
Automatic Differentiation
and SciML in Reality

What can go wrong, and
what to do about it.

Chris Rackauckas
VP of Modeling and Simulation,
Julia Computing

Research Affiliate, Co-PI of Julia Lab,
Massachusetts Institute of
Technology, CSAIL

Director of Scientific Research,
Pumas-AI

Outline: Differentiable Simulation requires more than just
sticking automatic differentiation on a simulator.

Part 1: Understanding derivatives and their potential issues.
Part 2: How simulators must be modified to improve the
fitting process.
Part 3: Alternatives to direct simulation fitting which may be
more robust in some contexts
Part 4: How the performance of simulators and deep learning
differ

Prologue: Why do Differentiable
Simulation?

Universal (Approximator) Differential Equations

Let’s dive in a bit!
Neural ODE: Learn the whole model

u’=NN(u) trained on 21 days of data

Can fit, but not enough information to
accurately extrapolate

Does not have the correct asymptotic
behavior

Universal ODE

Infection rates: known
From disease quantities

Percentage of cases
known to be severe,
can be estimated

Exposure:
Unknown

Universal ODE -> Internal Sparse Regression
Sparse Identification on only the missing term:
I * 0.10234428543435758 + S/N * I * 0.11371750552005416 + (S/N) ^ 2 * I * 0.12635459799855597

Sparsity improves generalizability!

For further investigation:

Acquesta, Erin, Teresa Portone, Raj Dandekar, Chris Rackauckas, Rileigh Bandy, and Jose
Huerta. Model-Form Epistemic Uncertainty Quantification for Modeling with Differential
Equations: Application to Epidemiology. No. SAND2022-12823. Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), 2022.

Universal (Approximator) Differential Equations

UODEs show accurate extrapolation and generalization

Example using binary black hold
dynamics with LIGO gravitational
wave data

Keith, Brendan, Akshay Khadse, and Scott E.
Field. "Learning orbital dynamics of binary
black hole systems from gravitational wave
measurements." Physical Review Research 3,
no. 4 (2021): 043101.

Run the code yourself!

https://github.com/Astroinformatics/
ScientificMachineLearning/blob/main/
neuralode_gw.ipynb

Universal Differential Equations Predict Chemical Processes

Santana, V. V., Costa, E., Rebello, C. M., Ribeiro, A.
M., Rackauckas, C., & Nogueira, I. B. (2023). Efficient
hybrid modeling and sorption model discovery for non-
linear advection-diffusion-sorption systems: A
systematic scientific machine learning approach. arXiv
preprint arXiv:2303.13555.

Universal Differential Equations Predict Chemical Processes

Recovers equations with the same
2nd order Taylor expansion

Julia Computing Confidential

Scientific Machine Learning Digital Twins: More Realistic Results than Pure ML

Physically-Informed Machine Learning

Using knowledge of the physical forms as part of
the design of the neural networks.

Smoother, more accurate results

For more information, see the case study
on the JuliaHub website

ln(x) ex

SciML Shows how to build
Earthquake-Safe Buildings

Structural identification with physics-informed neural ordinary
differential equations
Lai, Zhilu, Mylonas, Charilaos, Nagarajaiah, Satish, Chatzi,
Eleni

For a detailed walkthrough of UDEs
and applications watch on Youtube: 

 
Chris Rackauckas: Accurate and

Efficient Physics-Informed Learning
Through Differentiable Simulation

Does doing such methods require
differentiation of the simulator?

3D simulations are
high resolution but too
expensive.

Can we learn faster
models?

High fidelity surrogates of ocean columns for climate models

Derive a 1D approximation
to the 3D model

Incorporate the “convective
adjustment”

Only okay, but why?

Neural Networks Infused into Known Partial Differential Equations

Good Engineering Principles: Integral Control!

But how do you fit a neural
network inside of a simulator?

Part 1: Differentiation of Solvers

The adjoint equation is an ODE!

How do you get z(t)? One suggestion:
Reverse the ODE

Timeseries is not
stored, therefore
O(1) in memory!

Machine Learning Neural Ordinary Differential Equations

Chen, Ricky TQ, et al. "Neural ordinary differential equations." Advances in neural information
processing systems. 2018.

But… really?

