Review on Axion Search Experiments

Junu Jeong

Center for Axion and Precision Physics Research, Institute for Basic Science

Axions, Weyl and Beyond 31 August 2023, Busan

Outline

- Why Axion?
- Axion Searches
- Summary

Why no EDM for neutron & proton?

⇒ SSB of global U(1) symmetry ⇒ pesudo-Nambu-Goldstone Boson, Axion Similar to Higgs (Gauge Sym. ⇒ Global Sym.)

Theoretically Well Motivated

Dark Matter Candidate

Invisible axion (mass less than meV)

- Feebly interacts with standard particles
- Non-relativistic in sufficient quantities

Tabletop Experiment

Less expensive but sensitive

- Much smaller compared to colliders
- Idea is most important

In line with quantum computer technology

- Microwave engineering in cryogenics
- Quantum-limited noise amplifiers
- Single photon detector

Dark Matter Candidate

Tabletop Experiment

Quantum Technology

2023/08/31

Growing Community

As a result, axion community is growing so fast!

Axion Searches

Axion Searches

2023/08/31

Axion Searches

2023/08/31

Axion-Gluon coupling

$$\mathcal{L}_{\theta} = \frac{g^2 a / f_a}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Axion-Gluon coupling $\mathcal{L}_{\theta} = \frac{g^2 a / f_a}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$

low energy

Axion-Photon coupling

$$\mathcal{L}_{a\gamma} = -\frac{g_{a\gamma\gamma}}{4} aF_{\mu\nu}\tilde{F}^{\mu\nu} = g_{a\gamma\gamma}a\mathbf{E}\cdot\mathbf{E}$$

Axions, Wely and Beyond

Axion-Gluon coupling

 $\mathcal{L}_{\theta} = \frac{g^2 a / f_a}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$ **Classical Equation of Motion** $\nabla \cdot \mathbf{E} = \rho_e - g_{a\gamma\gamma} \nabla a \cdot \mathbf{B}$ low energy $\nabla \cdot \mathbf{B} = 0$ $\nabla \mathbf{X} \mathbf{E} = -\partial_t \mathbf{B}$ **Axion-Photon coupling** $\nabla \times \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J}_e$ $\mathcal{L}_{a\gamma} = -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$ $+g_{a\nu\nu}(\nabla a \times \mathbf{E} + \partial_t a \mathbf{B})$ least action principle а

Axions, Wely and Beyond

Recent Limits on the Axion-Photon Coupling

Haloscope Dark Matter Axion

Helioscope

Solar Axion

Lab-Produced Axion

Axion Haloscope

Dark Matter Axion

Solenoid

Axions, Wely and Beyond

Vacuum current density

2023/08/31

[P. Sikivie]

Axions, Wely and Beyond

Center for Axion and Precision Physics Research

CAPP of Institute for Baisc Science (IBS) at KAIST in Korea since October 2013 **Project:** Axion dark matter, Storage ring proton EDM, Axion mediated long range force

CAPP

Center for Axion and Precision Physics Research

Axions, Wely and Beyond

Axion to Photon conversion at 1.15 GHz • KSVZ: 6.2×10^{-22} W or 10^3 photons/s • DFSZ: 0.9×10^{-22} W or 10^2 photons/s • With T_{sys} of 200 mK ($Q_c = 10^5$, eff.=0.8) • KSVZ: 50 GHz/year • DFSZ: 1 GHz/year

[A. K. Yi et al., Phys. Rev. Lett. 130, 071002 (2023)]

2023/08/31

Preliminary results extending search frequencies, (3 MHz/day)

Exclusion Limits

Preliminary

Future Plan

$$\nabla \cdot \mathbf{E} = \rho_e - g_{a\gamma\gamma} \nabla a \cdot \mathbf{B}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$$
$$\nabla \times \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J}_e$$
$$+ g_{a\gamma\gamma} (\nabla a \times \mathbf{E} + \partial_t a \mathbf{B})$$

