
Julia-HEP workshop 2023, Nov 5-6

Using data frames in Julia to analyse HEP data

Enrico Guiraud1, Philippe Gras2

Nov 5-6, 23

1Princeton University, USA
2CEA/IRFU - Saclay, France



Introduction

Background
• Event-loop HEP/LHC analysis using Julia well established and runs fast.
• Data frame, and more generally columnar, style analysis now popular in HEP and standard in other

fields. Convenient when using external tools, like machine learning libraries.
• Difficult to find one’s way in the rich and fast evolving Julia columnar ecosystem.
• HEP has special needs. For Python and C++, dedicated libraries needed to be developed:

RDataFrame, Akward arrays, Coffea.

Aim of this talk
• Establish guidelines together to implement columnar analysis in Julia;
• Identify possible needs of core package development.
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Data frame introduction

Data frame introduced for S, an interpreted programming language for statistics

Statistical model in S (1992), Chambers, John et al.

You may better know S as R, one of its implementations

• Data frame = matrix representation of events, typ. in memory, whose each row represents an event
and each column an observable (or a collection of observables)

• Columns are named and can be accessed as independent vectors

events MET pt eta phi E
1 143 [123, 32, 3..] [1.5, 1.2, 0.3, ...] [2.3, 1.0, 3.3, . . .] [289.3, 55.9, 3.1, . . .]

2 40.5 [100, 62, 1..] [3.2, 0.3, 1.0, . . .] [3.1, 0.1, 2.0, . . . ] [1229., 64.9, 1.54, . . .]
...

...
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Data frame duality

A data frame can be viewed as table and as a collection of individual columns

A Data frame can be viewed as a table (2-D)
df[1,1], df[1,:]

Columns can be accessed individually (1-D)
Access to the column MET df.MET .> 100. ⇒ Vector of true/false values
(equivalent to [x > 100 for x in df.MET])

Combining column and table accesses
df[df.MET .> 100., :] ⇒ selects events with MET > 100.
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The Table interface

Common interface for table-like structures, Table.jl

• Easy to implement
• No inheritance, interface can be added to an existing type with the implementation of few methods
• Ease interoperability supported by 130+ packages1

• Row-access, Column-access, or both access
• Column named
• We will define data frame as a table with both row and column accesses (although column-access is

strictly needed for a columnar analysis).

1https://github.com/JuliaData/Tables.jl file INTEGRATIONS.md �
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Examples of data type implementing the Table interface

• Dataframe from DataFrames.jl: the counterpart of Python Pandas written in Julia. Includes
both type definition and operation tools.

• Vectors of NamedTuple and NamedTuple of AbtractVectors, respectively row- and column- access
tables.
Note: Tables.columntable() and Tables.rowtable() can convert any Table to these types.

• Tables.DictRowTable and Tables.DictColumnTable

• LazyTree from UnROOT: limited to ROOT file reading, manipulations limited as columns cannot
be added.

• Table and FlexTable from TypedTables.jl. NamedTuple based.
• StructArray from StructArrays.jl: array of structs stored as structs of arrays.
• Arrow.Table from Arrow.jl.
• DTable from DTables: for distributed computing with Dagger (equivalent of Dask)
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Columnar tools in Julia

Language feature
• Broadcasting eases work on columns.
• filter function.
• [] with advanced indices and df.colname notations.

For DataFrame from DataFrames.jl

• DataFrames.jl includes manipulation operations: select, subset, transform, combine.
• DataFramesMeta.jl provides convenient and concise notation.
• DataFramesMacro.jl, an alternative to DataFramesMeta.jl.
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Columnar tools in Julia

For generic tables
• TableOperations.jl
• SplitApplyCombine.jl: various tools, not specific to Tables, in particular lazy operations

(filterview, mapview).
• MappedArray.jl: lazy transformation of arrays to use for columns, an alternative to

SplitApplyCombine.mapview.
• Query.jl: uses its own Table interface definition, but supports many existing Tables. Was showing

poor performance in our tests.

Machine learning
• The Julia machine learning framework MLJ works with Table compatible data
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Performance comparison of row selection tools

Benchmark
Select events with two opposite charge muons from Run2012BC_DoubleMuParked_Muons-1Mevts.root

Time Time
Technique copy (ms) view (ms)
Extended indices on DataFrame 30 7.2
DataFrames subset 30 7.1
DataFramesMeta @(r)subset 30 7.1
Query.jl on DataFrame 130 -
Query.jl on Vector{NamedTuple} 140 -
TableOperations on a DataFrame 350 -
TableOperations on a NamedTuple{Vector} 35 -
TableOperations on a Vector{NamedTuple} 42 -
Event loop1 on a DataFrame 140 -
Event loop1 on a Vector{NamedTuple} 5.0 -

Same or similar perf.

Slow

1Count selected events only
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Choice of the tools

Recommendations
For columnar analyses, we recommend DataFrames used together with DataFramesMeta.

