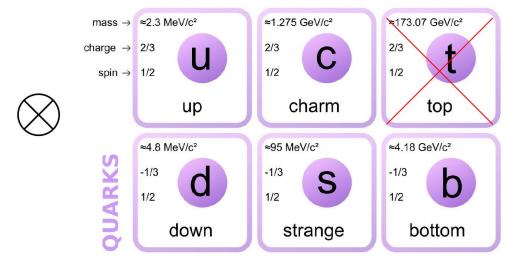

PDGdb.jl


Wrangling the Particle Data Base

Mikhail Mikhasenko Ruhr University Bochum

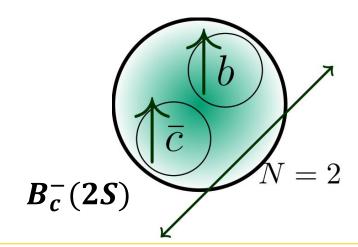
2. Hadrons. Why so many?

 \sim 10 classes of mesons

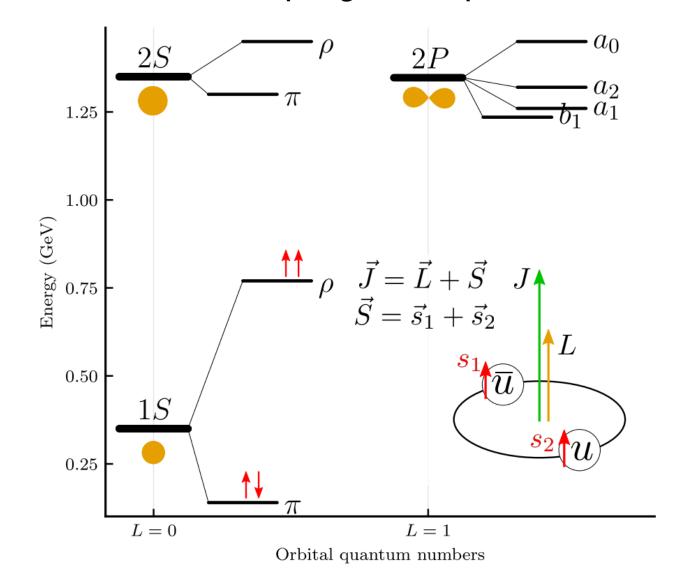
$$(\pi, \eta, K, D, D_s, B, B_s, B_c, \phi, \psi, \Upsilon)$$
 and

 ~ 20 classes of baryons

$$(N, \Delta, \Lambda_{(b/c)}, \Xi_{(b/c)}, \Omega_{(b/c)}, \dots)$$



Excitation pattern


Mesons in Quark model:

- Orbital angular momentum
- Spin of constituents

Radial excitation

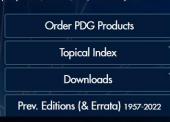
Example: light meson spectrum

PDG live

The Review of Particle Physics (2023)

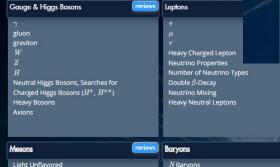
R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

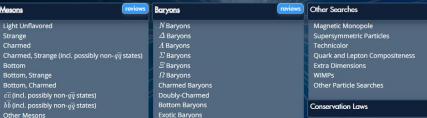
pdgLive - Interactive Listings


Summary Tables

Reviews, Tables, Plots (2022)

Particle Listings


Errata

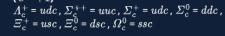

Except where otherwise noted, content of the 202 Commons Attribution-NonCommercial 4.0 Interna Review of Particle Physics is supported by US Di collaborators receive support for their PDG activit © 2023, See LBNL di

The Review of P

R.L. Workman et al. (Particle Data Group), Prog.

 $\Sigma_c(2455)$

 $\Sigma_{c}(2520)$


 $\Sigma_{c}(2800)$

Free quark

Discrete Space-Time Symm. **Number Conservation Laws**

 $1/2^{+}$

 Λ_c^+ $I(J^P) = 0(1/2^+)$

> The parity of the Λ_c^+ is defined to be positive (as are the parities of the proton, neutron, and Λ). The quark content is udc. Results of an analysis of $pK^-\pi^+$ decays (IEZABEK 1992) are consistent with J=1/2. ABLIKIM 2021N determines the Λ_c^+ spin to be J=1/2, from an angular analysis of various 2-body Λ_c^+ decays in $e^+e^- \to \Lambda_c^+ \overline{\Lambda}_c^-$. We have omitted some results that have been superseded by later experiments. The omitted results may be found in earlier editions.

> > Expand all sections

Expand all decays

JSON (beta)

INSPIRE Q

 Λ_c^+ MASS $2286.46 \pm 0.14 \, \mathrm{MeV}$ $(2.015 \pm 0.027) \times 10^{-13}$ s (S = 1.6) Λ⁺ MEAN LIFE

- ► Λ⁺ DECAY PARAMETERS
- $\Lambda_c^+, \overline{\Lambda}_c^-$ CP-VIOLATING DECAY ASYMMETRIES

Decay Modes

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction $\Lambda_c^+ o p\overline K^*(892)^0$ seen in $\Lambda_c^+ o pK^-\pi^+$ has been multiplied up to include $\overline{K}^*(892)^0 \to \overline{K}^0 \pi^0$ decays.

Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P(MeV/c)	ļ						
• Hadronic modes with a p or m : $S = -1$ final states											
Γ_1	pK_S^0	$(1.59 \pm 0.07)\%$	S=1.1	873	~						
Γ_2	$pK^-\pi^+$	$(6.26\pm0.29)\%$	S=1.4	823	~						
Γ_3	$p\overline{K}^*(892)^0$	[1] $(1.95 \pm 0.27)\%$		685	~						
Γ_4	△(1232) 07 /11/2023	$(1.08 \pm 0.25)\%$	4	710	~						

Strange

Particle Data Group

- PDG started in 1957 by Rosenfeld and Gell-Mann as a journal review
- Evolve as paper cards
- Digitized in 90th

Particle data group database:

- Around 20 years,
- 223 authors from 148 institutions 24 countries

2)	M026P11 $\Gamma(~\eta_c(1S) o K_0^*(2600)\overline{K}$ + c.c. $)/\Gamma_{ m total}$		■ pagproundingov/pagprou/ragvvorkspace/encoding/ivevvEncodings.ac			dionnineasurement_ta=01054ccencounig=50407ccentuni=			
3)	M055R93 $\Gamma(\chi_{c1}(1P) \rightarrow K_0(2000)K + \text{c.c.})/\Gamma_{ ext{total}}$		PDG workspace		20	Since a few years,			
4)	4) M055R94 $\Gamma(\chi_{c1}(1P) o K_2^*(1430)\overline{K}^0$ + c.c.) $/\Gamma_{ ext{total}}$			workspace			Since a rew years,		
5)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Edit measurement			Show additional fields	. ? 🗆	
6)	, , , , , , , , , , , , , , , , , , , ,			Node M019W	Document AAIJ 2023		va. web interface for tech	12	
7)	M059R37 $\Gamma(~\eta_c(2S) ightarrow a_0(1710)\pi)/\Gamma_{ m total}$			Comment: ?		(^+ (K_S^0 K^- \pi^+)\$			
8)) M059R38 $\Gamma(~\eta_c(2S) ightarrow a_0(1450)\pi)/\Gamma_{ m total}$					preview c	comment		
9)	(16)				New footnote: ?				
	10) M059R40 $\Gamma(~\eta_c(2S) o K_0^*(2600)\overline{K}$ + c.c.)/ $\Gamma_{ m total}$				- New Joseph Co.			encoding: typing	
		$K_0^*(2600) I(J^P) =$	1/2(0+)		preview footnote				
	New Measurements			Link to existing footnote(s)			information from		
	Node	Document ID	Used?	Value (units)	Save measuremen	nt Close		published journal paper	ح
1)	M019M	AAIJ 2023AH ¹	N	$1493 \pm 4 \pm 7$ (MeV)				published Journal paper	2
	1(Linkage=F): From a Dalitz plot analysis of $\eta_c(2S) o K_SK^+\pi^-+c.c.$.								
2)	M019W	AAIJ 2023AH ¹	N	$215\pm7\pm4$ (MeV)					
	1(Linkage=A): From a Dalitz plot analysis of $\eta_c(2S) o K_SK^+\pi^-+c.c.$.						and overseeing:		
3)	M026M	AAIJ 2023AH	U	$2985.01 \pm 0.17 \pm 0.89 \text{ (MeV)}$	35k	LHCB	$B^+ o K^+(K^0_SK^-\pi^+)$	checking others	
4)	M026P10	AAIJ 2023AH	U	seen		LHCB	$B^+ o K^+(K^0_SK^-\pi^+)$	encodings	
5)	M026P11	AAIJ 2023AH	U	seen		LHCB	$B^+ o K^+(K^0_SK^-\pi^+)$	edit/	
6)	M026R11	AAIJ 2023AH	U	seen		LHCB	$B^+ o K^+(K^0_SK^-\pi^+)$	edit/	
7)	M026R45	AAIJ 2023AH	U	seen		LHCB	$B^+ o K^+(K^0_SK^-\pi^+)$	~ 10 papers / person / yr	
8)	M026R46	AAIJ 2023AH	U	seen		LHCB	$B^+ o K^+(K^0_SK^-\pi^+)$	To papers / person / yr	
9)	M026R48	AAIJ 2023AH	U	seen		LHCB	$B^+ o K^+(K^0_SK^-\pi^+)$	edit/	
900	0.0								
J.j.		Misha Mikha	asenko R	uhr University Bochum	PDGbd.jl			07/11/2023 6	

PDG API announcement [webcite]

