

CHEP 2023:
▶ Julia: 3 titles and 4 abstracts

▶ Python: 1 title and 35 abstracts

Only other programming languages mentioned: C++ (frequently) and Java (2 times).

5 / 25



And, it’s the only language-based HSF group other than PyHEP

6 / 25



Julia is not yet “adopted” in HEP, but it is getting more

attention than any other rival to C++ and Python.

From here, it could continue to rise in prominence

or end up passing as a fad. This is a critical time.

7 / 25



Julia is not yet “adopted” in HEP, but it is getting more

attention than any other rival to C++ and Python.

From here, it could continue to rise in prominence

or end up passing as a fad. This is a critical time.

7 / 25



As we’ve seen, Julia is a perfect fit for HEP, technologically.

▶ It allows for an exploratory phase, in which the data analyst focuses on what
to compute, rather than how it will be accelerated.

▶ It allows the exploratory code to be tweaked to scale up to large datasets.

There is a gradual path from brainstorming to optimized code, not a rewrite.

8 / 25



As we’ve seen, Julia is a perfect fit for HEP, technologically.

▶ It allows for an exploratory phase, in which the data analyst focuses on what
to compute, rather than how it will be accelerated.

▶ It allows the exploratory code to be tweaked to scale up to large datasets.

There is a gradual path from brainstorming to optimized code, not a rewrite.

8 / 25



As we’ve seen, Julia is a perfect fit for HEP, technologically.

▶ It allows for an exploratory phase, in which the data analyst focuses on what
to compute, rather than how it will be accelerated.

▶ It allows the exploratory code to be tweaked to scale up to large datasets.

There is a gradual path from brainstorming to optimized code, not a rewrite.

8 / 25



As we’ve seen, Julia is a perfect fit for HEP, technologically.

▶ It allows for an exploratory phase, in which the data analyst focuses on what
to compute, rather than how it will be accelerated.

▶ It allows the exploratory code to be tweaked to scale up to large datasets.

There is a gradual path from brainstorming to optimized code, not a rewrite.

8 / 25



However. . .

This argument focuses on Julia as a solution to the two-language problem, but
we can’t go from two languages to one language without going through three.

all HEP code is
ported to Julia

HEP starts to
use Julia

now

n
u
m

b
e
r 

o
f 
la

n
g
u
a
g
e
s

1

2

3

9 / 25



“If you build it, they will come.”

Preparing a complete stack of HEP tools in Julia will help adoption,
but it will not eliminate the interim 3-language period.

There will not be any clean break in which everyone is ready to set
aside their old tools and take up new ones.

(The closest approximation to that in HEP was the Fortran → C++ transition,
which was mandated top-down and lost a generation of HEP programmers.)

10 / 25



“If you build it, they will come.”

Preparing a complete stack of HEP tools in Julia will help adoption,
but it will not eliminate the interim 3-language period.

There will not be any clean break in which everyone is ready to set
aside their old tools and take up new ones.

(The closest approximation to that in HEP was the Fortran → C++ transition,
which was mandated top-down and lost a generation of HEP programmers.)

10 / 25



“If you build it, they will come.”

Preparing a complete stack of HEP tools in Julia will help adoption,
but it will not eliminate the interim 3-language period.

There will not be any clean break in which everyone is ready to set
aside their old tools and take up new ones.

(The closest approximation to that in HEP was the Fortran → C++ transition,
which was mandated top-down and lost a generation of HEP programmers.)

10 / 25



We need to give users short-term reasons to add Julia

as a second or third language in their analysis work.

(“You’ll be able to replace all your Python and C++” is a long-term reason.)

11 / 25



We need to give users short-term reasons to add Julia

as a second or third language in their analysis work.

(“You’ll be able to replace all your Python and C++” is a long-term reason.)

11 / 25



Awkward Array and Julia

12 / 25



Awkward Array and Julia

12 / 25



This is what I was proposing in 2021

13 / 25



Awkward Array has other JIT-compiled backends

▶ Numba: ak.Arrays can be arguments and return values of
@nb.njit-compiled functions.

▶ Numba-CUDA: @nb.cuda.njit([extensions=ak.numba.cuda]).

▶ ROOT RDataFrame: ak.to_rdataframe/ak.from_rdataframe.

▶ cppyy: ak.Arrays can be arguments and return values of functions defined
by cppyy.cppdef (pass ak.Array.cpp_type as its C++ type).

▶ And now Julia.

14 / 25



Awkward Array has other JIT-compiled backends

▶ Numba: ak.Arrays can be arguments and return values of
@nb.njit-compiled functions.

▶ Numba-CUDA: @nb.cuda.njit([extensions=ak.numba.cuda]).

▶ ROOT RDataFrame: ak.to_rdataframe/ak.from_rdataframe.

