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Outline: Differentiable Simulation requires more than just 
sticking automatic differentiation on a simulator.

Part 1: Understanding derivatives and their potential issues.
Part 2: How simulators must be modified to improve the 
fitting process.
Part 3: Alternatives to direct simulation fitting which may be 
more robust in some contexts
Part 4: How the performance of simulators and deep learning 
differ



Prologue: Why do Differentiable 
Simulation?



Universal (Approximator) Differential Equations

 

 



Let’s dive in a bit! 
Neural ODE: Learn the whole model

u’=NN(u) trained on 21 days of data 

Can fit, but not enough information to 
accurately extrapolate 

Does not have the correct asymptotic 
behavior



Universal ODE

Infection rates: known 
From disease quantities

Percentage of cases 
known to be severe, 
can be estimated

Exposure: 
Unknown



Universal ODE -> Internal Sparse Regression
Sparse Identification on only the missing term: 
I * 0.10234428543435758 + S/N * I * 0.11371750552005416 + (S/N) ^ 2 * I * 0.12635459799855597

Sparsity improves generalizability!

For further investigation:

Acquesta, Erin, Teresa Portone, Raj Dandekar, Chris Rackauckas, Rileigh Bandy, and Jose 
Huerta. Model-Form Epistemic Uncertainty Quantification for Modeling with Differential 
Equations: Application to Epidemiology. No. SAND2022-12823. Sandia National Lab.(SNL-NM), 
Albuquerque, NM (United States), 2022.



Universal (Approximator) Differential Equations



UODEs show accurate extrapolation and generalization

Example using binary black hold 
dynamics with LIGO gravitational 
wave data 

Keith, Brendan, Akshay Khadse, and Scott E. 
Field. "Learning orbital dynamics of binary 
black hole systems from gravitational wave 
measurements." Physical Review Research 3, 
no. 4 (2021): 043101.

Run the code yourself!

https://github.com/Astroinformatics/
ScientificMachineLearning/blob/main/
neuralode_gw.ipynb



Universal Differential Equations Predict Chemical Processes

Santana, V. V., Costa, E., Rebello, C. M., Ribeiro, A. 
M., Rackauckas, C., & Nogueira, I. B. (2023). Efficient 
hybrid modeling and sorption model discovery for non-
linear advection-diffusion-sorption systems: A 
systematic scientific machine learning approach. arXiv 
preprint arXiv:2303.13555.



Universal Differential Equations Predict Chemical Processes

Recovers equations with the same 
2nd order Taylor expansion



Julia Computing Confidential

Scientific Machine Learning Digital Twins: More Realistic Results than Pure ML

Physically-Informed Machine Learning

Using knowledge of the physical forms as part of 
the design of the neural networks.

Smoother, more accurate results 

For more information, see the case study 
on the JuliaHub website

ln(x) ex



SciML Shows how to build 
Earthquake-Safe Buildings

Structural identification with physics-informed neural ordinary 
differential equations 
Lai, Zhilu, Mylonas, Charilaos, Nagarajaiah, Satish, Chatzi, 
Eleni

For a detailed walkthrough of UDEs 
and applications watch on Youtube: 

 
Chris Rackauckas: Accurate and 

Efficient Physics-Informed Learning 
Through Differentiable Simulation



Does doing such methods require 
differentiation of the simulator?



3D simulations are 
high resolution but too 
expensive. 

Can we learn faster 
models?

High fidelity surrogates of ocean columns for climate models



Derive a 1D approximation 
to the 3D model

Incorporate the “convective 
adjustment”

Only okay, but why?

Neural Networks Infused into Known Partial Differential Equations



Good Engineering Principles: Integral Control!

But how do you fit a neural 
network inside of a simulator?



Part 1: Differentiation of Solvers



The adjoint equation is an ODE!

How do you get z(t)? One suggestion:
Reverse the ODE

Timeseries is not 
stored, therefore 
O(1) in memory!

 

Machine Learning Neural Ordinary Differential Equations

Chen, Ricky TQ, et al. "Neural ordinary differential equations." Advances in neural information 
processing systems. 2018.



But… really?



Differentiating Ordinary Differential Equations: The Trick



Differentiating Ordinary Differential Equations: Integration By Parts



Differentiating Ordinary Differential Equations: The Final Form



Differentiating Ordinary Differential Equations: Summary

Summary: 1. Solve

2. Solve

3. Solve



Differentiating Ordinary Differential Equations: Step 2 Details

2. Solve

How do you get u(t) while solving backwards?
3 options!

