= PRINCETON (g iris
UNIVERSITY hep

Engaging the HEP community in Julia

Jim Pivarski

Princeton University — IRIS-HEP

November 6, 2023

1/25

Let's start with some numbers. ..

2/25

State of language use by particle physicists as of last Friday

C/C++/CUDA
web

LaTeX
JavaScript
Mathematica
Fortran

repo last updated in 2023

repo last updated in 2020-2022
repo last updated in 2015-2019
repo last updated before 2015

spreadsheet
Java
Perl
R particle physic
hardware high energy physic
grad/doctoral/phd student/phd candidate
cern
theor Selected GitHub users by bios containing
MATLAB postdoc/post doc "particle physic" or "high energy physic".
atlas
cms Selection criteria would match 20% of users
former who fork CMSSW who write bios (only 10% do).
professor
fellow Google returned about 1/4 of estimated matches.
quant . .
Ihcb 275 matching users with 3981 non-fork repos.
Ihe (not Ihcb) Identified source code files by file extension.
Haskell alice
0.0 0.1 0.2 0.3 0.4 0.5 0.6
fraction of bios with the substring
| : : : : |
0.0 0.2 0.4 0.6 0.8 1.0

fraction of users who created at least one file with the language suffix (non-fork repos)

But physicists are more interested in Julia than, say, Rust or Lua L

Among “Materials” (PDFs and TXTs) in CERN's Indico search since January 2022,

63
324
4

12

10

refer to Julia the programming language

refer to people named Julia

other/unclear

refer to Rust the programming language

(7 of those same documents also refer to Julia)

refer to oxidized metal

other/unclear

refers to Lua the programming language

(it's used to configure the SIMION charged particle simulator)
refer to the LHC User’s Association

other/unclear

4/25

Similarly, it is increasingly a focus on ACAT and CHEP

ACAT 2022:

P> Julia: 1 title and 1 abstract
P> Python: 3 titles and 24 abstracts

CHEP 2023:

» Julia: 3 titles and 4 abstracts
» Python: 1 title and 35 abstracts

Only other programming languages mentioned: C++ (frequently) and Java (2 times).

5/25

And, it's the only language-based HSF group other than PyHEP

Meetings

The HSF holds regular meetings inits activity
areas and has bi-weekly coordination
meetings as well. All of our meetings are
open for everyone to join.

HSF Coordination Meeting #258, 12
October 2023

HSF Coordination Meeting #257, 28
September 2023

HSF Coordination Meeting #256, 14
September 2023

Upcoming HSF and community events »

Full list of past meetings »

The HEP Software Foundation facilitates cooperation and common
efforts in High Energy Physics software and computing internationally.

more info

JuliaHEP Launches

After alot of rising interest in Julia for HEP
in the last few years, the HSF has started a
new JuliaHEP working group.

We just published a new paper Potential of
the Julia programming language for high
energy physics computing and we're
planning the first JuliaHEP Workshop in
November. Keep an eye out for upcoming
Julia events in the calendar!

Activities

We organise many activities, from our
working groups, to organising events, to
supporting projects as HSF projects, and
helping communication within the
community through our discussion forums
and technical notes.

The HSF can also write letters of
collaboration and cooperation to project
proposals.

How to get involved »

6/25

o @

Julia is not yet “adopted” in HEP, but it is getting more
attention than any other rival to C++ and Python.

7/25

o @

Julia is not yet “adopted” in HEP, but it is getting more
attention than any other rival to C++ and Python.

From here, it could continue to rise in prominence
or end up passing as a fad. This is a critical time.

7/25

As we've seen, Julia is a perfect fit for HEP, technologically.

8/25

o @

As we've seen, Julia is a perfect fit for HEP, technologically.

» It allows for an exploratory phase, in which the data analyst focuses on what
to compute, rather than how it will be accelerated.

8/25

As we've seen, Julia is a perfect fit for HEP, technologically.

» It allows for an exploratory phase, in which the data analyst focuses on what
to compute, rather than how it will be accelerated.

» It allows the exploratory code to be tweaked to scale up to large datasets.

8/25

As we've seen, Julia is a perfect fit for HEP, technologically.

» It allows for an exploratory phase, in which the data analyst focuses on what
to compute, rather than how it will be accelerated.