Dielectric Haloscope

$$\nabla \cdot \mathbf{E} = \rho_e - g_{a\gamma\gamma} \nabla a \cdot \mathbf{B}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$$
$$\nabla \times \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J}_e$$
$$+ g_{a\gamma\gamma} (\nabla a \times \mathbf{E} + \partial_t a \mathbf{B})$$

Axions, Wely and Beyond

Dielectric Haloscope

MADMAX

MADMAX

Axions, Wely and Beyond
$$\nabla \cdot \mathbf{E} = \rho_e - g_{a\gamma\gamma} \nabla a \cdot \mathbf{B}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$$

$$\nabla \times \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J}_e$$

$$+ g_{a\gamma\gamma} (\nabla a \times \mathbf{E} + \partial_t a \mathbf{B})$$

$$a \approx a_0 e^{i\omega_a t}, \nabla a \approx 0 \times$$

$$\nabla \cdot \mathbf{E} = \rho_e - g_{a\gamma\gamma} \nabla a \cdot \mathbf{B}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$$
$$\nabla \times \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J}_e$$
$$+ g_{a\gamma\gamma} (\nabla a \times \mathbf{E} + \partial_t a \mathbf{B})$$

Dish Antenna Haloscope

Axions, Wely and Beyond

BREAD (Broadband Reflector Experiment for Axion Detection)

BREAD (Broadband Reflector Experiment for Axion Detection)

9.4 T MRI Magnet at Fermilab

BREAD (Broadband Reflector Experiment for Axion Detection)

9.4 T MRI Magnet at Fermilab

Array of Horn Antenna

Array of Horn Antenna

Array of Horn Antenna

2023/08/31

Axions, Wely and Beyond

Lumped Element Haloscope

 $\nabla \cdot \mathbf{E} = \rho_e - g_{a\gamma\gamma} \nabla a \cdot \mathbf{B}$

 $\nabla \cdot \mathbf{B} = 0$

 $\nabla \mathbf{X} \mathbf{E} = -\partial_t \mathbf{B}$

 $\nabla \mathbf{X} \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J}_e$

If $c/\omega_a \gg L_{lab}$, $\partial_t \mathbf{E} \ll \nabla \times \mathbf{B}$ **Quasistatic approximation**

$$\mathbf{J}_{\mathrm{ax}} \sim g_{a\gamma\gamma} \sqrt{2\rho_{\mathrm{DM}}} \cos(m_a t) \mathbf{B}$$

[DMRadio Collaboration]

DMRadio

Toroidal magnet with field B_0 creates current J_{eff}

J_{eff} creates magnetic field B_a B_a induces I_{ret} which is enhanced by an LC resonator and picked up by a sensor

[Maria Simanovskaia, PATRAS 2023]¹

DMRadio-50L

DMRadio

[Maria Simanovskaia, PATRAS 2023]

Axion-Fermion coupling

$$\mathcal{L}_{a\bar{f}f} = -\frac{g_f}{2f_a} (\partial_\mu a) \bar{f} \gamma^\mu \gamma^5 f$$

Axion-Fermion coupling

$$\mathcal{L}_{a\bar{f}f} = -\frac{g_f}{2f_a} (\partial_\mu a) \bar{f} \gamma^\mu \gamma^5 f$$

non-relativistic limit

Axion-Spin coupling

$$\mathcal{H}_{a\bar{f}f} = \frac{1}{f_a} \left[\frac{g_f}{2} \left(\vec{\sigma} \cdot \vec{\nabla} a + \frac{\vec{p} \cdot \vec{\sigma}}{m_f} \partial_t a \right) \right]$$

Axion-Fermion coupling

$$\mathcal{L}_{a\bar{f}f} = -\frac{g_f}{2f_a} (\partial_\mu a) \bar{f} \gamma^\mu \gamma^5 f$$

non-relativistic limit

Axion-Spin coupling

$$\mathcal{H}_{a\bar{f}f} = \frac{1}{f_a} \left[\frac{g_f}{2} \left(\vec{\sigma} \cdot \vec{\nabla} a + \frac{\vec{p} \cdot \vec{\sigma}}{m_f} \partial_t a \right) \right]$$

