
Maintaining Large Scale Julia Ecosystems
Chris Rackauckas, VP of Modeling and Simulation @ JuliaHub, Research Affiliate @ MIT

Building an ecosystem is a large project over many years. In this talk I’ll share

● Opinions: built with time and experience

● Practice: some Julia-specific tips for improving maintainability

● Tools: you cannot do it all by yourself

Agenda

Who am I?

DifferentialEquations.jl is generally:

• 50x faster than SciPy

• 50x faster than MATLAB

• 100x faster than R’s deSolve

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Foundation: Fast
Differential Equation
Solvers

https://github.com/SciML/SciMLBenchmarks.jl

Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl–a performant
and feature-rich ecosystem for solving differential equations in julia." Journal
of Open Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential
equation APIs for accelerated algorithm development and benchmarking."
Advances in Engineering Software 132 (2019): 1-6.

1. Speed
2. Stability
3. Stochasticity
4. Adjoints and Inference
5. Parallelism

Non-Stiff ODE: Rigid Body System

8 Stiff ODEs: HIRES Chemical Reaction Network

New Parallelized GPU ODE Parallelism: 20x-100x Faster than
Jax and PyTorch

Matches State of the Art on CUDA, but also
works with AMD, Intel, and Apple GPUs

Paper accepted!
Utkarsh, U., Churavy, V., Ma, Y., Besard, T., Gymnich, T., Gerlach,
A. R., ... & Rackauckas, C. (2023). Automated Translation and
Accelerated Solving of Differential Equations on Multiple GPU
Platforms. arXiv preprint arXiv:2304.06835.

Understanding Julia’s Development Speed:
Why are Julia packages growing faster and better tested?

Julia Scientific Computing Julia Machine Learning Normal Python PyTorch

ODE Solver DifferentialEquations.jl

>100 Contributors throughout
its dependency stack

DifferentialEquations.jl

>100 Contributors throughout
its dependency stack

SciPy.odeint

~5 developers

Torchdiffeq

1 contributor with more than
one contribution

SDE Solver DifferentialEquations.jl

>100 Contributors throughout
its dependency stack

DifferentialEquations.jl

>100 Contributors throughout
its dependency stack

N/A TorchSDE

2 contributors with more
than one contribution (last
commit July 2021)

DDE Solver DifferentialEquations.jl

>100 Contributors throughout
its dependency stack

DifferentialEquations.jl

>100 Contributors throughout
its dependency stack

N/A N/A

DAE Solver DifferentialEquations.jl

>100 Contributors throughout
its dependency stack

DifferentialEquations.jl

>100 Contributors throughout
its dependency stack

N/A N/A

What is Scientific Machine Learning (SciML)?
Scientific Computing ↔ Machine Learning

AI with the robustness of classical modeling methods

Machine Learning

● Neural Nets
● Data Models
● Automated

Procedures

Scientific Computing Scientific Machine Learning

● Model Building
● Robust Solvers
● Control Systems

● Differentiable Simulators
● Surrogates and ROM
● Inverse Problems & Calibration
● Automatic Equation Discovery

and more ….

7

Accurate Model Extrapolation Mixing in Physical Knowledge

Automated discovery of geodesic equations
from LIGO black hole data: run (a simplified
version of) the code yourself!

https://docs.sciml.ai/Overview/stable/showcase/blackhole/

https://docs.sciml.ai/Overview/stable/showcase/blackhole/

Improving Coverage of Automatic Differentiation Over Solvers

https://scimlbase.sciml.ai/dev/

The SciML Common Interface for Julia Equation Solvers

LinearSolve.jl: Unified Linear Solver Interface

NonlinearSolve.jl: Unified Nonlinear Solver
Interface

DifferentialEquations.jl: Unified Interface for all
Differential Equations

Optimization.jl: Unified Optimization Interface

Integrals.jl: Unified Quadrature Interface

Unified Partial Differential Equation Interface

SciML Docs: Comprehensive Documentation of Differentiable
Simulation

JuliaSim Architecture

https://docs.google.com/file/d/1A1RwT2mfjRDnrh6vEOgv8r-QFPsRNXP1/preview

DeepNLME: Integrate neural networks into traditional NLME modeling
DeepNLME is SciML-enhanced modeling for clinical trials

• Automate the discovery of predictive
covariates and their relationship to
dynamics

• Automatically discover dynamical
models and assess the fit

• Incorporate big data sources, such as
genomics and images, as predictive
covariates

We have been using Pumas software for our
pharmacometric needs to support our development
decisions and regulatory submissions.
Pumas software has surpassed our expectations on its accuracy and ease of use. We are
encouraged by its capability of supporting different types of pharmacometric analyses within
one software. Pumas has emerged as our "go-to" tool for most of our analyses in recent
months. We also work with Pumas-AI on drug development consulting. We are impressed by
the quality and breadth of the experience of Pumas-AI scientists in collaborating with us on
modeling and simulation projects across our pipeline spanning investigational therapeutics
and vaccines at various stages of clinical development

Husain A. PhD (2020)
Director, Head of Clinical Pharmacology and Pharmacometrics,
Moderna Therapeutics, Inc

The Impact of Pumas (PharmacUtical Modeling And Simulation)

“ Built on SciML

How to develop:
Always Forwards,
Never Backwards

You will never be able to grow maintainer support beyond yourself if you do not

trust your test suite to carry you forward.

● If you do not feel comfortable blind merging a small bugfix that passes all

tests, that is a sign you do not trust your tests

● Trusting your tests will teach you what your tests are missing

Principle 1: trust your tests

The different kinds of tests

● Unit tests: small tests which test a single piece / behavior of the software

○ Good to have, but actually not the most important!

● Integration tests: tests which tests how the different parts integrate

○ The most important tests

● Interface tests: tests which demonstrate that the interface is as expected

● Regression tests: tests that the behavior of the software does not change

● Downstream tests: tests that your user’s code doesn’t break

○ Second most important tests

The Julia Lab provides buildkite scripts for many alternative hardwares:

● NVIDIA GPUs

● AMD GPUs

● Intel GPUs

● Mac M-Series

Ask and you shall receive.

Tests for Alternative Hardware

Parallelize your tests by grouping then with environment variables

● Allow people to easily run a subset of tests

● Run tests in parallel on CI

● Allow downstream to run a subset of tests

● Make every test an independent runnable script (SafeTestsets.jl)

See OrdinaryDiffEq.jl as a complex example!

Using Test Groups for Parallelism

Force your documentation to act as interface tests

● Differentiate examples vs tutorials

● Establish doctests

● Cover real-world workflows

● Get more compute if you need to

Documentation as Tests

● Implement basic features that you may even thing are too basic for you

○ Examples: DiffEq’s solve(prob), ANOVA

● 90% of users use the most basic 10% of the code

● Let people grow with you

○ That undergrad may one day be your most helpful maintainer!

● Listen to your audience when they say something is hard

● Write a lot of tutorials, and turn any repeated structures into tutorials

● Make your error messages read your beginner user’s minds

* I stole this phrase from Mike Tiller

Principle 2: Make simple things easy, complex things possible*

When should you be using more than one package?

● A single package should cover a single idea

○ If the users of different parts of different

● If changing one part of the code almost always requires changing the

other, then those two should live in the same repository!

● Reuse other packages when you can

○ And contribute when you need to!

● Move all reusable data structures out to data structures packages

Principle 3: Build modularly

Always find the time to respond to and validate your contributors

● Attempt to respond to a PR within the same day

○ If the feature isn’t quite what you expected, explain the greater vision

○ If the code could be improved, use Github suggestions to make the

improvements in a teachable way

○ Fix the code yourself the first few times and aim for faster merging

○ Help with rebasing and merge conflicts when you can!

○ Don’t aim for perfection: merge and open issues with next steps

● If you trust your tests, doing quick merges will be easier!

● You never know who your next maintainer will be

Principle 4: Your Contributors are your BFFs

If your ecosystem starts to catch on, it will be your life.

● Make sure that the ecosystem itself has research goals

● Don’t put new contributors into spaces that will not be co-authors (and are

boring!)

● Make your paper examples into documentation examples!

● Don’t do projects which are simply “rewrite it in Julia”, chain it to some

larger project, idea, or goal or it will die.

Principle 5: Align Development with Research

Small updates are exponentially simpler than large updates

● Try to stay up to date with dependencies

● Learn who writes your dependencies

● Upstream issues

● Work in the community

Principle 6: Don’t Fall Behind in Compats

If you are developing the ecosystem, you want to keep a global view of how

users will interact with your packages.

● Users should always use environments

● You as a developer shouldn’t: you should see what the naive user gets!

Testing and Manifests: Should you use one?

Give users the benefit of the doubt: they are (hopefully) smart people

● If many people are asking the same question, it’s missing a tutorial

● If many people are writing the same weird code, then there’s bad

documentation somewhere

○ Ask how they found out

● Solve people’s problems and then ask them to contribute to the

documentation

● Know when to pull the plug on a help vampire

Principle 7: Listen To Your Users As If They Are Smart

A lot of people think that the interface is “the easy part”... NO!

● Writing a solver takes some expertise, but has a “local” view

● Creating an interface requires a global view of how everyone will see your

packages, learn about your packages, and ultimately use your packages.

● Moral of the story: spend most of your time thinking about interfaces, and

don’t leave this portion to the contributors.

Principle 8: Interfaces Are The Hardest Part

Establishing an interface takes the following steps:

● Document how the interface is supposed to work

○ Clearly define what is public vs private

● Write the first 3 instantiations of the interface

● Write a higher level call (solve) which calls to a lower level call (__solve)

and have users extend the lower level interface. This allows a high level

that forces uniformization

○ Make high level error messages

● Religiously refine the interface and listen to your contributors

Establishing Interfaces

Okay, maybe that’s too far, but…

● Repos die if there is no code ownership

○ Example: Matlab.jl’s dilemma

● Taking more ownership is always better than taking less ownership

● Tracking ownership via ownership files can be helpful if you do not have a BDFL

○ But even if you have this, you must have a succession system if someone goes

missing!

● If dependencies are having issues keeping up to date, ask if they want help

maintaining and bring it into an org

Principle 9: Democracy is a failure, own by force

Thanks!