» It allows the exploratory code to be tweaked to scale up to large datasets.

There is a gradual path from brainstorming to optimized code, not a rewrite.

8/25

However. . .

This argument focuses on Julia as a solution to the two-language problem, but
we can't go from two languages to one language without going through three.

] @,
] _©
- O

| | |
now HEP starts to all HEP code is
use Julia ported to Julia

number of languages

|

9/25

Preparing a complete stack of HEP tools in Julia will help adoption,
but it will not eliminate the interim 3-language period.

10/25

Preparing a complete stack of HEP tools in Julia will help adoption,
but it will not eliminate the interim 3-language period.

There will not be any clean break in which everyone is ready to set
aside their old tools and take up new ones.

10/25

Preparing a complete stack of HEP tools in Julia will help adoption,
but it will not eliminate the interim 3-language period.

There will not be any clean break in which everyone is ready to set
aside their old tools and take up new ones.

(The closest approximation to that in HEP was the Fortran — C-++ transition,
which was mandated top-down and lost a generation of HEP programmers.)

10/25

o @

We need to give users short-term reasons to add Julia
as a second or third language in their analysis work.

11/25

o @

We need to give users short-term reasons to add Julia
as a second or third language in their analysis work.

(“You'll be able to replace all your Python and C++" is a long-term reason.)

11/25

Awkward Array and Julia

‘= README.md Ve .
Contributors 37

AWkWard arret o

y + 26 contributors

Awkward Array is a library for nested, variable-sized data, including arbitrary-length lists, records, mixed ® Python78.1% @ C++16.5%

types, and missing data, using NumPy-like idioms. ® Cuda36% @ Jupyter Notebook 0.9%
® CO0.4% Shell 0.4% Other 0.1%

Languages

Arrays are dynamically typed, but operations on them are compiled and fast. Their behavior coincides with
NumPy when array dimensions are regular and generalizes when they're not.

Motivating example ~

Given an array of lists of objects with x , y fields (with nested lists in the y field),

©

import awkward as ak

array = ak.Array([
[{"": 1.2, "y [1]3, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
1,
[{"x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]

v 12/25

Awkward Array and Julia

‘= README.md

Awkward
rray;i

for Julia!

Why? &

Awkward Array is a library for manipulating large-scale arrays of nested, variable-sized data in Python, using

array-oriented idioms: like NumPy, but for any JSON-like data. In Python, using array-oriented idioms to avoid
imperative for loops is necessary for fast computations. In Julia, imperative code is already fast, thanks to JIT-
compilation, so you may be wondering why this package exists.

This package is a complete, one-to-one implementation of the Awkward Array data structures in Julia, which
makes it possible to zero-copy share data between the two languages. Python scripts can sneak out to Julia to
run a calculation at high speed. Julia programs can duck into Python to access some code that has been
written in that language. Pyjulia and PyCall.jl provide these capabilities (which this package uses) for ordinary
data types; this package allows arrays of complex data to be shared as well.

Beyond communication with Python, columnar memory layouts have some advantages: data in an Awkward

Contributors 3

‘ jpivarski Jim Pivarski
Moelf Jerry Ling

& ianna lanna Osborne

Languages

® Julia 100.0%

12/25

This is what | was proposing in 2021

Julia for HEP Mini-workshop

Monday 27, 300PM - 6:45PM Eu

Benjamin Krikler (Un f Bristol (G

f Liverpool (GB)) , Philippe Gras (Uni

Description The PyHEP WG is launching a study of the potential Julia usage for HEP.

During this mini-workshop we will share the information which has already been collected, discuss the matters for which we need to share
opinions, identify the questions that will require some work to be answered

The workshop will focus on discussions and possibly practical work. The goal s the preparation of a report on the potential of Julia for HEP and
recommendations on its usage.

The topics to be addressed are listed here.

Because of the nature of the workshop, the agenda of the day will involve depending on the interests of the participants and the ideas that come
out during the event and its preparation.

Some resource on Julia that can be consulted before the workshop

« Official site and documentation: https://julialang.org/

« Leamning the language: https://juliaacademy.com/

« HEP represented at the Julia computing conference with the example of a physics analysis using Julia
« Agithub comner: https://github.com/JuliaHEP

« Julia session at last PyHEP annual workshop

@ & Minutes (CodiMDd.. & Recording of works
Registration

& You are registered for this event.