Differentiating Ordinary Differential Equations: The Trick

Differentiating Ordinary Differential Equations: Integration By Parts

Differentiating Ordinary Differential Equations: The Final Form

Differentiating Ordinary Differential Equations: Summary

Summary: 1. Solve

2. Solve

3. Solve

Differentiating Ordinary Differential Equations: Step 2 Details

2. Solve

How do you get u(t) while solving backwards?
3 options!

1.

2. Store u(t) while solving forwards (dense output)

3. Checkpointing

(𝑡)

(𝑡)(𝑡)
(𝑡)

Adjoint Differential Equation

This term is traditionally computed via differentiation and then multiplied to lambda
Reverse-mode embedded implementation: push-forward f(u) pullback lambda
Computational cost O(n) -> O(1) f evaluations and automatically uses optimized
backpropagation!

Six choices for this computation:
• Numerical
• Forward-mode
• Reverse-mode traced compiled graph

(ReverseDiffVJP(true))
• Fast method for scalarized

nonlinear equations
• Requires CPU and no branching

(generally used in SciML)
• Reverse-mode static

• Fastest method when applicable
• Reverse-mode traced

• Fast but not GPU compatible
• Reverse-mode vector source-to-source

• Best for embedded neural
networks

How the gradient (adjoint) is calculated also matters!

Differentiating Ordinary Differential Equations: Step 3 Details

3. Solve

How do you calculate the integral?

1. Store while solving backwards (dense output)

2. where

𝜆(𝑡)

𝜇′￼= − 𝜆∗𝑓𝑝 + 𝑔𝑝 𝜇(𝑇) = 0

What’s the trade-off between these ideas?

(𝑡)

Cool. Can this go wrong?

Rackauckas, Christopher, and Qing Nie. "Differentialequations. jl–a performant and
feature-rich ecosystem for solving differential equations in julia." Journal of Open
Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs
for accelerated algorithm development and benchmarking." Advances in Engineering
Software 132 (2019): 1-6.

“Adjoints by reversing” also is
unconditionally unstable on some
problems!

Advection Equation:

Approximating the derivative in x has two choices: forwards or
backwards

 

If you discretize in the wrong direction you get unconditional
instability

You need to understand the engineering principles and the
numerical simulation properties of domain to make ML stable on
it.

Problems With Naïve Adjoint Approaches On Stiff Equations

Error grows exponentially…

, plot the error in the reverse
solve:
𝑢′￼(𝑡) = 𝜆𝑢(𝑡)

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

How do you get u(t) while solving backwards?
3 options!

1.

2. Store u(t) while solving forwards (dense output)

3. Checkpointing

 Unstable

High memory

More Compute

Each choices has an engineering trade-off!

Problems With Naïve Adjoint Approaches On Stiff Equations

Error grows exponentially…

, plot the error in the reverse
solve:
𝑢′￼(𝑡) = 𝜆𝑢(𝑡) Compute cost is cubic with parameter size when stiff

Size of reverse ODE system is:

Linear solves inside of stiff ODE solvers, ~cubic

Thus, adjoint cost:

2𝑠𝑡𝑎𝑡𝑒𝑠 + 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑂((𝑠𝑡𝑎𝑡𝑒𝑠 + 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)3)

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

But automatic differentiation

How does it work, and does it fix the
problem?

Symbolic Differentiation on Code

Automatic Differentiation as Differentiation in the Language of Code

Automatic Differentiation as Differentiation in the Language of Code

More Details on
the Algorithm,
see the SciML

Book:

book.sciml.ai

Chapter 10

What does automatic differentiation of
an ODE solver give you?

Are there cases where that is
mathematically correct but numerically
incorrect?

Indeed, AD on its own gives the incorrect answer… but why?

How adaptivity works

Time

X(t)

Propose a
timestep h

Approximate the
solution at t+h
Approximate the
error at t+h

Error is too high, reject!

Propose a new
timestep

Approximate the
error at the new
timestep

Error is small enough. Accept!

Any more cases where AD is incorrect?