1. 

2. Store u(t) while solving forwards (dense output)

3. Checkpointing

 

(𝑡)

(𝑡)(𝑡)
(𝑡)



Adjoint Differential Equation

This term is traditionally computed via differentiation and then multiplied to lambda
Reverse-mode embedded implementation: push-forward f(u) pullback lambda
Computational cost O(n) -> O(1) f evaluations and automatically uses optimized 
backpropagation!

Six choices for this computation:
• Numerical
• Forward-mode
• Reverse-mode traced compiled graph 

(ReverseDiffVJP(true))
• Fast method for scalarized 

nonlinear equations
• Requires CPU and no branching 

(generally used in SciML)
• Reverse-mode static

• Fastest method when applicable
• Reverse-mode traced

• Fast but not GPU compatible
• Reverse-mode vector source-to-source 

• Best for embedded neural 
networks

How the gradient (adjoint) is calculated also matters!



Differentiating Ordinary Differential Equations: Step 3 Details

3. Solve

How do you calculate the integral?

1. Store  while solving backwards (dense output)

2.  where 

𝜆(𝑡)

𝜇′￼= − 𝜆∗𝑓𝑝 + 𝑔𝑝 𝜇(𝑇 ) = 0

What’s the trade-off between these ideas?

(𝑡)



Cool. Can this go wrong?



Rackauckas, Christopher, and Qing Nie. "Differentialequations. jl–a performant and 
feature-rich ecosystem for solving differential equations in julia." Journal of Open 
Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs 
for accelerated algorithm development and benchmarking." Advances in Engineering 
Software 132 (2019): 1-6.

“Adjoints by reversing” also is 
unconditionally unstable on some 
problems!

Advection Equation:

Approximating the derivative in x has two choices: forwards or 
backwards

 

If you discretize in the wrong direction you get unconditional 
instability

You need to understand the engineering principles and the 
numerical simulation properties of domain to make ML stable on 
it. 



Problems With Naïve Adjoint Approaches On Stiff Equations

Error grows exponentially…

, plot the error in the reverse 
solve:
𝑢′￼(𝑡) = 𝜆𝑢(𝑡)

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural 
ordinary differential equations." Chaos (2021).

How do you get u(t) while solving backwards?
3 options!

1. 

2. Store u(t) while solving forwards (dense output)

3. Checkpointing

  Unstable

High memory

More Compute

Each choices has an engineering trade-off!



Problems With Naïve Adjoint Approaches On Stiff Equations

Error grows exponentially…

, plot the error in the reverse 
solve:
𝑢′￼(𝑡) = 𝜆𝑢(𝑡) Compute cost is cubic with parameter size when stiff

Size of reverse ODE system is:

Linear solves inside of stiff ODE solvers, ~cubic

Thus, adjoint cost:

2𝑠𝑡𝑎𝑡𝑒𝑠 + 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑂((𝑠𝑡𝑎𝑡𝑒𝑠 + 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)3)

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural 
ordinary differential equations." Chaos (2021).



But automatic differentiation

How does it work, and does it fix the 
problem?



Symbolic Differentiation on Code



Automatic Differentiation as Differentiation in the Language of Code



Automatic Differentiation as Differentiation in the Language of Code

More Details on 
the Algorithm, 
see the SciML 

Book:

book.sciml.ai

Chapter 10



What does automatic differentiation of 
an ODE solver give you?



Are there cases where that is 
mathematically correct but numerically 
incorrect?





Indeed, AD on its own gives the incorrect answer… but why?



How adaptivity works

Time

X(t)

Propose a 
timestep h

Approximate the 
solution at t+h
Approximate the 
error at t+h

Error is too high, reject!

Propose a new 
timestep

Approximate the 
error at the new 
timestep

Error is small enough. Accept!



Any more cases where AD is incorrect?