L 89 Modify registration

Participants Adam Lyon Alberto Sanchez Hernandez Alexander Held Alexander Moreno Bricefio Alexel Strelchenko v

How an Awkward Array/Julia bridge can introduce HEP to Julia. #~
Speaker: Jim Pivarski (Princeton Universit

pivarski-awkwardu.

13/25

Awkward Array has other JIT-compiled backends

» Numba: ak.Arrays can be arguments and return values of
@nb.njit-compiled functions.

14/25

Awkward Array has other JIT-compiled backends

» Numba: ak.Arrays can be arguments and return values of
@nb.njit-compiled functions.

» Numba-CUDA: @nb.cuda.njit ([extensions=ak.numba.cudal).

14/25

Awkward Array has other JIT-compiled backends

» Numba: ak.Arrays can be arguments and return values of
@nb.njit-compiled functions.

» Numba-CUDA: @nb.cuda.njit ([extensions=ak.numba.cudal).

» ROOT RDataFrame: ak.to_rdataframe/ak.from_rdataframe.

14/25

Awkward Array has other JIT-compiled backends

» Numba: ak.Arrays can be arguments and return values of
@nb.njit-compiled functions.

» Numba-CUDA: @nb.cuda.njit ([extensions=ak.numba.cudal).
» ROOT RDataFrame: ak.to_rdataframe/ak.from_rdataframe.

» cppyy: ak.Arrays can be arguments and return values of functions defined
by cppyy .cppdef (pass ak.Array.cpp_type as its C++ type).

14/25

Awkward Array has other JIT-compiled backends

» Numba: ak.Arrays can be arguments and return values of
@nb.njit-compiled functions.

» Numba-CUDA: @nb.cuda.njit ([extensions=ak.numba.cudal).
» ROOT RDataFrame: ak.to_rdataframe/ak.from_rdataframe.

» cppyy: ak.Arrays can be arguments and return values of functions defined
by cppyy .cppdef (pass ak.Array.cpp_type as its C++ type).

» And now Julia.

14/25

But AwkwardArray.jl isn't like the other backends

In both Numba and C++, we define

» a Python Lookup object to hold a reference to the ak .Array, preventing
it from going out of scope, and to present its tree-navigation metadata in a
raw-byte format, and

» a Numba or C++ ArrayView object that points to a position in the
structure, JIT-compiled to behave differently for each tree-node type.

15/25

But AwkwardArray.jl isn't like the other backends

In both Numba and C++, we define

» a Python Lookup object to hold a reference to the ak .Array, preventing
it from going out of scope, and to present its tree-navigation metadata in a
raw-byte format, and

» a Numba or C++ ArrayView object that points to a position in the
structure, JIT-compiled to behave differently for each tree-node type.

» Numba and C++ do not own the array! It's a borrowed reference!

15/25

But AwkwardArray.jl isn't like the other backends

In both Numba and C++, we define

» a Python Lookup object to hold a reference to the ak .Array, preventing
it from going out of scope, and to present its tree-navigation metadata in a
raw-byte format, and

» a Numba or C++ ArrayView object that points to a position in the
structure, JIT-compiled to behave differently for each tree-node type.

» Numba and C++ do not own the array! It's a borrowed reference!

In Julia, we define

» the whole layout tree in native Julia structures, and convert.

15/25

But AwkwardArray.jl isn't like the other backends

In both Numba and C++, we define

» a Python Lookup object to hold a reference to the ak .Array, preventing
it from going out of scope, and to present its tree-navigation metadata in a
raw-byte format, and

» a Numba or C++ ArrayView object that points to a position in the
structure, JIT-compiled to behave differently for each tree-node type.

» Numba and C++ do not own the array! It's a borrowed reference!

In Julia, we define

» the whole layout tree in native Julia structures, and convert.
» Julia can own the array!

