
Cumulants & Co.

Piotr Kalaczyński on behalf of Krzysztof Domino, Piotr Gawron, Łukasz Pawela,

Dariusz Kurzyk, Tony Kelman, Alex Arslan and Kristoffer Carlsson

JuliaHEP 2023 Workshop

08.11.2023

Introduction 2

Just a humble technician in the Scientific Computing & IT Group at in Warsaw, Poland

Code presented here was developed at in Gliwice, Poland

Repos:

❖ github.com/iitis/Cumulants.jl → arXiv:1701.05420v4

❖ github.com/iitis/CumulantsFeatures.jl → doi/10.1016/j.physa.2020.124995,

arXiv:1808.03513v1

❖ github.com/iitis/CumulantsUpdates.jl → doi/10.2478/amcs-2019-0015

By:

❖ Krzysztof Domino

❖ Piotr Gawron

❖ Łukasz Pawela

❖ Tony Kelman

❖ Alex Arslan

❖ Kristoffer Carlsson

NOT by me!

Me:

current focus: maintenance of python & C++ simulation codes,

excited to dive deeper into Julia ☺

Based on: arXiv:1301.7744v3
Exploiting Symmetry in Tensors for High Performance: Multiplication with Symmetric Tensors

(M. D. Schatz, T. M. Low, R. A. van de Geijn, T. G. Kolda)

https://github.com/iitis/Cumulants.jl
https://arxiv.org/abs/1701.05420v4
https://github.com/iitis/CumulantsFeatures.jl
https://doi.org/10.1016/j.physa.2020.124995
https://arxiv.org/abs/1808.03513v1
https://github.com/iitiahttps:/github.com/iitis/CumulantsUpdates.jls/CumulantsFeatures.jl
https://doi.org/10.2478/amcs-2019-0015
https://arxiv.org/abs/1301.7744v3

Cumulants 3

What are cumulants anyway?

(an alternative to the moments)

Can be generated from a Taylor expansion:

𝐻 𝑡 =

𝑑=1

∞

𝜅𝑑
𝑖𝑡 𝑑

𝑑!
= 𝜇𝑖𝑡 − 𝜎2

𝑡2

2
+⋯

which must be differentiated and evaluated at 𝑡 = 0 to extract the cumulants 𝜅𝑑
(hello Julia ☺)

𝜅1

=

𝜅2

=

quantitative measures of the shape of the distribution

The symbols may seem familiar for a good reason:

𝜅1 = 𝜇: mean

𝜅2 = 𝜎2: variance

𝜅3 ∼ skewness (after rescaling)

𝜅4 ∼ kurtosis (after rescaling)
no special names for higher orders (that I know of …)

𝑑 − order of the cumulant

Performance: 4

Here :

❖ Computation of the 4th cumulant (𝜅4) tensor

❖ Actual speedup exceeds 𝑑! = 4! = 24

Expected computational complexity reduction: by a factor 𝑑!

from arXiv:1701.05420v4

number of marginal variables

Storage of symmetric tensors is optimized wrt. the naïve storage scheme

(storing all elements)

(w
rt

.
to

 n
a
ïv

e
)

𝑡 − number of data samples

https://arxiv.org/abs/1701.05420v4

Performance: multiprocessing 5

speedup: with respect to single process calculation of cumulants

4-th order cumulant 5-th order cumulant

Number of parallel processesNumber of parallel processes

The code is not completely parallelisable, but can be accelerated by running multiple processes

from arXiv:1701.05420v4
(w

rt
.

to
 s

in
g
le

 p
ro

c
e
s
s
 c

a
lc

u
la

ti
o
n
)

(w
rt

.
to

 s
in

g
le

 p
ro

c
e
s
s
 c

a
lc

u
la

ti
o
n
)

https://arxiv.org/abs/1701.05420v4

Performance: Julia vs R implementation 6

Speedup wrt. state of the art:

❖ Cumulants.jl vs the general (arbitrary cumulant order) algorithm from here

❖ 4th cumulant tensor

from arXiv:1701.05420v4

number of marginal variables number of marginal variables

𝑡 − number of data samples

Comparing with reimplementation Comparing with reimplementation

(w
rt

.
to

 g
e
n
e
ra

l
a
lg

o
ri
th

m
)

(w
rt

.
to

 g
e
n
e
ra

l
a
lg

o
ri
th

m
)

https://doi.org/10.1137/S0036141093245616
https://github.com/iitis/Cumulants.jl
https://escholarship.org/uc/item/1fw1h53c
https://arxiv.org/abs/1701.05420v4

Online computing of cumulants 7

from doi/10.2478/amcs-2019-0015

Cumulants can be computed online, in a sliding window of datastreams: (CumulantsUpdates.jl)

… and this turns out to be even faster than Cumulants.jl:

(C
u
m

u
la

n
ts

.j
l
v
s
 C

u
m

u
la

n
ts

U
p
d
a
te

s
.j
l)

𝑡 = 2.5 ⋅ 107 − number of data samples
𝑛 − numer of marginal variables

6th-order cumulant:

batch size

https://doi.org/10.2478/amcs-2019-0015
https://github.com/iitiahttps:/github.com/iitis/CumulantsUpdates.jls/CumulantsFeatures.jl
https://github.com/iitis/Cumulants.jl

Applications 8

Okay, where in HEP can this be used? (just some examples)

❖ At colliders:

▪ arXiv:1109.0593v2
Error Estimation for Moments Analysis in Heavy-Ion Collision Experiments

(Xiaofeng Luo)

▪ arXiv:2305.13874v2
Holographic study of higher-order baryon number susceptibilities at finite temperature and density

(Z. Li, J. Liang, S. He, L. Li)

▪ arXiv:2303.13414v1
Higher-order correlations between different moments of two flow amplitudes in Pb−Pb collisions at 𝑠NN = 5.02 TeV

(ALICE Collaboration)

▪ arXiv:2209.11940v2
Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in 𝑠NN = 3 GeV Au+Au Collisions at the RHIC STAR Experiment

(STAR Collaboration)

❖ In astrophysics:

▪ arXiv:2204.05305v3
Galaxy and halo angular clustering in LCDM and Modified Gravity cosmologies

(P. Drozda, W. A. Hellwing, M. Bilicki)

▪ arXiv:2209.14810v2
Magnetic helicity fluxes from triple correlators

(K. Gopalakrishnan, K. Subramanian)

❖ Lattice QCD:

▪ arXiv:2305.10916v2
Microscopic Encoding of Macroscopic Universality: Scaling Properties of Dirac Eigenspectra near QCD Chiral Phase Transition

(H. Ding, W. Huang, S. Mukherjee, P. Petreczky)

some analyses use cumulants up to 8th order

specialised algorithm (orders 1-4) NOT enough!

https://arxiv.org/abs/1109.0593v2
https://arxiv.org/abs/2305.13874v2
https://arxiv.org/abs/2303.13414v1
https://arxiv.org/abs/2209.11940v2
https://arxiv.org/abs/2204.05305v3
https://arxiv.org/abs/2209.14810v2
https://arxiv.org/abs/2305.10916v2

Other projects 9

There is more if you’re into …

Quantum computing: QuantumInformation.jl

❖ natively works with bra-ket notation!

(via row and column vectors)

❖ comes with many convenient implementations of

states, transformations, etc.

❖ faster than QuTiP (python code)

Random matrix sampling on GPU: MatrixEnsembles.jl

sampling random pure states

from arXiv:1806.11464v3

https://github.com/iitis/QuantumInformation.jl
https://qutip.org/
https://github.com/iitis/MatrixEnsembles.jl
https://arxiv.org/abs/1806.11464v3

Summary 10

To sum up:
❖ Need to compute high-order cumulants or

just do it fast? Use Cumulants.jl etc. ☺

❖ Want to learn more? See:
arxiv/1701.05420
doi/10.2478/amcs-2019-0015

My ideas for new projects:
❖ CORSIKA alternative in Julia:

▪ I’m aware of C++ rework (C8)

▪ but … maybe it can be more efficient?
(looped differentiation and matrix
operations under the hood …)

▪ and just easier (MUCH friendlier syntax)

▪ healthy competition never hurts ;-)

❖ Simulation of acoustic signal from HE particles:

▪ thermo-acoustic mechanism: known &
measured

▪ simulated, but nothing really open-source
and general purpose, like CORSIKA
(at least that I am aware of …)

▪ combined simulation of light & sound?
(could allow for better event reco)

Thank you
for your attention!

https://github.com/iitis/Cumulants.jl
https://arxiv.org/pdf/1701.05420.pdf
https://doi.org/10.2478/amcs-2019-0015

11

Backup

EAS:
❖ Caused by primary CR

❖ Typically start at ℎ~30 − 40km
❖ 3 main components:

• electromagnetic (EM)

• hadronic

• muonic

❖ Simulated with CORSIKA

Extensive Air Showers 12

We have 2 options:

1. MUPAGE (atmospheric MUons from PArametric

formulas: a fast GEnerator for neutrino telescopes)
• developed for ANTARES

• fast muon MC generator

• based on parametric formulas and MACRO measurements

• parameters can be freely tuned

2. CORSIKA (COsmic Ray SImulations for KAscade)
• developed for KASCADE

• full simulation of air showers

• customizable (models, primaries, etc.)

EAS simulations in KM3NeT 13

https://arxiv.org/abs/0907.5563
https://www.ikp.kit.edu/corsika/index.php

gSeaGen 14

gSeaGen

git.km3net.de/opensource/gseagen

Code for propagating muons and/or neutrinos to neutrino

telescopes. Developed for KM3NeT, but applicable to other

experiments

Current devs:

❖ Carla Distefano

❖ Alfonso Andres Garcia Soto

❖ Piotr Kalaczyński

❖ Johannes Schumann

❖ Rodrigo Garcia

❖ Andrey Romanov

My work in this project:

❖ Implement processing of CORSIKA showers

❖ Speed, memory & storage optimization

❖ Rework of the geometry: no more flat Earth!

❖ Code maintenance

Tech stack:

❖ C++

❖ ROOT

❖ PERL

❖ PROPOSAL
(github.com/tudo-astroparticlephysics/PROPOSAL)

A paper by me under internal review …

	Slajd 1: Cumulants & Co.
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11: Backup
	Slajd 12
	Slajd 13
	Slajd 14