Differentiation of Chaotic Systems: Shadow Adjoints

chaotic systems: trajectories diverge to o(1) error  … but 
shadowing lemma guarantees that the solution lies on 
the attractor

• Shadowing methods in DiffEqSensitivity.jl• AD and finite differencing fails!

https://frankschae.github.io/post/shadowing/



Conclusion Part 1: 

Be careful about how you compute 
derivatives of equation solvers



Improving Coverage of Automatic Differentiation over Solvers

https://scimlbase.sciml.ai/dev/
The SciML Common Interface for Julia Equation Solvers

LinearSolve.jl: Unified Linear Solver Interface
𝐴(𝑝)𝑥 = 𝑏

NonlinearSolve.jl: Unified Nonlinear Solver Interface

𝑓(𝑢, 𝑝) = 0
DifferentialEquations.jl: Unified Interface for all 
Differential Equations 𝑢′￼= 𝑓(𝑢, 𝑝, 𝑡)

𝑑𝑢 = 𝑓(𝑢, 𝑝, 𝑡)𝑑𝑡 + 𝑔(𝑢, 𝑝, 𝑡)𝑑𝑊𝑡

Optimization.jl: Unified Optimization Interface

minimize 𝑓(𝑢, 𝑝)
subject to 𝑔(𝑢, 𝑝) ≤ 0, h(𝑢, 𝑝) = 0

Integrals.jl: Unified Quadrature Interface
𝑢𝑏

∫
𝑙𝑏

𝑓(𝑡, 𝑝)𝑑𝑡

Unified Partial Differential Equation Interface

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢)
𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢)



New SciML Docs: Comprehensive Documentation of Differentiable 
Simulation



Part 2:

Methods which improve the fitting 
process



Fitting by running the simulator and 
doing gradient-based optimization

= single shooting



Single shooting is not numerically 
robust. Other loss functions are 
required in practice!



Some Alternative Loss Functions: Multiple Shooting and Collocation

Multiple Shooting Methods
Roesch, Elisabeth, Christopher Rackauckas, and Michael PH Stumpf. "Collocation based training of 
neural ordinary differential equations." Statistical Applications in Genetics and Molecular Biology (2021).

Turan, E. M., & Jäschke, J. (2021). Multiple shooting with neural differential 
equations. arXiv preprint arXiv:2109.06786.



Prediction Error Method (PEM)

https://docs.sciml.ai/SciMLSensitivity/dev/examples/ode/
prediction_error_method/

Use a modified simulator which is always filtered 
towards the data points



Simple Tricks: Growing the Time Interval

Doing the optimization in a single 
pass may not be robust,

Successively grow the interval



Let’s go back to this example

Example using binary black hold 
dynamics with LIGO gravitational 
wave data 

Keith, Brendan, Akshay Khadse, and Scott E. 
Field. "Learning orbital dynamics of binary 
black hole systems from gravitational wave 
measurements." Physical Review Research 3, 
no. 4 (2021): 043101.

Run the code yourself!

https://github.com/Astroinformatics/
ScientificMachineLearning/blob/main/
neuralode_gw.ipynb



Let’s go back to this example

The neural network is a residual, so start the training as a small perturbation!



Conclusion Part 2: 

Don’t use single shooting. Modify the 
simulation process to improve the 
fitting.



Sidebar: A note on Neural Network 
Architectures in ODEs



ODE Solvers don’t always go forwards!

Time

X(t)

Propose a 
timestep h

Approximate the 
solution at t+h
Approximate the 
error at t+h

Error is too high, reject!

Propose a new 
timestep

Approximate the 
error at the new 
timestep

Error is small enough. Accept! If you’re using an adaptive 
ODE solver, you cannot 
assume that the next step 
will be forward in time from 
the previous one.

I.e., neural networks with 
state (RNN, GRU, etc.) do 
not give a well-defined ODE 
solution and will fail in 
adaptivity!



Be Aware of Vanishing Gradients

* Many loss functions have gradients which go to zero 
when loss functions get extreme.
* ODEs naturally amplify values (exponentially!) as time 
gets larger
* Consequence: gradients can become zero, making 
training become ineffective

Solutions:

* Never train for long intervals (successive interval 
growth, multiple shooting)

* Use loss functions which don’t saturate (but try and 
keep them smooth (?))



Part 3:

Methods which ignore such derivative 
issues that could be interesting to 
explore



Recurrent neural network? No!
1. It’s an explicit method! (Euler’s)
2. Uniform steps will not capture the spikes!

Challenge: train a surrogate to accelerate an arbitrary highly stiff system



Rackauckas, Christopher, and Qing Nie. "Differentialequations. jl–a performant and 
feature-rich ecosystem for solving differential equations in julia." Journal of Open 
Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs 
for accelerated algorithm development and benchmarking." Advances in Engineering 
Software 132 (2019): 1-6.