15/25

Python and Julia Awkward Arrays are symmetric, others are not

view Pyt'hon data

i Numba/C++
DDSD SDDS oo Dggﬂ DDSD gﬂﬂg oo Dggﬂ

but congrol m
return 16 Python

B ke | B b G
DDED EDD [==] Dggﬂ view tlo JU|Ia DDED EDD =[=) nggn
= = — onle-wayl,'.copy or — —_ g
EIEIED EDDE oo DEED view toll Python DDEEI EDDE oo UEED

16/25

RENEIES s

» In Numba, especially Numba-CUDA, only unowned views make sense.
Control will return to Python.

» In RDataFrames created from Python, control will return to Python.
We might need to reconsider this if we need to enable
RDataFrame: : Snapshot or distributed RDataFrames.

» Views make sense for cppyy functions that will deconstruct the ak.Array
before sending it on to other C4++ libraries. If Awkward Arrays are to have a

life in C4++ beyond cppyy, they'll need to be reimplemented as in Julia.

» In Julia, Awkward Arrays may be passed to other libraries as an opaque Any,
AbstractArray, or a transparent AwkwardArray.Content.

17/25

This also opens the door to UnROOT .j| becoming a

drop-in replacement for Uproot in Python workflows.

Julia Python /\ Julia
/ ; ;
S fur}@'tion =i
e g “® |acceleration
UnROOT i \/
it c

18/25

Discussed at PyHEP.dev

python bindings for rntuple, implementation of "uproot-cpp" #15

Igray opened this issue on Jul 4 - 14 comments

‘ jpivarski commented on Jul 4 Member | =«

I've been in favor of a compiled-but-Python-friendly Uproot for some time, but it's always been too large of a task—this
will require dedicated effort and coordination (because I'm assuming more than one developer).

Some questions to ask about such a thing:

® Perhaps the compiled language should be Julia: UnROOT.jl already exists. Can its Python bindings be developed
more?

¢ For common use-cases, precompiled is better, and scientific-python/cookie gives us the options of Scikit-
Build/pybind11 for C++ and maturin for Rust.

e We also shouldn't disregard the possibility of doing it in Numba, since that can be partially compiled, partially not,
and it has more affinity with Python types, as well as prior expertise among likely developers. In terms of JIT
technology, it's no better or worse than the Julia option (it's all LLVM).

The main difference between these three options is what people you want to or are able to get together with this. Option
1 pulls Julia developers more into the Coffea world, option 2 is for people who like blank pages, starting from scratch, and
option 3 is for pulling it together quickly with the Python + Numba expertise that's already in this area.

19/25

Technical benefits of AwkwardArray.jl over Python

Composability: All buffers in a AwkwardArray.Content tree are
AbstractVector, so it should be easy to swap in special features,
like GPU-resident arrays, autodiff, units, etc.

20/25

Technical benefits of AwkwardArray.jl over Python

Composability: All buffers in a AwkwardArray.Content tree are
AbstractVector, so it should be easy to swap in special features,
like GPU-resident arrays, autodiff, units, etc.

In Python, our “nplike” backends are complicated by the fact that we have to
use array-oriented functions, which is a larger API, and not exactly the same
among NumPy, CuPy, JAX, etc. Each new backend needs a shim.

20/25

Technical benefits of AwkwardArray.jl over Python

Composability: All buffers in a AwkwardArray.Content tree are
AbstractVector, so it should be easy to swap in special features,
like GPU-resident arrays, autodiff, units, etc.

In Python, our “nplike” backends are complicated by the fact that we have to
use array-oriented functions, which is a larger API, and not exactly the same
among NumPy, CuPy, JAX, etc. Each new backend needs a shim.

Unification: Since push! and append! are implemented on AbstractVector,

the functionality of LayoutBuilder (append-only array) and
ak.Array (read-only array) are unified in the same object.

20/25

Technical benefits of AwkwardArray.jl over Python

Composability: All buffers in a AwkwardArray.Content tree are
AbstractVector, so it should be easy to swap in special features,
like GPU-resident arrays, autodiff, units, etc.

In Python, our “nplike” backends are complicated by the fact that we have to
use array-oriented functions, which is a larger API, and not exactly the same
among NumPy, CuPy, JAX, etc. Each new backend needs a shim.

Unification: Since push! and append! are implemented on AbstractVector,
the functionality of LayoutBuilder (append-only array) and
ak.Array (read-only array) are unified in the same object.

In Python, these need to be two different objects because LayoutBuilder
is only useful in Numba/C++, where arrays are view-only.

