
Julia-HEP workshop 2023, Nov 6-9, 2023

Automatic generation of Julia bindings to libraries written C++

Philippe Gras
IRFU, CEA, Université Paris-Saclay, France

Nov 6-9, 2023



The context

• The high-performance / high-level duality of Julia makes it the ideal language for HEP.
• Interface to our legacy code, mainly in C++, is essential to adopt Julia.

2 / 12



The WrapIt project

Demonstrate Julia bindings can be provided to large C++ libraries in an automatised manner and
with little maintenance effort.

3 / 12



Requirements on the desired bindings

• Transparent for the Julia user:
say_hello("World") to call void say_hello(const char*)
a = A() to instantiate class A

@ccall "./libHello.so".say_hello("World"::Cstring)::Cvoid
@cxx cxx_say_hello(pointer("World"))

• Support for large libraries with 1000+ classes and methods.
• Minimal effort to add the bindings to an existing C++ library and update them when the library code evolves.

⇒ Automatic discovery of the types and methods to bind.
⇒ Requiring a compilation step is not a problem.

4 / 12



CxxWrap

The project is based on CxxWrap.

How to add Julia bindings to a C++ library with CxxWrap?
• Implement a shared library in C++, where you declare the types and functions to bind: the glueing

code.

Behind the scene
• The shared library wraps the C++ functions/methods in C functions in order to use the Julia built-in

C call.
• The Julia part of CxxWrap generates the Julia wrapper functions.

5 / 12



Example of glueing code to write to use CxxWrap

Example

//Create a binding for class A type:
auto t0 = types.add_type<A>("A");

//Create a binding for the method say_hello of class A:
t0.method("say_hello", &A::say_hello);

Note: Additional lines of code can be needed in more sophisticated example.

The code is simple, but can be cumbersome to write and maintain for large libraries.

6 / 12



WrapIt! Automatic generation of the glueing code

Developed the WrapIt! � tool that generates the glueing code.
• Produces the glueing code from the library header files.
• Requires minimal configuration.

Challenges
• Interpreting content written in sophisticated language (C++20 standard: 1853 pages!).
• Header files 6= API description.

Design choices
• Written in C++.
• Use of LLVM/Clang:

• mainly libclang: stable C API of clang libraries;
• few calls to Clang AST C++ library for few missing features of libclang.

7 / 12

https://github.com/grasph/wrapit


WrapIt! features

• Extracts the list of classes and functions to wrap from a provided set of header files.
• The list can be fine-tuned by providing an exclusion list.
• Adds to this list all types required to use the bound functions (argument and return types) and

missing from the list.
• Maps inheritance: max. one parent class. Selection of parent class configurable.
• Optionally generates accessors for class/struct public fields.

8 / 12



WrapIt! demo

We will use as C++ library example, ROOT �

• ROOT developed to analyse the petabytes of data produced at the LHC.
• Includes all the tools used in HEP data analyses: histogram, fit, machine learning, data unfolding,

plotting, etc.
• A large library: exports more than 8000 C++ classes.

9 / 12

https://root.cern.ch/


Presentation break for the demonstration

Demo based on ex002-Hello � and ex002-ROOT �

https://github.com/grasph/wrapit/tree/ROOT-Wkshop-2022/examples/ex001-Hello
https://github.com/grasph/wrapit/tree/ROOT-Wkshop-2022/examples/ex002-ROOT


Limits of the current WrapIt! code

• Partial support of class templates, no yet support for function templates.
• Facing limits of libclang: miss the parsing of template specialisation abstract syntax tree (AST).
• Need to use the “LibTooling’ ’ C++ interface of clang instead of its libclang interface or having more

features in libclang.
• Inheritance mapping limited to one parent

• Should be easy to extend WrapIt! in order to generate wrappers for all methods inherited from any parents;
• The mapped type relationship will remain a single inheritance as it’s a constraint from the Julia language.

11 / 12



Summary

• Prototype developed to test automatic generation of Julia bindings for C++ based on CxxWrap.
• It demonstrates the feasibility of such automation.
• Well advanced. More development needed to leverage the prototype to a production tool with full

support of C++ templates.
• Used to provide a Julia interface to Geant4! See Pere Mato’s Talk � on Thursday.

12 / 12

https://indi.to/Q6NB3