Differentiation of Chaotic Systems: Shadow Adjoints

chaotic systems: trajectories diverge to o(1) error … but
shadowing lemma guarantees that the solution lies on
the attractor

• Shadowing methods in DiffEqSensitivity.jl• AD and finite differencing fails!

https://frankschae.github.io/post/shadowing/

Conclusion Part 1:

Be careful about how you compute
derivatives of equation solvers

Improving Coverage of Automatic Differentiation over Solvers

https://scimlbase.sciml.ai/dev/
The SciML Common Interface for Julia Equation Solvers

LinearSolve.jl: Unified Linear Solver Interface
𝐴(𝑝)𝑥 = 𝑏

NonlinearSolve.jl: Unified Nonlinear Solver Interface

𝑓(𝑢, 𝑝) = 0
DifferentialEquations.jl: Unified Interface for all
Differential Equations 𝑢′￼= 𝑓(𝑢, 𝑝, 𝑡)

𝑑𝑢 = 𝑓(𝑢, 𝑝, 𝑡)𝑑𝑡 + 𝑔(𝑢, 𝑝, 𝑡)𝑑𝑊𝑡

Optimization.jl: Unified Optimization Interface

minimize 𝑓(𝑢, 𝑝)
subject to 𝑔(𝑢, 𝑝) ≤ 0, h(𝑢, 𝑝) = 0

Integrals.jl: Unified Quadrature Interface
𝑢𝑏

∫
𝑙𝑏

𝑓(𝑡, 𝑝)𝑑𝑡

Unified Partial Differential Equation Interface

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢)
𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢)

New SciML Docs: Comprehensive Documentation of Differentiable
Simulation

Part 2:

Methods which improve the fitting
process

Fitting by running the simulator and
doing gradient-based optimization

= single shooting

Single shooting is not numerically
robust. Other loss functions are
required in practice!

Some Alternative Loss Functions: Multiple Shooting and Collocation

Multiple Shooting Methods
Roesch, Elisabeth, Christopher Rackauckas, and Michael PH Stumpf. "Collocation based training of
neural ordinary differential equations." Statistical Applications in Genetics and Molecular Biology (2021).

Turan, E. M., & Jäschke, J. (2021). Multiple shooting with neural differential
equations. arXiv preprint arXiv:2109.06786.

Prediction Error Method (PEM)

https://docs.sciml.ai/SciMLSensitivity/dev/examples/ode/
prediction_error_method/

Use a modified simulator which is always filtered
towards the data points

Simple Tricks: Growing the Time Interval

Doing the optimization in a single
pass may not be robust,

Successively grow the interval

Let’s go back to this example

Example using binary black hold
dynamics with LIGO gravitational
wave data

Keith, Brendan, Akshay Khadse, and Scott E.
Field. "Learning orbital dynamics of binary
black hole systems from gravitational wave
measurements." Physical Review Research 3,
no. 4 (2021): 043101.

Run the code yourself!

https://github.com/Astroinformatics/
ScientificMachineLearning/blob/main/
neuralode_gw.ipynb

Let’s go back to this example

The neural network is a residual, so start the training as a small perturbation!

Conclusion Part 2:

Don’t use single shooting. Modify the
simulation process to improve the
fitting.

Sidebar: A note on Neural Network
Architectures in ODEs

ODE Solvers don’t always go forwards!

Time

X(t)

Propose a
timestep h

Approximate the
solution at t+h
Approximate the
error at t+h

Error is too high, reject!

Propose a new
timestep

Approximate the
error at the new
timestep

Error is small enough. Accept! If you’re using an adaptive
ODE solver, you cannot
assume that the next step
will be forward in time from
the previous one.

I.e., neural networks with
state (RNN, GRU, etc.) do
not give a well-defined ODE
solution and will fail in
adaptivity!

Be Aware of Vanishing Gradients

* Many loss functions have gradients which go to zero
when loss functions get extreme.
* ODEs naturally amplify values (exponentially!) as time
gets larger
* Consequence: gradients can become zero, making
training become ineffective

Solutions:

* Never train for long intervals (successive interval
growth, multiple shooting)

* Use loss functions which don’t saturate (but try and
keep them smooth (?))

Part 3:

Methods which ignore such derivative
issues that could be interesting to
explore

Recurrent neural network? No!
1. It’s an explicit method! (Euler’s)
2. Uniform steps will not capture the spikes!