20/25

Some examples of AwkwardArray.jl

using AwkwardArray
using AwkwardArray: Index64, ListOffsetArray, PrimitiveArray

array = ListOffsetArray{Index64,PrimitiveArray{Float64}} ()
push! (array, [1.1, 2.2, 3.31)

push! (array, [4.4])

append! (array, [[5.5, 6.6]1, [7.7, 8.8, 9.911)

total = 0.0
for list in array
for item in 1list
total += item
end
end

vector: :Vector{Vector{Float64}} = AwkwardArray.to_vector (array)
array2 = AwkwardArray.from_iter (vector)

21/25

Still needs to be connected to Python and “play well” with Julia

38 0f 14 tasks Checklist for the first phase of development #5

jpivarski opened this issue on Aug 9 - 0 comments
The first phase of development (targeting JuliaHEP 2023) will require the following.

Depth of Julia-side functionality: data model, is_valid, int-getindex, range-getindex, iteration, equality (data
equivalence, not layout equivalence), length / firstindex / lastindex , LayoutBuilder-style appending.
(© PrimitiveArray still needs multidi i | support to be one-to-one with NumpyArray. #6

(© Array nodes must support parameters , which implies a strict dependence on JSON.jI. #8

© ak.from_iter equivalent to convert from various Julia types into AwkwardArray. #10

s et e e e el R e [e T

(© string representation for data (following src/awkward/_prettyprint.py). #23

© All of the Awkward layout types. #12

© Actually impl 1t the ak.to_buffers/ak.from_buffers equivalents on the Julia side. #24 (No need for the
Form objects we have in Python; just navigate the JSON, since it only happens once. This might need to be a macro to
customize output types.)

Nice to have:

O (© A Python module for round-tripping data between Python and Julia #14

[ak.to_arrow/ak.from_arrow equivalents on the Julia side, for better interop with the Julia packages that produce
and consume Arrow data. (We don't want to round trip through Python for that.)

[Conversions to and from common Julia formats, such as ArraysOfArrays.jl and VectorOfArrays.
}~ add from_table that uses Tables.jl interface #39
[Performance testing, probably using the jagged0/1/2/3 suite (synthetic) and the RNTuple suite (realistic analysis).

O Composition testing: can I swap in arrays with units? on GPUs? delayed processing? I'm using the
firstindex / lastindex protocol to be offsets-safe—am I making any assumptions that will break naive
composition? (Or are the other libraries?) 22/25

Don’t miss Yana's talk!

Overview
Timetable

Video connection
Registration
Participant List
Local participation

Social program

™ tamas.gal@fau.de
[jutta.schnabel@fau.de

An Awkward module for round-tripping data structures L &
between Python and Julia

Nov 8, 2023, 11:00 AM
® 15m

@ ECAP (Erlangen Centre for Astroparticle Physics)

Speaker

& lanna Osborne (Princeton University)

Description

Both Julia and Python have a strong presence in the sciences. In a typical HEP data analysis process Python is more
common, however, there is an obvious advantage to transitioning legacy software to Julia. We discuss the sharing of
Awkward Array data structures between the two worlds to encourage the Python users to run their analysis both in an eco-
system of their choice and in Julia.

We discuss how the memory, the data buffer copies, and the dependencies are managed. We analyse the performance
acceleration calling Julia from Python and vise versa for the intensive array-oriented calculations on a large scale, but not
very large dimension arrays of HEP data.

23/25

o @

Open question: how does package management
work in a Python + Julia environment?

24/25

o @

Open question: how does package management
work in a Python + Julia environment?

s there a way to control PyCall /PyJulia’s
cross-language dependencies with conda?

24/25

Conclusions

We need stronger connections between HEP analysis tools
in Python and HEP analysis tools in Julia.

» StatsBase.Histogram /FHist.jl generalization that is interchangeable with
scikit-hep/boost-histogram, scikit-hep /hist?

» LorentzVectors.jl or LorentzVectorHEP.jl: interop with scikit-hep/vector?
» Corpuscles.jl: share data with scikit-hep/particle?

> IMinuit.jl /

» zfit, pyhf, cabinetry, Coffea, etc.?

Encourage Python users to use Julia with their Python/C++ code!
(Otherwise, they won't use it at all.)

25/25