Stiffness causes a problem even 
with many SciML approaches like 
Physics-Informed Neural Networks 
(PINNs)

Understanding and mitigating gradient pathologies in physics-informed neural networks

Sifan Wang, Yujun Teng, Paris Perdikaris

1. Neural networks have difficulties matching highly ill-
conditioned systems

2. Optimization techniques like gradient descent are explicit 
processes attempting to solving a stiff model

3. Stiffness in the model can translate to stiffness in the 
optimization process as it tries to find a manifold

4. Timescale separations of  and more are common in real 
applications

We need to utilized all of the advanced 
numerical knowledge for handling stiff systems 
to work in tandem with ML!

109



Some precedence: echo state networks
Fix a random process and find a projection 
to fit the system

Adapting: continuous-time echo state networks
Build a random non-stiff ODE and find a 
projection to the stiff ODE

 

Idea: Avoid Gradients and Use an Implicit Fit



Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks 

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral 
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

Robertson’s Equations

Classic stiff ODE
Used to test and break integrators

Volatile early transient



Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks 

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral 
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

Robertson’s Equations

Classic stiff ODE
Used to test and break integrators

Volatile early transient

Log-Scale Fast 
Changes!

No auto-catalyst, 
no dynamics



Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks 

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral 
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

After training, 100x faster 
than direct simulation!

Only CTESNs Capture the Hard 
Dynamics



ReservoirComputing.jl



Part 4: Performance

A Deep Dive into how Performance is 
Different Between Deep Learning and 
Differentiable Simulation



When/Why should this be preferred 
over other techniques like physics-
informed neural networks (PINNs) and 
neural operator techniques 
(DeepONets)? 



Why Use Physics-Informed Neural Networks?

Outperforms standard machine learning
Mix data and physics loss



Keeping Neural Networks Small Keeps Speed For Inverse Problems

DiffEqFlux.jl (Julia UDEs)

DeepXDE (TensorFlow Physics-Informed NN)
Problem: parameter estimation
of Lorenz equation from data
On t in (0,3)



Note on Neural Networks “Outperforming” Classical Solvers



Note on Neural Networks “Outperforming” Classical Solvers

Oh no, we’re doomed!



Wait a second?

Julia’s numerical
solver is faster by

7,000x

Julia: Laptop CPU
DeepONet: Tesla V100 GPU



Wait a second?

Julia’s numerical
solver is faster by

7,000x

Similar story on Fourier 
Neural Operator results!

How come so far off?



If Differentiable Simulation techniques 
are easily >1000x more efficient, then 
why doesn’t everyone “see” that?



Code Optimization in Machine Learning vs Scientific Computing

Big O(n^3) operations?
Just use a GPU

Don’t worry about overhead
You’re fine!

Simplest code is ~3x from optimized

Scientific codes
O(n) and O(n^2)

operations

Mutation and
Memory management: 10x

Manual SIMD: 5x

…



What happens when you specialize computations?

Scientific codes
O(n) and O(n^2)

operations

Mutation and
Memory management: 10x

Manual SIMD: 5x

…

SimpleChains.jl

Doing small network scientific 
machine learning in Julia on CPU 5x 

faster than PyTorch on GPU

(10x Jax on CPU)

Details in the release blog post

Only for size ~100 layers and below!



SimpleChains + StaticArray Neural ODEs

About a 5x improvement

~1000x in a nonlinear mixed 
effects context

Tutorial should be up in a few 
days

Caveat: Requires 
sufficiently small ODEs 

(<20)



Let’s dive into some performance 
optimizations and see what’s required 
in practice on Burger’s Equation



SciML Open Source Software 
Organization
sciml.ai

● DifferentialEquations.jl: 2x-10x Sundials, Hairer, …
● DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
● ModelingToolkit.jl: 15,000x Simulink
● Catalyst.jl: >100x SimBiology, gillespy, Copasi
● DataDrivenDiffEq.jl: >10x pySindy
● NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
● NeuralOperators.jl: ~3x original papers (more optimizations required)
● ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
● SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
● DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention…

If you work in SciML and think optimized and maintained 
implementations of your method would be valuable, please let us know 
and we can add it to the queue.

Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter


