=AU

Friedrich-Alexander-Universitat
Erlangen-Nurnberg

ERLANGEN CENTRE
FOR ASTROPARTICLE
PHYSICS

julia

Is Julia ready to be adopted by HEP?

JuliaHEP 2023 - ECAP
06. - 09. November 2023

Tamas Gal - Erlangen Centre for Astroparticle Physics

https://indico.cern.ch/event/1292759/contributions/5614633/

Philippe Gras (IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France), Pere Mato (CERN,
Switzerland), Jerry Ling (Harvard University), Oliver Schulz (TU Dormund, Germany), Uwe Hernandez
Acosta (CASUS, Gorlitz, Germany), Graeme A Stewart (CERN, Switzerland)

https://indico.cern.ch/event/1292759/contributions/5614633/

My first encounter with the HEP software world
as a graduate student and research assistant in 2012

56300

* Analysing and visualising bioluminescence data recorded by
the ANTARES neutrino detector

58480

* Using a ROOT-based framework (which was btw. a nightmare to
install on my MacBook running Mac OS X 10.6)

1
Lt
s
. R

LA |
. ,4§

A G

Ay ol g e%«u..a-"wfi‘ it "
: S "N o

IH|HI”IHI“IH|HI”IHI“I

{

...

« Why ROOT? Because people who established ANTARES were familiar - | | o |
W|'th ROOT and humans crave convenience, stick to Old habitS Source: "Untersuchung von Biolumineszenz im ANTARES Neutrinoteleskop", Maximilian Schandri

* Even with more than 15 years of (self-taught) coding experience in different programming languages: it was a real challenge

* Lot of work spent until the first results were presentable (kind of embarrassing how long it took to create some simple scatter
plots)

 Most of my fellow students had a much worse starting situation, having almost no coding experience at all

 Python came to the rescue and started to gain some momentum in science; | was already using it for a decade as a shell
scripting replacement.

* Decided to work on (high-level) Python tools to reduce boilerplates, make things more accessible and exploit the benefits of
interactiveness to lower the entry barrier especially for new-comers

The years after...
aka the "The Era of Python"

* | joined KM3NeT (the ANTARES neutrino detector's successor)
and pushed hard for Python

* Lot's of library code and packages written to do both low-level
calculations (e.g. real-time detector time calibrations using K40

coincidences) and high-level analysis ("big-data”, machine-
learning, HDF5, ...)

* Convinced many people that Python is able to compete with
"compiled rivals" (mainly C++/ROOT) by using the right tools to
overcome its weak spots regarding performance (GIL, duck
typing, extremely slow loops...)

* Virtual environments and the Python packaging system allowed
to increase the reusability of code and reproducibility of analyses

« Still, we ended up in a technological Mikado

Languages mail

Languages

Languages
® ¢
++705% o Python 23 50, -
® CMake 5.9% Other01;’ 0
1%
\”" —
—f\

1-------.................

® Python 77.3% ® C++227%

\777777

Languages

® Python 61.6% ® C 35.9%
® C++1.1% Cython 0.9%
® Meson 0.3% ® Fortran 0.1%

Other 0.1%

Languages

. | |]
® C++ 79.8% ® Python 12.6%

® CMake 3.5% ® GLSL 2.8%

® C0.8% Shell 0.5%

“*"—IEFEUSQes

® C++8719 T

Cython 5 09
: 0%
Jupyter Notebook 4.4

® Pyt
Ython 2 g9, ® Makefile 0.3%
Shell 0.29, ® C0.1y o
. (1]

| es
Languad -
n 18.1%

e Python 57.4% e Fort i
C 16.1% Cython 4.2%

o . o
C++ 3 A% e WMeson 0.5%

@) .
Other 0.3%

""**/
/”””
Languages

ﬂ_ ul
® C++631% e Python 20.8%

MLIR 6.3% starlark 4.2%
® HTML 2.2% ® Go1.0%

Other 2.4%

7/
/”7 -

Languages

——— m—r

o
e C 0.5% shell 0.4%
Other 0.2%

The Reality

The "two-language problem"”