Challenge: train a surrogate to accelerate an arbitrary highly stiff system

Rackauckas, Christopher, and Qing Nie. "Differentialequations. jl–a performant and
feature-rich ecosystem for solving differential equations in julia." Journal of Open
Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs
for accelerated algorithm development and benchmarking." Advances in Engineering
Software 132 (2019): 1-6.

Stiffness causes a problem even
with many SciML approaches like
Physics-Informed Neural Networks
(PINNs)

Understanding and mitigating gradient pathologies in physics-informed neural networks

Sifan Wang, Yujun Teng, Paris Perdikaris

1. Neural networks have difficulties matching highly ill-
conditioned systems

2. Optimization techniques like gradient descent are explicit
processes attempting to solving a stiff model

3. Stiffness in the model can translate to stiffness in the
optimization process as it tries to find a manifold

4. Timescale separations of and more are common in real
applications

We need to utilized all of the advanced
numerical knowledge for handling stiff systems
to work in tandem with ML!

109

Some precedence: echo state networks
Fix a random process and find a projection
to fit the system

Adapting: continuous-time echo state networks
Build a random non-stiff ODE and find a
projection to the stiff ODE

Idea: Avoid Gradients and Use an Implicit Fit

Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

Robertson’s Equations

Classic stiff ODE
Used to test and break integrators

Volatile early transient

Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

Robertson’s Equations

Classic stiff ODE
Used to test and break integrators

Volatile early transient

Log-Scale Fast
Changes!

No auto-catalyst,
no dynamics

Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

After training, 100x faster
than direct simulation!

Only CTESNs Capture the Hard
Dynamics

ReservoirComputing.jl

Part 4: Performance

A Deep Dive into how Performance is
Different Between Deep Learning and
Differentiable Simulation

When/Why should this be preferred
over other techniques like physics-
informed neural networks (PINNs) and
neural operator techniques
(DeepONets)?

Why Use Physics-Informed Neural Networks?

Outperforms standard machine learning
Mix data and physics loss

Keeping Neural Networks Small Keeps Speed For Inverse Problems

DiffEqFlux.jl (Julia UDEs)

DeepXDE (TensorFlow Physics-Informed NN)
Problem: parameter estimation
of Lorenz equation from data
On t in (0,3)

Note on Neural Networks “Outperforming” Classical Solvers

Note on Neural Networks “Outperforming” Classical Solvers

Oh no, we’re doomed!

Wait a second?

Julia’s numerical
solver is faster by

7,000x

Julia: Laptop CPU
DeepONet: Tesla V100 GPU

Wait a second?

Julia’s numerical
solver is faster by

7,000x

Similar story on Fourier
Neural Operator results!

How come so far off?

If Differentiable Simulation techniques
are easily >1000x more efficient, then
why doesn’t everyone “see” that?

Code Optimization in Machine Learning vs Scientific Computing

Big O(n^3) operations?
Just use a GPU

Don’t worry about overhead
You’re fine!

Simplest code is ~3x from optimized

Scientific codes
O(n) and O(n^2)

operations

Mutation and
Memory management: 10x

Manual SIMD: 5x

…

What happens when you specialize computations?

Scientific codes
O(n) and O(n^2)

operations

Mutation and
Memory management: 10x

Manual SIMD: 5x

…

SimpleChains.jl

Doing small network scientific
machine learning in Julia on CPU 5x

faster than PyTorch on GPU

(10x Jax on CPU)

Details in the release blog post

Only for size ~100 layers and below!

SimpleChains + StaticArray Neural ODEs

About a 5x improvement

~1000x in a nonlinear mixed
effects context

Tutorial should be up in a few
days

Caveat: Requires
sufficiently small ODEs

(<20)

Let’s dive into some performance
optimizations and see what’s required
in practice on Burger’s Equation

SciML Open Source Software
Organization
sciml.ai

● DifferentialEquations.jl: 2x-10x Sundials, Hairer, …
● DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
● ModelingToolkit.jl: 15,000x Simulink
● Catalyst.jl: >100x SimBiology, gillespy, Copasi
● DataDrivenDiffEq.jl: >10x pySindy
● NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
● NeuralOperators.jl: ~3x original papers (more optimizations required)
● ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
● SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
● DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention…

If you work in SciML and think optimized and maintained
implementations of your method would be valuable, please let us know
and we can add it to the queue.

Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter

