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What is UnROOT.jl

Despite the name, this package is all about ROOT:

• Parsing most popular objects from .root files:
• Most notably the data (TTree, RNTuple)

• Implements Tables.jl interface for TTree/RNTuple
• You can write naturally fast event-loop
• Multi-threading friendly

In short, UnROOT.jl is similar to uproot in that there’s no C++ dependency, but users
can write both columnar style or loops directly — or compose with any of the Julia
data ecosystem.
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Past

After using only Julia for an ATLAS analysis, it feels a bit strange to introduce our
work for the “first time.”

Foundation of many features in this talk were written by me1 in a basement in Meyrin
(near CERN) during COVID.

Julia has many researcher-maintained packages that are among the best in their fields.
My take: don’t be afraid to contribute; it’s really easy.2

1with tremendous help from Tamás and Nick Amin

2Try not become addicted to benchmarking
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Structure of the Talk

The first part is a gentle introduction to UnROOT.jl while assuming minimal Julia
knowledge (~10 minutes), this will give you a flavor of the package, basic use pattern,
etc.

Then, we will present how we achieved good performance (~10 minutes): the Julia
engineering aspect of things and design choices.

Finally, some outlook to the near term future and some key discussion points.
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(orange bar below is a progress bar)

Part 1
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Basic Usage: Check metadata

julia> using UnROOT

julia> r = ROOTFile("./test/samples/NanoAODv5_sample.root")
ROOTFile with 2 entries and 21 streamers.
./test/samples/NanoAODv5_sample.root
├─ Events (TTree)
│ ├─ "run"
│ ├─ "luminosityBlock"
│ ├─ "event"
│ ├─ "⋮"
│ ├─ "L1_UnpairedBunchBptxPlus"
│ ├─ "L1_ZeroBias"
│ └─ "L1_ZeroBias_copy"
└─ untagged (TObjString)
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Basic Usage: Load TTree

Interface may change when v1.0 lands

Use ; to suppress displaying the entire table, which causes real I/O:
julia> tree = LazyTree("NanoAODv5_sample.root", "Events");

julia> names(tree)
1479-element Vector{String}:
"HLT_QuadPFJet98_83_71_15"
"L1_SingleJet200"
"L1_SingleJet140er2p5_ETMHF90"
⋮
"L1_SingleJet35er2p5"
"HTXS_njets25"
"L1_DoubleMu0er1p5_SQ"
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Basic Usage: Load TTree with branch filter

julia> LazyTree("NanoAODv5_sample.root", "Events",
["Muon_pt", "Muon_eta," "Muon_phi", "Muon_mass"])

#or using RegEx
julia> LazyTree("NanoAODv5_sample.root", "Events", r"Muon_(pt|eta|phi|mass)$")
Row │ Muon_phi Muon_pt Muon_eta Muon_mass

│ SubArray{Float3 SubArray{Float3 SubArray{Float3 SubArray{Float3
─────┼────────────────────────────────────────────────────────────────────
1 │ [] [] [] []
2 │ [-0.305, 0.99] [19.9, 15.3] [0.53, 0.229] [0.106, 0.106]
3 │ [] [] [] []
4 │ [] [] [] []
5 │ [] [] [] []
6 │ [] [] [] []
7 │ [2.71, 1.37] [22.2, 4.43] [-1.13, 1.98] [0.106, 0.106]
⋮ │ ⋮ ⋮ ⋮ ⋮

993 rows omitted
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Comment on Basic Usage

At this point, there are a few takeaways:

1. For columnar analysis, this is ~ all you need from UnROOT, LazyTree is a proper table
with Tables.jl interface. (tree.Muon_pt , tree[1:3, :])

2. Each column can be arbitrarily complex as long as it <:AbstractVector
3. The same code works for RNTuple3 as well (the name “LazyTree” is not perfect)

julia> LazyTree("./RNTuple/test_ntuple_stl_containers.root", "ntuple")
Row │ string vector_int32 array_float vector_vector_i vector_string ⋯

│ String Vector{Int32} StaticArraysCor Vector{Vector{I Vector{String} ⋯
─────┼───────────────────────────────────────────────────────────────────────────
1 │ one [1] [1.0, 1.0, Vector{Int ["one"] ⋯
2 │ two [1, 2] [2.0, 2.0, Vector{Int ["one", "t ⋯
3 │ three [1, 2, 3] [3.0, 3.0, Vector{Int ["one", "t ⋯

9 columns omitted
3successor to TTree
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Analysis: Columnar ecosystem

While LazyTree is optimized for event-loop, you can use any table-compatible “sink”
for columnar task. See Philippe Gras’ talk for DataFrames.jl ecosystem or Ianna
Osborne’s talk on Awkward Array ecosystem.
julia> using DataFrames
julia> LazyTree("NanoAODv5_sample.root", "Events", r"Muon_"; sink=DataFrame)
1000×52 DataFrame
...

julia> using AwkwardArray
julia> LazyTree("NanoAODv5_sample.root", "Events", r"Muon_"; sink=AwkwardArray.from_table)
1000-element AwkwardArray.RecordArray
...

10/32

https://indico.cern.ch/event/1292759/contributions/5618594/
https://indico.cern.ch/event/1292759/contributions/5613057/
https://indico.cern.ch/event/1292759/contributions/5613057/


Analysis: Event-loop

The syntax is as boring as you imagined, “just” write for-loop:
julia> mytree = LazyTree("NanoAODv5_sample.root", "Events")

julia> Threads.@thread for evt in mytree
evt.Muon_pt # gives you a vector
# make analysis cuts
# fill histograms

end

That’s it, simple, boring, and fast!
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Analysis: Event-loop Performance Spoiler

The analysis is a simplified 4-muon to Higgs (veto Z candidates) with CMS Open Data.
Benchmark Repo: github.com/Moelf/UnROOT_RDataFrame_MiniBenchmark4

Language Wall Time (1 thread) Wall Time (4 threads)

Julia 15.48 s 4.60 s
Compiled GetEntry Loop 19.96 s Not impl.
Compiled RDF 24.97 s 10.23 s
PyROOT RDF 40.22 s 10.94 s

Relative performance is application-dependent; the takeaway is not “Julia is faster than C++”

4All benchmarks are done on AF UChicago with EPYC 7402
12/32
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Part 2: Performance and Design choices
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Performance 1: Who gives it to us?

Compiler, of course!

But compilers work best if they have complete type information. This is why the “peak
performance” GetEntry C++ program is full of information for the compiler to pick
the best CPU instructions:

TBranch *b_nMuon = t->GetBranch("nMuon");
size_t N = dynamic_cast<TLeaf*>(b_nMuon->GetListOfLeaves()->At(0))->GetMaximum();
UInt_t nMuon; Float_t pMuon_pt[N]; Float_t pMuon_eta[N];
Float_t pMuon_phi[N]; Float_t pMuon_mass[N]; Int_t pMuon_charge[N];

TBranch *b_Muon_pt = t->GetBranch("Muon_pt");
TBranch *b_Muon_eta = t->GetBranch("Muon_eta");
TBranch *b_Muon_phi = t->GetBranch("Muon_phi");
TBranch *b_Muon_mass = t->GetBranch("Muon_mass");
TBranch *b_Muon_charge = t->GetBranch("Muon_charge");

b_nMuon->SetAddress(&nMuon);
b_Muon_pt->SetAddress(&pMuon_pt);
b_Muon_eta->SetAddress(&pMuon_eta);
b_Muon_phi->SetAddress(&pMuon_phi);
b_Muon_mass->SetAddress(&pMuon_mass);
b_Muon_charge->SetAddress(&pMuon_charge);
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Performance 1: Where does it come from?

The same basic concept applies to any language, including Julia, say you’re calculating
sum(evt.Muon_pt) for each event.
julia> evt = mytree[2] # pick an interesting event
UnROOT.LazyEvent at index 2 with 4 columns
...
julia> show(evt.Muon_pt)
Float32[19.93826, 15.303187]
julia> sum(evt.Muon_pt)
35.241447f0

It would be best for the compiler to know exactly what’s evt.Muon_pt , so it can use the best “sum” in
assembly code.

In Julia, the concept of “evt.Muon_pt 5 has an inferable return type” is known as “type stable”.

5under the hood it’s just a function call getproperty()
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Performance 1: What makes something type (un)stable?

Basic idea: Imagine you’re the compiler and can only see “type” of things but not their
“values”, can you determine the output type of an operation?

The fact that branches of a TTree are usually not homogeneous in type means we
must encode "branch name" -> "branch type" into the type of evt itself.

Essentially, it must work like the built-in type NamedTuple :
julia> nt = (; Muon_pt = [1.0, 2.0], Muon_charge = [-1, -1])
julia> typeof(nt)
NamedTuple{(:Muon_pt, :Muon_charge), Tuple{Vector{Float64}, Vector{Int64}}}
# ^-- first type ^-- second type
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Latency and Type Stability

Fully encoding all branch types puts a lot of burden on the Julia compiler, which is
perceived as latency by the users. Libraries designed for columnar analysis don’t want
to pay the cost.
For example, DataFrames.jl would simply use a dictionary:

julia> getfield(df, :colindex).lookup
Dict{Symbol, Int64} with 4 entries:

:Muon_phi => 1
:Muon_pt => 2
:Muon_eta => 3
:Muon_mass => 4

A good read from the author of DataFrames.jl on this topic:
bkamins.github.io/julialang/2022/07/08/iteration.html.
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Latency and Type Stability

This latency is very tangible. For example, the main analysis format used by CMS
(NanoAOD) contains some ~1500 branches:
julia> widetree = LazyTree("NanoAODv5_sample.root", "Events")
Row │ HLT_QuadPFJet98 L1_SingleJet200 L1_SingleJet140 Photon_hoe L1_DoubleTa ⋯

│ Bool Bool Bool SubArray{Float3 Bool ⋯
─────┼──────────────────────────────────────────────────────────────────────────────────
1 │ false false false [0.152, 0.0 false ⋯
2 │ false false false [0.0676] false ⋯
3 │ false false false [0.205, 0.2 false ⋯
4 │ true false false [0.266, 0.0 false ⋯
5 │ false false false [0.0, 0.131 false ⋯
6 │ false false false [0.0] false ⋯
7 │ false false false [0.426, 0.0 false ⋯
8 │ false false false [0.346, 0.2 false ⋯
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

1475 columns and 992 rows omitted
18/32



Latency and Type Stability: Free Lunch from the compiler team

julia> @time using UnROOT
@time LazyTree("./test/samples/NanoAODv5_sample.root", "Events")

#1.6.7 (LTS) (2022-07-19)
1.869491 seconds
17.839803 seconds

#1.9.3 (current) (2023-08-24)
0.835918 seconds
14.990669 seconds

#1.10-rc1 (soon™) (2023-11-03)
0.580467 seconds
1.363804 seconds

It is a much smoother experience compared to 12 months ago for naive users who try to load
everything directly.
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Performance 2: Lazy access of branches

Even though LazyEvent is as type stable as NamedTuple , it is not one. The primary
reason is that we do not want to load every single branch from disk/cache unless
needed.

This means that regardless of how wide the full TTree is, you only pay for what you
used:
julia> length(names(tree))
1479
julia> for evt in tree

evt.nMuon # I/O starts to happen on one branch
end
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Performance 2: Lazy access of branches

This is made possible by using LazyEvent as a cursor6 structure: it knows which row
number it represents:
julia> evt = mytree[2]
UnROOT.LazyEvent at index 2 with 4 columns:
...

When user decides to get a particular branch evt.Muon_pt , it’s equivalent to calling:
mytree.Muon_pt[2]

Finally, this indexing would either use or refresh the branch cache, to avoid repeated
disk I/O over the same TBasket. (events are not individually readable, only a basket at
a time)

6similar to LazyRow from StructArrays.jl
21/32
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Performance 2: Lazy access of branches

This is made possible by using LazyEvent as a cursor6 structure: it knows which row
number it represents:
julia> evt = mytree[2]
UnROOT.LazyEvent at index 2 with 4 columns:
...

When user decides to get a particular branch evt.Muon_pt , it’s equivalent to calling:
mytree.Muon_pt[2]

Finally, this indexing would either use or refresh the branch cache, to avoid repeated
disk I/O over the same TBasket. (events are not individually readable, only a basket at
a time)

6similar to LazyRow from StructArrays.jl
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Part 3: Things Coming Soon and Discussion
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Future 1: RNTuple

RNTuple is a Run 4 (HL-LHC) technology. Implementing it in Python and Julia was a
good cross-check exercise, and I contributed clarifications back to the specification:
(root/#11319, root/#13094, root/#11975)

The advantage is that RNTuple takes a much more systematic approach in typing
schema information. Conceptually very similar to Apache Arrow (both logical and
physical layout-wise):
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Future 1: RNTuple is modern

Rosetta of file formats, if you’re familiar with any one of them, you can get a rough
idea of the other two:

RNTuple Parquet Arrow/Feather

field column field
column – array
cluster row group row group

page list column chunk record batch
page page buffer
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Future 1: RNTuple

Unlike TTree, it’s conceivable that C++/Python/Julia RNTuple will have complete
read/write compatibility. The initial implementation (reading only) in UnROOT.jl
(after uproot) took less than three days.

On the reading RNTuple side, I have successfully followed every breaking change in
specification so far (split encoding, zig-zag encoding), and I am happy to continue.
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Future 1: RNTuple

For example, we can already read PHYSLITE7, which is a very complex format used by the
ATLAS with 664 top-level columns, with some columns look like this:
⇒ Vector

├─ :offset ⇒ Leaf{UnROOT.Index64}(col=1119)
└─ :content ⇒ Vector

├─ :offset ⇒ Leaf{UnROOT.Index64}(col=1120)
└─ :content ⇒ Struct

└─ Symbol(":_0") ⇒ Struct
├─ :m_persKey ⇒ Leaf{UInt32}(col=1121)
└─ :m_persIndex ⇒ Leaf{UInt32}(col=1122)

In English: each element in this column is a vector of vector of a struct with two fields
(m_persKey, m_persIndex).

Discussion: What’s the future priority of RNTuple, maybe writing? (in general?)
7https://gist.github.com/Moelf/63308270b7a8143465b39f2d8fa3f98b
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Future 2: Quality of Life in Analysis

Julia is excellent at producing 80% results with 20% of effort. Thus, we effortlessly
benchmark well against other tools. For example, in my entry to the Analysis
Description Language (ADL) benchmark (ADLBenchmark.jl), I included this table that
shows the length of the function body after stripping spaces:

Query # Julia RDataFrame coffea bigquery

1 28 81 261 127
2 93 99 270 152
3 178 289 295 171
4 126 255 330 186
… … … … …

As a demonstration of Julia’s flexibility.
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Future 2: Quality of Life in Analysis

Over the 2023 summer, Alex Held and I supervised an IrisHEP Fellow project —
Analysis Grand Challenge in Julia(LHC_AGC.jl)8.

Atell and I realized that, although we wrote less boilerplate in Julia, it’s far from
perfect. Obvious wish list: declarative systematics branches, automatic histogram
variations, built-in cutflow etc.

Discussion: What’s a composable interface without a performance hit? What
“package” should these live in?

8See Atell-Yehor Krasnopolski’s talk
28/32
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Btw: Can’t help but making histogram faster

Figure 1: gotta go fast

julia> @benchmark Hist1D(x, range(-1,2;length=31)) setup=x=rand(10000000)
Range (min … max): 12.546 ms … 13.519 ms ┊ GC (min … max): 0.00% … 0.00%

> %%timeit
h = Hist.new.Reg(30, -1, 2).Int64()
h.fill(x)

21.1 ms ± 71.1 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
> %timeit _ = histogram1d(x, range=[-1, 2], bins=30)
13.9 ms ± 53.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 29/32



Future 3: Expand Horizontally

Julia has a built-in Distributed.jl standard library, but we could use more quality of life for
parallel HEP data crunching. Looking forward to the HPC Tutorial by Carsten.

For the ATLAS
analysis I worked on, we used HTCondor workers in real-time via ClusterManager.jl and simply
pmap() -ed with retry:

Figure 2: Scaling of naive parallelism
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Future 4: Expand Up/Down Stream of Analysis

In principle, we can use Julia upstream of user analysis due to its speed and flexibility
(can write any imperative code without performance degradation). In practice, unable
to write .root files is a show stopper.9

But maybe upstream is simply too
engineering/book-keeping heavy to be worth it?

The downstream direction is much brighter. The core of pyhf was implemented as a
PoC in LiteHF.jl. The Julia advantage is composability: output likelihood can be used
for both Frequentist fitting10 or Bayesian inferencing (see BAT.jl by Oliver in the next
step. With the progress in the HEP Statistics Serialization Standard (HS3.jl talk by
Cornelius and Robin), we are likely to have a robust and interoperable statistical
ecosystem in JuliaHEP.

9We used uproot to prepare .root histogram for combined fit

10and gradient information from autodiff
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Discussion Questions

1. What’s the most wanted/needed features? (writing? computed branch?)
2. workflow distributed computing
3. Any upstream application?
4. systematics quality of life
5. …

Figure 3: Looking forward to discussions
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