▶ cppyy: ak.Arrays can be arguments and return values of functions defined
by cppyy.cppdef (pass ak.Array.cpp_type as its C++ type).

▶ And now Julia.

14 / 25



Awkward Array has other JIT-compiled backends

▶ Numba: ak.Arrays can be arguments and return values of
@nb.njit-compiled functions.

▶ Numba-CUDA: @nb.cuda.njit([extensions=ak.numba.cuda]).

▶ ROOT RDataFrame: ak.to_rdataframe/ak.from_rdataframe.

▶ cppyy: ak.Arrays can be arguments and return values of functions defined
by cppyy.cppdef (pass ak.Array.cpp_type as its C++ type).

▶ And now Julia.

14 / 25



Awkward Array has other JIT-compiled backends

▶ Numba: ak.Arrays can be arguments and return values of
@nb.njit-compiled functions.

▶ Numba-CUDA: @nb.cuda.njit([extensions=ak.numba.cuda]).

▶ ROOT RDataFrame: ak.to_rdataframe/ak.from_rdataframe.

▶ cppyy: ak.Arrays can be arguments and return values of functions defined
by cppyy.cppdef (pass ak.Array.cpp_type as its C++ type).

▶ And now Julia.

14 / 25



Awkward Array has other JIT-compiled backends

▶ Numba: ak.Arrays can be arguments and return values of
@nb.njit-compiled functions.

▶ Numba-CUDA: @nb.cuda.njit([extensions=ak.numba.cuda]).

▶ ROOT RDataFrame: ak.to_rdataframe/ak.from_rdataframe.

▶ cppyy: ak.Arrays can be arguments and return values of functions defined
by cppyy.cppdef (pass ak.Array.cpp_type as its C++ type).

▶ And now Julia.

14 / 25



But AwkwardArray.jl isn’t like the other backends

In both Numba and C++, we define

▶ a Python Lookup object to hold a reference to the ak.Array, preventing
it from going out of scope, and to present its tree-navigation metadata in a
raw-byte format, and

▶ a Numba or C++ ArrayView object that points to a position in the
structure, JIT-compiled to behave differently for each tree-node type.

▶ Numba and C++ do not own the array! It’s a borrowed reference!

In Julia, we define

▶ the whole layout tree in native Julia structures, and convert.

▶ Julia can own the array!

15 / 25



But AwkwardArray.jl isn’t like the other backends

In both Numba and C++, we define

▶ a Python Lookup object to hold a reference to the ak.Array, preventing
it from going out of scope, and to present its tree-navigation metadata in a
raw-byte format, and

▶ a Numba or C++ ArrayView object that points to a position in the
structure, JIT-compiled to behave differently for each tree-node type.

▶ Numba and C++ do not own the array! It’s a borrowed reference!

In Julia, we define

▶ the whole layout tree in native Julia structures, and convert.

▶ Julia can own the array!

15 / 25



But AwkwardArray.jl isn’t like the other backends

In both Numba and C++, we define

▶ a Python Lookup object to hold a reference to the ak.Array, preventing
it from going out of scope, and to present its tree-navigation metadata in a
raw-byte format, and

▶ a Numba or C++ ArrayView object that points to a position in the
structure, JIT-compiled to behave differently for each tree-node type.

▶ Numba and C++ do not own the array! It’s a borrowed reference!

In Julia, we define

▶ the whole layout tree in native Julia structures, and convert.

▶ Julia can own the array!

15 / 25



But AwkwardArray.jl isn’t like the other backends

In both Numba and C++, we define

▶ a Python Lookup object to hold a reference to the ak.Array, preventing
it from going out of scope, and to present its tree-navigation metadata in a
raw-byte format, and

▶ a Numba or C++ ArrayView object that points to a position in the
structure, JIT-compiled to behave differently for each tree-node type.

▶ Numba and C++ do not own the array! It’s a borrowed reference!

In Julia, we define

▶ the whole layout tree in native Julia structures, and convert.

▶ Julia can own the array!

15 / 25



Python and Julia Awkward Arrays are symmetric, others are not

0 1 2 billions... 0 1 2 billions...

view Python data

in Numba/C++

but control must

return to Python

0 1 2 billions... 0 1 2 billions...

0 1 2 billions... 0 1 2 billions...

one-way copy or

view to Julia

one-way copy or

view to Python

16 / 25



Rationales

▶ In Numba, especially Numba-CUDA, only unowned views make sense.
Control will return to Python.

▶ In RDataFrames created from Python, control will return to Python.
We might need to reconsider this if we need to enable
RDataFrame::Snapshot or distributed RDataFrames.

▶ Views make sense for cppyy functions that will deconstruct the ak.Array
before sending it on to other C++ libraries. If Awkward Arrays are to have a
life in C++ beyond cppyy, they’ll need to be reimplemented as in Julia.

▶ In Julia, Awkward Arrays may be passed to other libraries as an opaque Any,
AbstractArray, or a transparent AwkwardArray.Content.

