Indico page for Nb3Sn cable modeling

 $\begin{tabular}{ll} \hline & Annext_ \textit{Detection} \dots doc & \frown \end{tabular}$

Show all X

Slot for the meeting:

- **Monday 14h**
- (Tuesday 9h)
- Wednesday 11h or 14h
- Thursday 11h
- Friday 9h or 14h

Cable before RHT defined by:

- **Geometry**
- prestress

Thermal mechanical behaviour of the cable during and after RHT for:

- \rightarrow Stress state/geometry after RHT
- \rightarrow Dimensioning of the tooling/mould

(Orthotropic) cable model:

- **Elasticity**
- Thermal expansion
- Phase transformation
- Plasticity: Yield surface, flow equation, hardening

Multi-scale FEA approach :

- Identifications of parameters at microscale (nanoindentation)
- Modelling of filaments, wires and cable
- Simulation of RVE of cable

Needed to:

- Assess the local stress state after RHT
- Reduce complex exp. Tests
- Extrapolate to other cable geometries

Experimental tests:

- Identifications of parameters at cable scale
- Validation/calibration of the multi-scale approach

"CTE" (axial & lateral) measurements on wires and cables

• without or after an annealing treatment (250C?)

Measurement of Force/displacement (axial & lateral) curves on wire and cable before and after RHT \rightarrow E, nu, plasticity

Chamber required \rightarrow budget > 100 kCHF.

Measurements on constrained cables:

reaction forces during a RHT cycle for cables fixed at the extremities with rigid support in:

- stainless steel,
- Titanium.

Nanoindentation for local material parameters (E, Sy), from RT to RHTT

- RT measures already possible
- High temperatures \rightarrow budget of \sim 300 kCHF

What is the influence of the prestress in the Nb on the Nb3Sn behavior after the reaction? Is the Nb3Sn phase created in the "same" stress state as the Nb (constant strain), or in a free stress state?

C Scheuerlein et al

Table 1. Comparison of Nb₃Sn wire diameter and wire and cable length changes before and after RHT. The change to the wire's crosssectional area was calculated from the diameter change.

Fig. 10: Comparison of RRP #7419 Nb₃Sn wire axial length change during first heating with that of DISCUP C3/30, Ti6Al4V, and 316LN. The relative length changes of a Cu wire and the Nb thermal expansion from reference [20] are shown for comparison.

IFFF TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 29, NO. 5, AUGUST 2019

Fig. 5. Comparison of length change behaviour of unreacted Nb₃Sn RRP Rutherford cables (H15OC0220B) with un-annealed Nb-Ti cable and literature values for Ti-6Al-4V [6], Cu [16], Nb [21], bulk Nb₃ Sn [16] and Nb₃ Sn RRP wires [6]. $1.2⁵$

Fig. 6. Relative length changes of un-annealed Cu Rutherford cables and reacted Nb₃ Sn RRP Rutherford cables during heat treatment up to 550 °C and comparison with literature values for Cu and Nb₃ Sn [16].

Elastic modulus of RRP type $Nb₃Sn$ wire

- E is defined as the initial linear slope of the unloading curve.
- Determined elastic modulus of the reacted RRP wire: 126 GPa

TABLE II Nb₃Sn Elastic Moduli in Axial and Transverse Directions
Calculated for the RRP and PIT Wires at RT and at 4.2 K

Fig. 3. Stress-strain curves measured at room temperature on a reacted RRP wire and its extracted filaments.

IEEE Trans. Appl. Supercond., 25(6), (2015), 8400605

Microscopic and equivalent wire models

The model shall be coherent with the FEA code expected to be used.

Model with initial back stress