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Building an ecosystem is a large project over many years. In this talk I’ll share

● Opinions: built with time and experience

● Practice: some Julia-specific tips for improving maintainability

● Tools: you cannot do it all by yourself

Agenda



Who am I?



DifferentialEquations.jl is generally:

• 50x faster than SciPy

• 50x faster than MATLAB

• 100x faster than R’s deSolve

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm 
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Foundation: Fast 
Differential Equation 
Solvers

https://github.com/SciML/SciMLBenchmarks.jl

Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl–a performant 
and feature-rich ecosystem for solving differential equations in julia." Journal 
of Open Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential 
equation APIs for accelerated algorithm development and benchmarking." 
Advances in Engineering Software 132 (2019): 1-6.

1. Speed
2. Stability
3. Stochasticity
4. Adjoints and Inference
5. Parallelism

Non-Stiff ODE: Rigid Body System

8 Stiff ODEs: HIRES Chemical Reaction Network



New Parallelized GPU ODE Parallelism: 20x-100x Faster than 
Jax and PyTorch

Matches State of the Art on CUDA, but also 
works with AMD, Intel, and Apple GPUs

Paper accepted!
Utkarsh, U., Churavy, V., Ma, Y., Besard, T., Gymnich, T., Gerlach, 
A. R., ... & Rackauckas, C. (2023). Automated Translation and 
Accelerated Solving of Differential Equations on Multiple GPU 
Platforms. arXiv preprint arXiv:2304.06835.



Understanding Julia’s Development Speed:
Why are Julia packages growing faster and better tested?

Julia Scientific Computing Julia Machine Learning Normal Python PyTorch

ODE Solver DifferentialEquations.jl

>100 Contributors throughout 
its dependency stack

DifferentialEquations.jl

>100 Contributors throughout 
its dependency stack

SciPy.odeint

~5 developers

Torchdiffeq

1 contributor with more than 
one contribution

SDE Solver DifferentialEquations.jl

>100 Contributors throughout 
its dependency stack

DifferentialEquations.jl

>100 Contributors throughout 
its dependency stack

N/A TorchSDE

2 contributors with more 
than one contribution (last 
commit July 2021)

DDE Solver DifferentialEquations.jl

>100 Contributors throughout 
its dependency stack

DifferentialEquations.jl

>100 Contributors throughout 
its dependency stack

N/A N/A

DAE Solver DifferentialEquations.jl

>100 Contributors throughout 
its dependency stack

DifferentialEquations.jl

>100 Contributors throughout 
its dependency stack

N/A N/A



What is Scientific Machine Learning (SciML)?
Scientific Computing ↔ Machine Learning

AI with the robustness of classical modeling methods

Machine Learning

● Neural Nets
● Data Models
● Automated 

Procedures

Scientific Computing Scientific Machine Learning

● Model Building
● Robust Solvers
● Control Systems

● Differentiable Simulators 
● Surrogates and ROM
● Inverse Problems & Calibration
● Automatic Equation Discovery 

and more …. 
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Accurate Model Extrapolation Mixing in Physical Knowledge

Automated discovery of geodesic equations 
from LIGO black hole data: run (a simplified 
version of) the code yourself!

https://docs.sciml.ai/Overview/stable/showcase/blackhole/

https://docs.sciml.ai/Overview/stable/showcase/blackhole/


Improving Coverage of Automatic Differentiation Over Solvers

https://scimlbase.sciml.ai/dev/

The SciML Common Interface for Julia Equation Solvers

LinearSolve.jl: Unified Linear Solver Interface
 

NonlinearSolve.jl: Unified Nonlinear Solver 
Interface  

DifferentialEquations.jl: Unified Interface for all 
Differential Equations  

 

Optimization.jl: Unified Optimization Interface
 

Integrals.jl: Unified Quadrature Interface
 

Unified Partial Differential Equation Interface
 



SciML Docs: Comprehensive Documentation of Differentiable 
Simulation



JuliaSim Architecture



https://docs.google.com/file/d/1A1RwT2mfjRDnrh6vEOgv8r-QFPsRNXP1/preview


DeepNLME: Integrate neural networks into traditional NLME modeling
DeepNLME is SciML-enhanced modeling for clinical trials

• Automate the discovery of predictive 
covariates and their relationship to 
dynamics

• Automatically discover dynamical 
models and assess the fit

• Incorporate big data sources, such as 
genomics and images, as predictive 
covariates



We have been using Pumas software for our 
pharmacometric needs to support our development 
decisions and regulatory submissions. 
Pumas software has surpassed our expectations on its accuracy and ease of use. We are 
encouraged by its capability of supporting different types of pharmacometric analyses within 
one software. Pumas has emerged as our "go-to" tool for most of our analyses in recent 
months. We also work with Pumas-AI on drug development consulting. We are impressed by 
the quality and breadth of the experience of Pumas-AI scientists in collaborating with us on 
modeling and simulation projects across our pipeline spanning investigational therapeutics 
and vaccines at various stages of clinical development

Husain A. PhD (2020)
Director, Head of Clinical Pharmacology and Pharmacometrics, 
Moderna Therapeutics, Inc

The Impact of Pumas (PharmacUtical Modeling And Simulation)

“ Built on SciML



How to develop:
Always Forwards,
Never Backwards



You will never be able to grow maintainer support beyond yourself if you do not 

trust your test suite to carry you forward.