17 / 25



This also opens the door to UnROOT.jl becoming a

drop-in replacement for Uproot in Python workflows.

0 1 2 billions... 0 1 2 billions...

PythonJulia Julia

function
acceleration

18 / 25



Discussed at PyHEP.dev

19 / 25



Technical benefits of AwkwardArray.jl over Python

Composability: All buffers in a AwkwardArray.Content tree are
AbstractVector, so it should be easy to swap in special features,
like GPU-resident arrays, autodiff, units, etc.

In Python, our “nplike” backends are complicated by the fact that we have to
use array-oriented functions, which is a larger API, and not exactly the same
among NumPy, CuPy, JAX, etc. Each new backend needs a shim.

Unification: Since push! and append! are implemented on AbstractVector,
the functionality of LayoutBuilder (append-only array) and
ak.Array (read-only array) are unified in the same object.

In Python, these need to be two different objects because LayoutBuilder
is only useful in Numba/C++, where arrays are view-only.

20 / 25



Technical benefits of AwkwardArray.jl over Python

Composability: All buffers in a AwkwardArray.Content tree are
AbstractVector, so it should be easy to swap in special features,
like GPU-resident arrays, autodiff, units, etc.

In Python, our “nplike” backends are complicated by the fact that we have to
use array-oriented functions, which is a larger API, and not exactly the same
among NumPy, CuPy, JAX, etc. Each new backend needs a shim.

Unification: Since push! and append! are implemented on AbstractVector,
the functionality of LayoutBuilder (append-only array) and
ak.Array (read-only array) are unified in the same object.

In Python, these need to be two different objects because LayoutBuilder
is only useful in Numba/C++, where arrays are view-only.

20 / 25



Technical benefits of AwkwardArray.jl over Python

Composability: All buffers in a AwkwardArray.Content tree are
AbstractVector, so it should be easy to swap in special features,
like GPU-resident arrays, autodiff, units, etc.

In Python, our “nplike” backends are complicated by the fact that we have to
use array-oriented functions, which is a larger API, and not exactly the same
among NumPy, CuPy, JAX, etc. Each new backend needs a shim.

Unification: Since push! and append! are implemented on AbstractVector,
the functionality of LayoutBuilder (append-only array) and
ak.Array (read-only array) are unified in the same object.

In Python, these need to be two different objects because LayoutBuilder
is only useful in Numba/C++, where arrays are view-only.

20 / 25



Technical benefits of AwkwardArray.jl over Python

Composability: All buffers in a AwkwardArray.Content tree are
AbstractVector, so it should be easy to swap in special features,
like GPU-resident arrays, autodiff, units, etc.

In Python, our “nplike” backends are complicated by the fact that we have to
use array-oriented functions, which is a larger API, and not exactly the same
among NumPy, CuPy, JAX, etc. Each new backend needs a shim.

Unification: Since push! and append! are implemented on AbstractVector,
the functionality of LayoutBuilder (append-only array) and
ak.Array (read-only array) are unified in the same object.

In Python, these need to be two different objects because LayoutBuilder
is only useful in Numba/C++, where arrays are view-only.

20 / 25



Some examples of AwkwardArray.jl

using AwkwardArray
using AwkwardArray: Index64, ListOffsetArray, PrimitiveArray

array = ListOffsetArray{Index64,PrimitiveArray{Float64}}()
push!(array, [1.1, 2.2, 3.3])
push!(array, [4.4])
append!(array, [[5.5, 6.6], [7.7, 8.8, 9.9]])

total = 0.0
for list in array

for item in list
total += item

end
end

vector::Vector{Vector{Float64}} = AwkwardArray.to_vector(array)
array2 = AwkwardArray.from_iter(vector)

21 / 25



Still needs to be connected to Python and “play well” with Julia

22 / 25



Don’t miss Yana’s talk!

23 / 25



Open question: how does package management

work in a Python + Julia environment?

Is there a way to control PyCall/PyJulia’s

cross-language dependencies with conda?

24 / 25



Open question: how does package management

work in a Python + Julia environment?

Is there a way to control PyCall/PyJulia’s

cross-language dependencies with conda?

24 / 25



Conclusions

We need stronger connections between HEP analysis tools

in Python and HEP analysis tools in Julia.

▶ StatsBase.Histogram/FHist.jl generalization that is interchangeable with
scikit-hep/boost-histogram, scikit-hep/hist?

▶ LorentzVectors.jl or LorentzVectorHEP.jl: interop with scikit-hep/vector?

▶ Corpuscles.jl: share data with scikit-hep/particle?

▶ IMinuit.jl
√

▶ zfit, pyhf, cabinetry, Coffea, etc.?

Encourage Python users to use Julia with their Python/C++ code!
(Otherwise, they won’t use it at all.)

25 / 25