Crafting high-performant code in the "Python" programming language is
demanding

It requires a profound understanding of
« computer architecture
e languages interdependencies
* the art of producing reusable code libraries
Many "solution attempts"” exists to tackle the "two-language problem”

The maintenance overhead rapidly escalates with each additional technology,
which are mandatory

Python is often merely utilised as the high-level layer, restricting access to
low-level modifications

Loops in Python are a disaster (as we all know), yet they remain a familiar
paradigm for many programmers

The solutions require to make lots of compromises

We need stust like This To ve avle

To enjoy ?nfhon's ST&eng‘ThS...

s

theano

pybina11
2 Numba

@gthon N?%s NumPy

* Boost.Python

D pupy

Fortran

Reasons to switch languages
A simplified storyline in HEP LJ

1940 1950 1960 1970 1980 1990 2000 2010 2020

Taken from "Jagged, ragged, awkward arrays" by Jim Pivarski
(Strange Loop Conference 2019)

Compley dand nestTed

data steuctuges wheee | encounteped HEY

\)
\
W

Kendnbili’q and

o

hagdwag.e independence.
IntepacTivit y)

eASE OF uSe, pncknging

Language usage development in the past 13 years

Based on counting non-fork GitHub repositories created by people who forked a specific software.

Non-fork repositories of GitHub users who forked cms-sw/cmssw Non-fork repositories of GitHub users who forked numpy/numpy
700 language 3000 language
g 600 et §— cmssw users 2 2500, W C++
S am Julia "|.|Ep") S am Julia
v 500) 2000 -
o)
2" | mmm Python ; | Em Python
= 400 -
S Bl Rust 5 15007 M Rust
@ 300 ©
2 numpy users 2 1900-
S 200 I m = [-
= ("data scientist") =
100 - ‘. 500
0 ©® O O H N M ¥ 1N ©O© ~N 0O O O HA N ™
o o — — — — — ~— — — — — N N N N
© ©O O O O O O O O O O O o o o o
N N N o N N N N N N N N N N N N

Repository creation year

Repository creation year

Non-fork repositories of GitHub users who forked cms-sw/cmssw " Non-fork repositories of GitHub users who forked numpy/numpy
* Python peaked in 2020/2021 500-
o 400) W C++ Julia is slowl _ . s C++
= : * Julla IS SIOWIy emergin = 4001 :
S e Julia y ging S e Julia
8 300+ 9
S BN Rust « "HEP" seems to follow the 5-300; EEEE Rust
S 200 "data scientist" trend 5
9 8200
= i =
Z 100- * Turn-over point of Rust vs. 2 100.
C++ on the horizon for "data I
01— - scientists” oL =1
=R T I - I T - T B I T e A B - T - S N
N & &8 R R R R &8 R R /R & ® <7 N 8§ 8 8 R R R R R R R R KR KR R A
Repository creation year 6 Repository creation year

Which language would we have picked in 2013 if we had
to choose from today's programming languages?

We think Julia is a suitable candidate.

* High-level ("easy" and interactive) language without penalty on
performance

 Massive code reuse and sharing due to the multiple-dispatch
design

* Interface with legacy code written in different languages
* Well-designed packaging/distribution system
* Parallel and distributed computing are core features of Julia

* Ability to write GPU kernels in native Julia

Most loved languages (top 6 shown) https://survey.stackoverflow.co/2022

https://survey.stackoverflow.co/2022

Julia's native speed (compared to C and Python)

Microbenchmarks

 Code "naively" written in Julia is often close to the
peak performance

* |t's a big deal since physics students do not have CS
education and often approach problems "naively"

* Such a code is (according to my experience) often
1-2 orders of magnitude slower than it should be

* memory issues all over the place (vectorised
operations with unnecessary temporary
allocations)

* bad scaling due to "whole-meal” programming
style

 "Julia: A language that walks like Python, runs like
C" -- K. S. Kuppusamy

Microbenchmarks, data taken from https://|ulialang.org/benchmarks/

@ C
O Julia
@ Python
10° | ®
® @)
@)
+~
Py ©
@)
10" |
@)
® o
o
10° I e-e o2 ® ® @ ® 0@ o0
o o
| | | | | | | |
iteration matrix matrix parse print recursion recursion userfunc
pi multiply statistics integers to fibonacci quicksort mandelbrot

sum

file

https://julialang.org/benchmarks/

Accessing data formats used in HEP
The entry point... UPROOTil

r ROOT * UnROOle

Data Analysis Framework

 Being able to read (write) data is

essential
L_es Houches Event » LHE.jl
* The most popular data formats used File Format
iIn HEP are supported with native
Julia packages® LCIO * LCIO.j

 Additional formats can be introduced

to HEP th h Jull APACHE
7 ongn e ARROW>>> * Arrow.j
* reading of ROOT files has some limitations g * HD F 5 “ J 1

writing ROOT relies on the Python package uproot

docker run -it debian:buster

**

High-level and interactive coding

Without penalty on performance

List of valid
0.

1-10:
n.host:
1878
1879:

Interactive scientific computing for rapid prototyping has
a long history in HEP, introduced by PAW (1986) at CERN ...
and later in ROOT (CINT 1995, Cling 2013)

tamasgal@silentbox:~
19:36:46 > root

**

Workstation

type (?=HELP) <CR>=1 : ?

workstation types:
Alphanumeric terminal

Describe in file higz_windows.dat
Open the display on
FALCO terminal
xterm

host (1 < n <

Workstation type (?=HELP) <CR>=1 : |}

root

| Welcome to ROOT 6.28/82

Python among other languages popularised the REPL in
other scientific fields

'.help'/'.?",

|
| (c) 1995-2622, The ROOT Team; conception: |
| Built for macosxarm 64 on Mar 21 2823, 11:11:48 |
| From tags/v6-28-082@v6-28-02 |
| With Apple clang version 14.8.3 (clang-1403.8.22.14.1) |
| Try '.demo', '.license', '.credits', '.quit'/'.q' |

https://root.cern
R. Brun, F. Rademakers

Julia offers the same interactivity without penalty on
performance

tamasgal@silentbox:~
89:23:56 > julia

Type inference allows generic programming and yet type
safety and optimised machine code

Jupyter notebook support (btw. Ju stands for Julia...) |

10

julia X3#8

Documentation: https://docs.julialang.org
Type "?" for help, "]?" for Pkg help.

Version 1.8.5 (2823-61-88)
Official https://julialang.org/ release

Code reusability and extensibility

"The Expression Problem"” These two packages don't know avout each othee!

Y
| b | Y
/o

. l‘gleo I?/bmty to easily define new types to which existing operations leferentlalEquatlons + Measurements OOO
 Easy in object-oriented languages / Hard in functional g = 9.79 t 0.02
|anguages L 1.00 £ 0.01 e
* The ability to easily define new operations which apply to existing Go = [0 £ 0, m/60 £ 0.01) oA fo]
types tspan = (0.0, 6.3) | | | 1
* Easy in functional languages / Hard in object-oriented languages Doty gl i . | | . ’,
O = u(l)] ‘, | ; l |
 Being able to do both easily is "The Expression Problem" do = u(2) S ' -
du[l] = dO ‘ ! 4' |
du(2] = =(g/L)*0 : | |
end s i | \ { l p.........,.l]
An elegant solution is multiple-dispatch - the main paradigm of the w i :) i : i
JUIia Ianguage peopy = ODEProblem(pe@dulum, Mo, tspan) Rackauckas et al, DifferentialEquations jl = A Performant and Feature-Rich
gol = solve(prob, TBltS() 4 reltol = l“_(’) Ecosystoem for Solving Differential Equations in Julla, 2017, (Jeurnal of Qpen
i . . Lo Research Software)
* "Generic programming" and JIT type inference allows mixing code alyt olution
. . , Glordano. Uncertainty propagation with functionally correlated quantities (arXiv.
from different Julia packages u = uo[2] .* cos.(sqrt(g/L) .* sol.t) 1610.08716)

 Add new methods to existing generic functions for new types | _ _ _ o
JuliaCon 2019 | The Unreasonable Effectiveness of Multiple Dispatch | Stefan Karpinski