● If you do not feel comfortable blind merging a small bugfix that passes all 

tests, that is a sign you do not trust your tests

● Trusting your tests will teach you what your tests are missing

Principle 1: trust your tests



The different kinds of tests

● Unit tests: small tests which test a single piece / behavior of the software

○ Good to have, but actually not the most important!

● Integration tests: tests which tests how the different parts integrate

○ The most important tests

● Interface tests: tests which demonstrate that the interface is as expected

● Regression tests: tests that the behavior of the software does not change

● Downstream tests: tests that your user’s code doesn’t break

○ Second most important tests



The Julia Lab provides buildkite scripts for many alternative hardwares:

● NVIDIA GPUs

● AMD GPUs

● Intel GPUs

● Mac M-Series

Ask and you shall receive.

Tests for Alternative Hardware



Parallelize your tests by grouping then with environment variables

● Allow people to easily run a subset of tests

● Run tests in parallel on CI

● Allow downstream to run a subset of tests

● Make every test an independent runnable script (SafeTestsets.jl)

See OrdinaryDiffEq.jl as a complex example!

Using Test Groups for Parallelism



Force your documentation to act as interface tests

● Differentiate examples vs tutorials

● Establish doctests

● Cover real-world workflows

● Get more compute if you need to

Documentation as Tests



● Implement basic features that you may even thing are too basic for you

○ Examples: DiffEq’s solve(prob), ANOVA

● 90% of users use the most basic 10% of the code

● Let people grow with you

○ That undergrad may one day be your most helpful maintainer!

● Listen to your audience when they say something is hard

● Write a lot of tutorials, and turn any repeated structures into tutorials

● Make your error messages read your beginner user’s minds

* I stole this phrase from Mike Tiller 

Principle 2: Make simple things easy, complex things possible*



When should you be using more than one package?

● A single package should cover a single idea

○ If the users of different parts of different

● If changing one part of the code almost always requires changing the 

other, then those two should live in the same repository!

● Reuse other packages when you can

○ And contribute when you need to!

● Move all reusable data structures out to data structures packages

Principle 3: Build modularly



Always find the time to respond to and validate your contributors

● Attempt to respond to a PR within the same day

○ If the feature isn’t quite what you expected, explain the greater vision

○ If the code could be improved, use Github suggestions to make the 

improvements in a teachable way

○ Fix the code yourself the first few times and aim for faster merging

○ Help with rebasing and merge conflicts when you can!

○ Don’t aim for perfection: merge and open issues with next steps

● If you trust your tests, doing quick merges will be easier!

● You never know who your next maintainer will be

Principle 4: Your Contributors are your BFFs



If your ecosystem starts to catch on, it will be your life.

● Make sure that the ecosystem itself has research goals

● Don’t put new contributors into spaces that will not be co-authors (and are 

boring!)

● Make your paper examples into documentation examples!

● Don’t do projects which are simply “rewrite it in Julia”, chain it to some 

larger project, idea, or goal or it will die.

Principle 5: Align Development with Research



Small updates are exponentially simpler than large updates

● Try to stay up to date with dependencies

● Learn who writes your dependencies

● Upstream issues

● Work in the community

Principle 6: Don’t Fall Behind in Compats



If you are developing the ecosystem, you want to keep a global view of how 

users will interact with your packages.

● Users should always use environments

● You as a developer shouldn’t: you should see what the naive user gets!

Testing and Manifests: Should you use one?



Give users the benefit of the doubt: they are (hopefully) smart people

● If many people are asking the same question, it’s missing a tutorial

● If many people are writing the same weird code, then there’s bad 

documentation somewhere

○ Ask how they found out

● Solve people’s problems and then ask them to contribute to the 

documentation

● Know when to pull the plug on a help vampire

Principle 7: Listen To Your Users As If They Are Smart



A lot of people think that the interface is “the easy part”... NO!

● Writing a solver takes some expertise, but has a “local” view

● Creating an interface requires a global view of how everyone will see your 

packages, learn about your packages, and ultimately use your packages.

● Moral of the story: spend most of your time thinking about interfaces, and 

don’t leave this portion to the contributors.

Principle 8: Interfaces Are The Hardest Part



Establishing an interface takes the following steps:

● Document how the interface is supposed to work

○ Clearly define what is public vs private

● Write the first 3 instantiations of the interface

● Write a higher level call (solve) which calls to a lower level call (__solve) 

and have users extend the lower level interface. This allows a high level 

that forces uniformization

○ Make high level error messages

● Religiously refine the interface and listen to your contributors

Establishing Interfaces



Okay, maybe that’s too far, but…

● Repos die if there is no code ownership

○ Example: Matlab.jl’s dilemma

● Taking more ownership is always better than taking less ownership

● Tracking ownership via ownership files can be helpful if you do not have a BDFL

○ But even if you have this, you must have a succession system if someone goes 

missing!

● If dependencies are having issues keeping up to date, ask if they want help 

maintaining and bring it into an org

Principle 9: Democracy is a failure, own by force



Thanks!