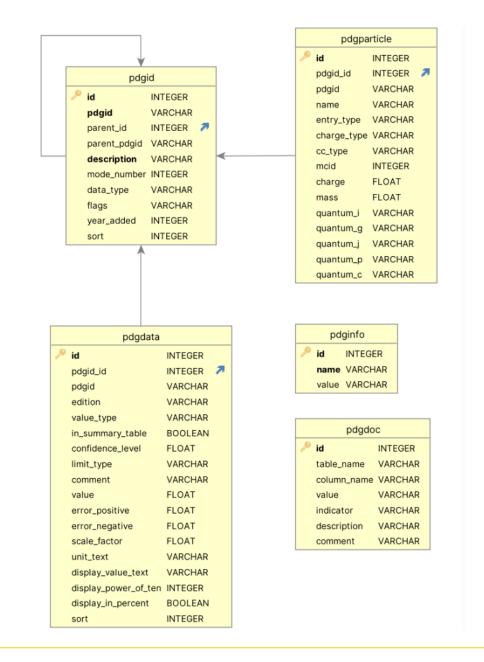
- Pushed by a demand of the community (regular surveys)
- Driven by FAIR principle
- Currently only core PDG data
 - Particle listings
 - Measurements & Limits
- Promised more...

New PDG API with Three Tools

Developing three closely related tools, aimed at different use cases

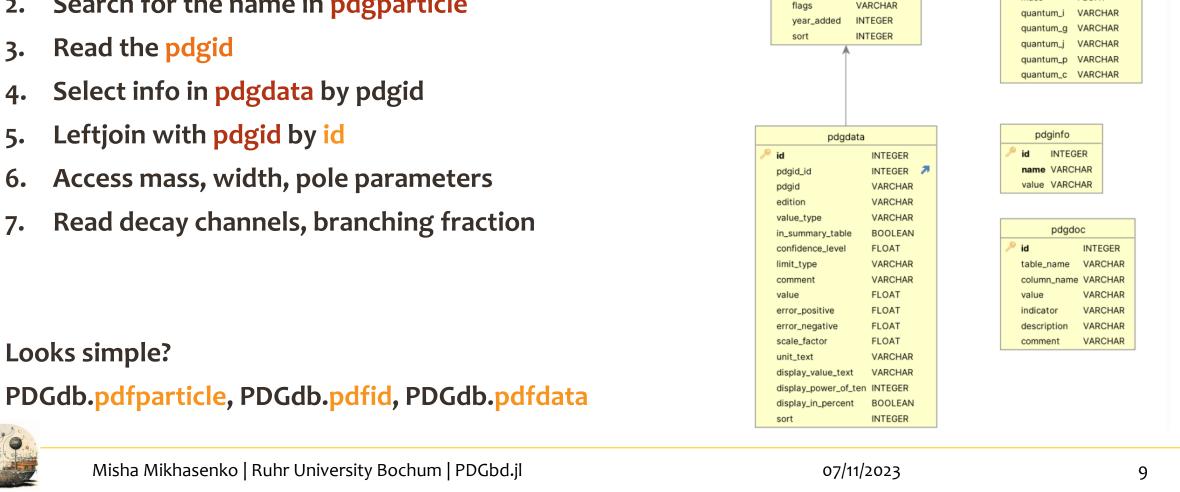
- REST API
 - Download JSON data directly from pdgLive
 - Can also be used in scripts/programs
 - Intended for incidental, rate-limited use
- Python API
 - High-level API for programmatic access to PDG data
 - Includes local data store
- Database files
 - SQLite files with part of or whole PDG dataset
 - Aimed primarily at software developers

Programmatic Access to PDG Data, HADRON 2023


Juerg Beringer (LBNL), page 10

[Talk of Juerg Beringer, HADRON 2023]

Structure of the DB



Access particle properties

- Read SQL database convert to DataFrame 1.
- Search for the name in pdgparticle

pdgparticle

charge_type VARCHAR

INTEGER

INTEGER

VARCHAR

VARCHAR

VARCHAR

VARCHAR

INTEGER

FLOAT

FLOAT

id

pdgid

pdgid

parent_id

parent_pdgid

description

data_type

mode_number

INTEGER

VARCHAR

VARCHAR

INTEGER

VARCHAR

INTEGER 7

pdgid_id

pdgid

name

mcid

charge

mass

Issues and physics

Generic notes vs charge-specific notes:

u and d quarks have ~ same mass

=> Isospin symmetry leads to multiplets

- $[u\bar{d}, u\bar{u}, d\bar{d}, d\bar{u}]$ might all correspond to generic $\rho(770)$
- [bū, bd] to generic B-meson
- [bsu, bsd] would be generic Ξ_b

But for some, there are charge specific

+ Many typos / missing / repeated information

Current API for exploration

pdg("guessname")

Suggestions for the names of the particles
Using token-based distance between registered names

properties("pdgid")
pdg("guessname") |> properties
get data + description

properties("pdgid") |> parameters
mass, width, pole position

properties("pdgid") |> decays
decay channels

Summary

The PDG is on the track to make the databases available. **Decays properties are accessible!** MySQL is the internal format; new releases will be in the same form.

We get to deal with the historic records.

not-clean: physics-aware processing and cleaning is needed.

not-consistent: feedback to the PDG is appreciated. Collected in [Issues]

Cleaned and shaped DB can be exported e.g. to Corpuscles.jl, scikit-hep/particle