 Add new methods to new generic functions for existing types hitps://www.youtube.com/live/kcOHwsxE10Y

11

Interfacing legacy code

Many high-quality, mature libraries for numerical computing written in
C and Fortran were developed and optimised over the past decades

Julia supports native call (without any glue code) into C and Fortran
libraries (via the built-in ccall() function)

C++ wrapping available via external packages like CxxWrap.jl
Zero-overhead Python wrapping (PyCall.jl)
An honorable mention for a fully wrapped HEP software

* Geant4.jl (fully wrapped using CxxWrap.jl) Join the talk from Pere
Mato on Thursday at 11:20: https://indico.cern.ch/event/1292759/
contributions/5613048/

* https://qgithub.com/JuliaHEP/Geant4.|l

12

. O julia — 31X19

julia> using PyCall
julia> np = pyimport("numpy");

julia> np.random.rand(3) * 166

3-element Vector{Floatb4}:
38.961726853176136
71.3368957480925
3.307181033489208

julia> np.sin(rand(5, 2))
hx2 Matrix{Floaté4}:
0./84982 0.282252
0.202079 0.2208945
0.637466 0.0921307
0.0869371 0.395478
0.383479 0.150941

julia> I

& GEANT4

A SIMULATION TOOLKIT

https://indico.cern.ch/event/1292759/contributions/5613048/
https://indico.cern.ch/event/1292759/contributions/5613048/
https://indico.cern.ch/event/1292759/contributions/5613048/
https://indico.cern.ch/event/1292759/contributions/5613048/
https://github.com/JuliaHEP/Geant4.jl

Julia's packaging and distribution system

Reproducible environments, (private) package registries
 Reproducible environments with exact versions of all dependencies is a
built-in feature in Julia

* (Private) package registries can be utilised to distribute unpublished
packages, seamless integration into the package dependency solver

* Distribution of pre-built binaries of external dependencies (e.g. HDF5Iib,
libdeflate, ...) for a large combinatorics of OS, architectures, compiler
features, etc.

13

Julia's packaging and distribution system

Reproducible environments, (private) package registries

* There are two configuration files related to dependency managemen

* Project.toml defines the dependencies of a project/package including constraints on their
VErsions

o Sufficient for e.g. a software package or library which is meant to be combined with other
software

* The package manager (Pkg.jl) will use the information to determine the most suitable
versions of all required dependencies

 Manifest.toml contains all the dependencies and their sub-dependencies (including compiled
non-julian binaries) with exact versions to be able to fully reproduce the environment

 Mandatory for e.g. scientific analyses, to be able to reproduce their results

14

Julia's packaging and distribution system

Reproducible environments, (private) package registries

* An example of the public KM3NeT Julia registry @ et

main v julia-registry

 Multiple registries can be active at the same wme o
time (similar to Python's pip, but based on meta- ™
data and not the actual source distribution)

EEEEEEEEE

 Dependencies can spread over multiple
registries

Registry.toml

* Private registries work seamlessly with SSH key éé
authentication in the background (Git-based, in
contrast to pip's simplified webserver approach)

Julia Registry

15

Parallel, Distributed and GPU Computing

"Built-in" or "built for" ;

for event € mytree
f process event
end

* Loops can easily be parallelised by adding a keyword
(macro-/meta- programming) _

Threads.@threads for event € mytree

* Loop optimization with processor-level parallelisation —_ # process event

(SIMD). Can be fine-tuned with third-party packages on
like LoopVectorization.jl.
Related talk at CHEP 2023 from Graeme Stuart IO PRTESEN (O 9 SIS SR AR o BSOS ARG Ot
https://indico.jlab.org/event/459/contributions/11540 tfastaath Binbounds Bsiad for 1 ¢ a,b
* An impressive example from KernelAbstractions.jl which end
allows Julia code to be passed as a kernel function to
GPUs: ' @kernel function mul2_kernel(A)

. _ _ B = @index(Global)
* Distributed (built-in): execute code asynchronously in A[T] = 2 * A[T]

multiple processes and/or multiple machines (like MPI) end

16

https://indico.jlab.org/event/459/contributions/11540

Paper Published

oo D grsmgseeesd 9 @@ @ 2 - 0@ e Q

Computing and Software for Big Science {2023) 7:10
https://doi.org/10.1007/541781-023-00104-x

RESEARCH m)

* A paper on this topic has been published this :
ear in the "Com P utin g an d Software for Bi STl R e A S

Alexander Moreno Briceiio'>™ . Jim Pivarski'* . Konstantinos Samaras-Tsakiris® © . Oliver Schulz®
] []
I
cience ournai o pringer :

Potential of the Julia Programming Language for High Energy Physics
Computing

Graeme Andrew Stewart® . Jan Strube'*'*(. Vassil Vassilev'?

Received: 6 June 2023 / Accepted: 11 August 2023
@ The Author(s) 2023

Abstract

Research in high energy physics (HEP) requires huge amounts of computing and storage, putting strong constraints on the
code speed and resource usage. To meet these requirements, a compiled high-performance language is typically used; while
for physicists, who focus on the application when developing the code, better research productivity pleads for a high-level
programming language. A popular approach consists of combining Python, used for the high-level interface, and C++, used
for the computing intensive part of the code. A more convenient and efficient approach would be to use a language that pro-
vides both high-level programming and high-performance. The Julia programming language, developed at MIT especially
to allow the use of a single language in research activities, has followed this path. In this paper the applicability of using the
Julia language for HEP research is explored, covering the different aspects that are important for HEP code development:
runtime performance, handling of large projects, interface with legacy code, distributed computing, training, and ease of
programming. The study shows that the HEP community would benefit from a large scale adoption of this programming

 Eschle, J., Gal, T., Giordano, M. et al. s
otential of the Julia Programming
anguage for High Energy Physics 4

- C . .
n 5 b4 Philippe Gras ' Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| Ir ilinne.aras@cern ¢
I philippe. gras @cern.ch ? Laboratory for Particle Physics and Cosmology, Harvard
| | | | ! University of Zurich, Zorich, Switzerland Univercity, Cambridgs, MA, USA

language. The HEP-specific foundation libraries that would need to be consolidated are identified.

Keywords Julia - HEP - Python - High energy and nuclear physics - Programming language - HPC

Introduction Computing grids, connecting computer centers all around
the world, are required to process the experiments’ data [1].
High throughput computing plays a major role in high Computer algebra systems and high performance comput-
energy physics (HEP) research. The field requires the ers are used to build new models and to calculate particle
development of sophisticated computing codes, which are production cross sections.

continuously evolving in the course of the research work.

Erlangen Centre for Astroparticle Physics, Friedrich-Alexand

s41/781-023-00104-x ’

17

er-Universitiit, Erlangen-Nurnberg, Germany
University College London, London, UK
IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

CERN, European Organization for Nuclear Research,
Geneva, Switzerland

Max-Planck-Institut fur Physik, Munich, Germany

Center for Advanced Systems Understanding, Gorlitz,
Germany

Published online: 05 October 2023

Ludwig-Maximilians-Universitst, Munich, Germany
Universidad Antonio Narifio, Ibagué, Colombia

Princeton University, Princeton, NJ, USA

Pacific Northwest National Laboratory, Richland, WA, USA
University of Oregon, Eugene, OR, USA

@ Springer

https://doi.org/10.1007/s41781-023-00104-x
https://doi.org/10.1007/s41781-023-00104-x
https://doi.org/10.1007/s41781-023-00104-x

Summary

* \We think that the two-language problem needs more attention and a fundamentally
different approach than creating more and more Python extensions and libraries

* Julia is an excellent language for scientific computing with high potential for HEP
 HEP specific needs are very well covered by Julia

 Code sharing and extending foreign packages are a no-brainer, thanks to the
package distribution system and the multiple dispatch design

* Distributed and parallel computing are first-class citizens in Julia

e Join the JuliaHEP GitHub organisation: https://github.com/JuliaHEP

18

https://github.com/JuliaHEP