Chiral Magnetic Effect

Axion-Fermion coupling

$$\mathcal{L}_{a\bar{f}f} = -\frac{g_f}{2f_a} (\partial_\mu a) \bar{f} \gamma^\mu \gamma^5 f$$

non-relativistic limit

Axion-Spin coupling

$$\mathcal{H}_{a\bar{f}f} = \frac{1}{f_a} \left[\frac{g_f}{2} \left(\vec{\sigma} \cdot \vec{\nabla} a + \frac{\vec{p} \cdot \vec{\sigma}}{m_f} \partial_t a \right) \right]$$

Axion Wind-Spin coupling

Axion-Fermion coupling

$$\mathcal{L}_{a\bar{f}f} = -\frac{g_f}{2f_a} (\partial_\mu a) \bar{f} \gamma^\mu \gamma^5 f$$

non-relativistic limit

Axion-Spin coupling

$$\mathcal{H}_{a\bar{f}f} = \frac{1}{f_a} \left[\frac{g_f}{2} \left(\vec{\sigma} \cdot \vec{\nabla} a + \frac{\vec{p} \cdot \vec{\sigma}}{m_f} \partial_t a \right) \right]$$

Axion Wind-Spin coupling

$$\mathcal{H}_{\rm spin} = -\frac{\gamma}{2} \vec{B}_0 \cdot \vec{\sigma}$$
$$\vec{B}_{\rm eff} = -\frac{g_f}{\gamma f_a} \vec{\nabla} a$$

Magnetic Resonance

- When $\omega_a = \gamma B_0$, Flip spins and make a precession
- Magnetometer detects the precessing field
- Similar to NMR

CASPEr-Wind

[Budker Group]

CASPEr-Wind

[Budker Group]

[D. F. Kimball, 3rd Cavity Workshop (2020)]

Axion Helioscope

2023/08/31

Axion Helioscope

Axion Helioscope

- Sun is the strongest and the closest axion generator
- The keV energy scale corresponds to the X-ray range
- Solar axions (hot) are converted into photons under the magnetic field

IAXO (International Axion Observatory)

- Next generation after CAST (CERN helioscope)
- Large toroidal geometry
 - 8 magnets w/ L = 20 m
 - 5.4 T / 600 mm bore
- Advanced X-ray detector
- ~50% Sun-tracking time / 50% bg data

[Uwe Schneekloth, PATRAS 2023]

IAXO (International Axion Observatory)

[Uwe Schneekloth, PATRAS 2023]

Lab-Produced Axion Searches

2023/08/31

Axion Photon Regeneration

- Long & strong magnet
- High power laser system
- Two optical cavities
- Heterodyne detection system

ALPS II

- Two 122 m long optical cavity
- 100 m of magnetic fields (5.3 T)
- 70 W at 1064 nm LASER
 - Goal: 150 kW

[ALPS II], [Aaron D. Spector, PATRAS 2023]

ALPS II

2023/08/31

Vacuum Dichroism and Birefreingence

[P. Sikivie, Rev. Mod. Phys. 93 015004]

When linearly polarized light is propagating under magnetic fields

- Dichroism: Photons polarized along the B field partially convert into axions
- Birefreigence: Phase difference is induced between two polarizations

Summary (1)

- Axion is a theoretically well-estabilished hypothetical pseudoscalar particle, and a strong candidate for dark matter.
- The field of axion is receiving significant attention and is a highly promising area with great growth potential.
- Various methods for exploring axions have been introduced.

Summary (2)

TOORAD (TOpOlogical Resonant Axion Detection)

[D. Marsh, Phys. Rev. Lett. 123, 121601]
ARIADNE (Axion Resonant InterAction DetectioN Experiment)

ARIADNE (Axion Resonant InterAction DetectioN Experiment)

[Y. Kim, KAIST Thesis]