Room for improvement
• Default is copycols=true and view=false: less error prone, but not ideal for large datasets
• Code depends on the data frame type. A DataFramesMeta version that works on any Table

compatible object would be ideal.
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From one to many loops

Traditional HEP data processing: each event processed in a top-level loop.
Data frame way: each statement loops over events
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Single vs many loops

Data frame pros
• Speed up processing for interpreted languages: essential for

Python, not relevant for Julia.
• We can see the result after the execution of each statement

⇒ Nice for interactive use.
• Facilitate declarative programming style ⇒ more concise

and legible code.
• Ease interface with non-HEP Machine Learning libraries,

that typically use the columnar approach.

Data Single
frame loop

Interpreted language X

Interactive usage X

ML tools X

Legibility X

Memory footprint X

Evolved algorithm X

Single-loop pros
• Memory efficient: needs only one event at a time (for I/O performance more are actually read and put

in cache)
• Free the developer’s mind of one dimension when designing an algorithm: deals with objects of one

event instead of objects of every event.
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Single-loop vs Data-Frame Performance

At first order
As Julia is as fast as the languages used for the underlying libraries, no speed gain from a columnar
approach contrary to Python

Looking closer
⊕ Use of smaller loop allows better SIMD (single instruction multiple data) optimization.

• But inner loop is often over a collection of objects within an event.

	 Leads to more memory allocations.
⇒ For an average implementation single-loop approach likely to run faster.

Non-linear analysis
With default settings, columnar approach typically loads more data into RAM ⇒ faster for an analysis
that access several times the same event.

Limited to default settings, but psychologically important.
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Expressiveness: data frame vs single loop

Selecting events with two muons:

Data frame
Declarative statement

df = df[df.nMuons .== 2, :]

or1

@subset! df :nMuons .== 2

Single loop
Typ. imperative statement

nMuons == 2 || return

With macros, declaration style is also possible!
@cut nMuons == 2

@cut macro definition:
macro cut(ex) :(\$(esc(ex)) || return false); end

1uses the DataFramesMeta package.
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Expressiveness: collections

Selecting two muons of opposite charges

Broadcast not supported for [] ⇒ use getindex()

df = df[df.nMuon .== 2 .&& getindex.(df.Muon_charge, 1) .! getindex.(df.Muon_charge, 2),:]

→ Expressiveness lost

DataFramesMeta.jl becomes handy:

@rsubset!(df, :nMuon == 2 && :Muon_charge[1] != :Muon_charge[2])

r: by-row operation
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DataFramesMeta.jl less error prone than extended index notation

Find the bug!
df[sum.(df_2mu.Muon_charge) .== 0),:]

DataFramesMeta.jl
DataFramesMeta.jl provides concise and efficient operations

@rsubset df sum(:Muon_charge)==0

@(r)subset(!), @(r)transform(!), @(r)select(!), @chain, @with, etc.

DataFrameMeta.jl macros are based on functions from DataFrames.jl. They provide
conciseness and efficiency.
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Zipping columns

Often convenient to build objects from elements split over several columns
• E.g., pT, η, φ stored as different columns in CMS NanoAODs.
• Can be performed like this:

@rselect df :Muon_p4=StructArray(pt=:Muon_pt, eta=:Muon_eta,
phi=:Muon_phi, m=:Muon_mass) :Muon_charge

• Preserves columnar storage of components → optimal for SIMD.

Room for development
• A tool to parse columns of data frame and zip relevant ones based on name patterns.
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Uncertainty propagation

• A HEP analysis is typically rerun several times, with each independent uncertainty source varied by
+1σ and -1σ.

• ROOT RDataFrame provides a convenient tool to perform the variations in a optimal manner.
• Measurements.jl provide a tool for measurement uncertainties, but it does not support multiple

uncertainty sources and uses a different approach for propagation (uses derivative and linear
approximation)

Room for development
Equivalent of RDataFrame::Vary() would be very useful, either as a new package as part of
Measurements.jl.
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Data frames to process large amount of data

Two approaches for data sets that do not fit within the RAM
Most common approach (Python Dask, Julia Dagger/DTables)
• Data processed in chunks made of N events loaded in memory

ROOT RDataFrame ”lazy” approach
• Operations recorded and postponed until the user access to the products.
• Data of 1 event ± cache loaded in memory at a time.
• On-demand load of all events supported.

• Interesting for interactive analysis on reduced data sets
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Lazy data frames in Julia

Currently available
Lazy operation on columns can be performed using mappedarray() from MappedArrays.jl or
mappedview() from SplitCombineApply.jl.

Limitations or mappedarrays and mappedview

• Eager on views.
• Cannot be used for a lazy selection of rows of a columnar table.

⇒ Cannot replace RDataFrame.

Room for development
Implementation of a lazy data frame similar to RDataFrame.
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Distributed computing

Distributed computing in Julia
Julia has a nice support for Distributed computing, including support for HTCondor:
• Built-in Distributed module;
• Dagger package: aims to provide similar functionnality as Dask or Spark;

Need for investigations and documentation
• In evolution: JuliaDB which was providing support for data that does not fit in memory is no more

maintained and replaced by DTables, which is at early development: all table operations marked as
experimental, no JuliaDBMeta equivalent.

• Our first attempts with DTables were not conclusive. Is it the right tool?

• Easy to waste time in trying different tools
• Needs for a “How-to” to analyse HEP data sets, on local machine, on local cluster and on

the LHC computing Grid.
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Example

Let’s translate the Coffea � “processor” � dimuon analysis example
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Example: coffea version

def process(self, events):
dataset = events.metadata['dataset']
muons = ak.zip({

"pt": events.Muon_pt,
"eta": events.Muon_eta,
"phi": events.Muon_phi,
"mass": events.Muon_mass,
"charge": events.Muon_charge
},

with_name="PtEtaPhiMCandidate",
behavior=candidate.behavior

)

h_mass = (hist.Hist.new
.StrCat(["opposite", "same"], name="sign")
.Log(1000, 0.2, 200., name="mass",

label="$m_{\mu\mu}$ [GeV]")↪→

.Int64())

cut = (ak.num(muons) == 2) &
(ak.sum(muons.charge, axis=1) == 0)↪→

# add first and second muon in every event
together↪→

dimuon = muons[cut][:, 0] + muons[cut][:, 1]
h_mass.fill(sign="opposite", mass=dimuon.mass)

cut = (ak.num(muons) == 2) &
(ak.sum(muons.charge, axis=1) != 0)↪→

dimuon = muons[cut][:, 0] + muons[cut][:, 1]
h_mass.fill(sign="same", mass=dimuon.mass)

return { dataset: {
"entries": len(events),
"mass": h_mass

}
}

23



Example: Julia data frame version

using UnROOT, DataFrames, DataFramesMeta, LorentzVectorHEP, StructArrays, FHist
LogRange(xlow, xhigh, nbins) = 10 .^ range(log10(xlow), log10(xhigh), nbins);
P4 = StructArray{LorentzVectorCyl{Float64}};

function process(df)
dataset = metadata(df, "dataset")

#Keep two-muon events only
df = @rsubset df :nMuon==2

#Build momenta and opposite-sign flags
@rselect!(df,

:Muon_charge,
:Muon_p4=P4(pt=:Muon_pt,eta=:Muon_eta,

phi=:Muon_phi,mass=:Muon_mass),
:Muon_OS=(:Muon_charge[1]

!=:Muon_charge[2]))

#Compute dimuon mass
@rtransform! df :DiMuon_mass=(:Muon_p4[1] +

:Muon_p4[2]).mass↪→

#Fill histograms for OS and SS categories
bins = LogRange(0.2, 200, 1000)
hists = @by df :Muon_OS :dataset=dataset

:DiMuon_hMass=fit(Histogram, :DiMuon_mass, bins)↪→

hists
end
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Running the example

Julia code to run the process function
df = LazyTree(fname, "Events", sink=DataFrame)
metadata!(df, "dataset", "Run2012BC_DoubleMuParked", style=:note)
r = map(process, Iterators.partition(df, 10_000)) # ← pmap for a distributed computation.
rr = @combine groupby(vcat(r...), [:Muon_OS, :dataset]) :DiMuon_hMass = merge(:DiMuon_hMass...)

Performance comparison

Julia DF Julia Loop Coffea
Execution (t/tfastest) 33 s (1.2) 27 s (1) 158 s (5.9)
JIT compilation +4.9 s +2.2 s –
Mem. allocation 40 GiB 19 GiB –
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Conclusions

• Established some guidelines for columnar analysis in Julia. Wish to complete them with your inputs.
• Proposing to take profit of this workshop to write a How-to on out-of-core distributed columnar

analysis with Julia.
• Several development projects identified.

• Column zipping helper;
• Uncertainty propagation tool;
• Lazy DataFrame similar as ROOT RDataFrame.
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Backup slides
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Choosing a data frame type i

Two kinds
• Type-stable: type of the data frame and row structs known at compiled time
• Type-unstable: type resolved at runtime

Type-stable Type-unstable
Performance once compiled
JIT compilation lags
Adding columns
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Choosing a data frame type ii

Type instability penalty: relevant for row iterations
• For column operations, dynamic dispatch is amortized by the number of rows processed one function

call ⇒ typically small for columnar analysis.
A Type-instable table be turned when needed into a type-stable table with Tables.columntable()
(copy-less operation).

Read Why DataFrame is not type stable and when it matters �

Type stability penalty: relevant for wide tables
• Lags relevant for larger number of columns, and when manipulating the data frame (adding a column

creates a new data frame types).
E.g., 21 s to load the 1698 branches of a CMS NanoAOD into a LazyTree or Typed Table,

1420 s for the first display() method call with current Julia release (1.7 s and 153 s
with 1.10.0-beta3).

• More relevant for interactive than batch mode.
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